Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

The Zeolites of Weehawken, NJ (Darton, 1882)

Last Updated: 17th May 2008

By Daniel Russell

N. H. Darton On The Zeolites of
Weehawken, Hudson County, New Jersey (1882)


In 1883, Nelson Horatio Darton, an 18 year man old from Brooklyn, New York, published a lengthy piece in the Scientific American Supplement about the minerals of several of the more interesting mineral sites around New York City. Born in 1865, Darton apprenticed in his grandfather's pharmacy at the age of 13 and developed a sound understanding of practical chemistry. In 1886 he would join the United States Geological Survey, where he remained until his death in 1948.

One of the principal sites described in Darton’s paper were the several occurences of zeolites and associated species in Weehauken, then an area readily accessible to New York City mineral collectors. Of special interest is that Darton had the opportunity to observe mineral specimens in situ during the excavation of the Weehauken Tunnel, a 4,100 ft long tunnel connecting New Jersey with Manhattan, between 1881 and 1883. Frustratingly, copies of the illustrations are not available.

In addition to describing specimens of most of the “classic” mineral species that characterize New Jersey’s traprocks, Darton also recovered a miniscule amount of “Hayesine,” a poorly characterized calcium borate.



Darton, Nelson Horatio
The Mineralogical Localities In And Around New York City, And The Minerals Occurring Therein

Scientific American Supplement Vol. XIV No. 344
New York, August 5, 1882

09229490014946285473202.jpg
Nelson Horatio Darton
The first general locality is Bergen Hill, New Jersey. This comprises the range of bluffs of trap rock commencing at Bergen Point and running up behind Jersey City and Hoboken, etc., to the part opposite about Thirtieth Street, New York, where it comes close to the river, and from there along the river to the north for a long distance, known as the Palisades. It is about a mile wide on an average, and from a few feet to about two hundred feet in height. The mineralogical localities in and upon it are at the following parts, commencing at the south: First Pennsylvania Railroad cuts where the mining operations are just about completed; then the Erie Tunnel, in which the specimens that first made Bergen Hill noted as a mineralogical locality, and whose equals have not since been procured, were found, but which is now inaccessible to the general public. Further north is the Morris and Essex Tunnel, in which many fine specimens were secured, and is also inaccessible; and last, but far from being least, is the Ontario Tunnel at Weehawken; and, as it is the only practicable part besides the Pennsylvania Railroad and a number of surface outcrops which I will mention, I will commence with that.

The Weehawken Tunnel — This tunnel is now being cut through the trap rock for the New York, Ontario, and Western Railroad, and will be completed in a few months, but will, probably, be available as a mineralogical locality for a year to come. It is located about half a mile south of the Weehawken Ferry from Forty second Street, New York city, and the place where to climb upon the hill to get to the shafts leading to it is made prominent by the large body of light colored rock on the dump, a few rods north of where the east entrance is to be. The western end is in the village of New Durham, on the New Jersey Northern Railroad, and recognized by the immense earth excavations. A pass is necessary to gain admittance down the shafts, and this can be procured from the office of the company, between the third and fourth shafts to the tunnel, in the grocery and provision store just to the north of the tramway connecting the shafts on the surface. As it will not be necessary to go down in any of the shafts besides the first and second in order to fulfill the objects of this paper, no difficulty need be encountered in procuring the pass if this is stated.

These two shafts are about eight hundred feet apart and one hundred and seventy feet deep. A platform elevator is the mode of access to the tunneled portion below, and a free shower bath is included in the descent; consequently, a rubber coat and water tight boots are necessary. A pair of overalls should be worn if one is to engage in any active exploration below; candles should also be provided, as the electric lights, at the face of the headings, give but little light, and remind one very forcibly of a dim flash light with a foliaged tree in front of it. The electric wires for supplying these arrangements run along the north side of the tunnel for those on the east headings, and on the south side for the west. They are excellent things to keep clear of, as they have sufficient current passing through them to knock one down; thus their position can be readily ascertained.

Modes of Occurrence of the Minerals— In general, the greater number of the specimens which are to be found in the tunnel occur in veins generally perpendicular, and with other minerals of little or no value, as calcite, chlorite, and imperfect crystals of the same mineral. A few occur in nodules inclosed in the solid body of rock, and in which condition they are seldom of value. The greater abundance are in the veins of the dark green soft chlorite, and some few in horizontal beds. The minerals are found in the first condition by examining all the veins running from floor to ceiling of the tunnel. The ores of calcite first mentioned are very conspicuous, they being white in the dense black rock. They may be chipped from, as there are about thirty or forty of them exposed in each shaft, and the character of the minerals examined to see if anything but calcite is in it. This is ascertained by a drop of acid, as explained before, and by the descriptions given further on. The veins of chlorite are not so conspicuous, being of a dark green color; but by probing along the walls with a stick or hammer, they may be recognized by their softness, or by its dull glistening appearance. They are comparatively few, but from an inch to three feet wide; and minerals are found by digging it out with a stick or a three foot drill, to be had at the headings. Where the most minerals occur in the chlorite is when plenty of veins of calcite are in its vicinity, and its edges near the trap are dry and crumbly. It is here where the minerals are found in this crumbly chlorite, and generally in geodes that is, the faces of the minerals all point inward, formerly a spherical mass rough and uncouth on the outside, and from half an inch to nearly a foot in diameter. These are valuable finds, and well worth digging for. The beds of minerals generally are of but one species, and will be mentioned under the head of the minerals occurring in them. Besides, in the tunnel there are generally more or less perfect minerals upon the main dump over the edge of the bluff toward the river. Here many specimens that have escaped the eyes of the miners may be found among the loose rock, being constantly strewn out by the incline of the bed; in fact, this is the only place in which quite a number of the incident minerals may be found; but I will not linger longer on this, as I shall refer to it under the minerals individually. The minerals occurring at the tunnel are as follows, with their descriptions and locations in the order of their greatest abundance:

Calcite — This mineral occurs in great abundance in and about the tunnel, and from all the shafts. There are two forms occurring there, the most abundant of which is the rhombohedral. It can generally be obtained, however, in excellent crystals, which, although perfect in form, are opaque, but often large and beautiful. It is always packed with a thousand or its multiple of other crystals into veins of a few inches thick; and crystals are obtained by carefully breaking with edge of the cold chisel these masses down to the fundamental form shown. As the masses are never secured by the miners, they can always be picked from the piles of debris around the shafts and the dumps, and afford some little instruction as to the manner in which a mineral is built up by crystallization, and may be subdivided by cleavage to a crystal of the same shape exactly, but infinitesimally small. A crystal to be worth preserving should be about an inch in diameter, and as transparent as is attainable.

Another form of calcite which is to be sparingly found is what is called dogtooth spar, having the form shown in Fig. 4. They occur in clear wine yellow colored crystals, from a quarter to half an inch in length; they occur in the chlorite in geodes of variable sizes, but generally two and a half inches in diameter, and which, when carefully broken in half, showed beautiful grottoes of these crystals. The few of these that I have found were in the four foot vein of chlorite down the Shaft No. 1, to the west of the shaft about one hundred and fifty feet, and on the south wall; it may be readily found by probing for it, and then the geodes by digging in. There need be no difficulty in finding this vein if these conditions are carefully considered, or if one of the miners be asked as to the soft vein. Both these forms of calcite may be distinguished from the other minerals by first effervescing on coming in contact with the acids; second, by glowing with an intense (almost unbearably so) light when heated with the blowpipe, but not fusing. Their specific gravity is 2.6, or near it, and hardness about 3, or equal to ordinary unpolished white marble.

Natrolite — The finest specimens of this mineral that have ever been found in Bergen Hill were taken from a bed of it in this tunnel, having in its original form, before it was cut out by the tunnel passing through, over one hundred square feet, and from one half to two and a half and even three inches in thickness; it was in all possible shapes and forms all extremely rare and beautiful. A large part of one end of this bed still remains, and, by careful cutting, fine masses may be obtained. This bed may be readily found; it is nearly horizontal, and in its center about four feet from the floor of the tunnel, and about half an inch thick. It is down Shaft No. 2, on the north wall, and commences about eighty feet from the shaft. It is cut into in some places, but there is plenty more left, and can be obtained by cutting the rock above it and easing it out by means of the blade of a knife or similar instrument. This natrolite is a grouping of very small but perfect crystals, having the forms shown in Fig. 5; they are from a quarter to an inch long, and, if not perfectly transparent, are of a pure white color; they may be readily recognized by their form, and occurring in this bed. Its hardness, which is seldom to be ascertained owing to the delicacy of the crystals, is about 5, and the specific gravity 2.2. This is readily found, but is no distinction; its reaction before the blowpipe, however, is characteristic, it readily fusing to a transparent globule, clear and glassy, and by forming a jelly when heated with acids. The bed holding the upright crystals is also natrolite in confused matted masses. This mineral has also been found in other parts of the shaft, but only in small druses. There is a prospect at present that another bed will be uncovered soon, and some more fine specimens to be easily obtained.

Pectolite, or as it is termed by the miners, "silky spar" — This mineral is quite abundant and in fine masses, not of the great beauty and size of those taken from the Erie Tunnel, but still of great uniqueness. The mineral is recognized by its peculiar appearance, as is shown in Fig. 6, where it may be seen that it is in groups of fine delicate fibers about an inch long, diverging from a point into fan shaped groups. The fibers are very tightly packed together, as are also the groups; they are very tough individually, and have a hardness of 4, and a specific gravity of about 2.5. It gelatinizes on boiling with acid, and a fragment may be readily fused in the blowpipe flame, yielding a transparent globule. The appearance is the most striking characteristic, and at once distinguishes this mineral from any of the others occurring in this locality. Considerable quantities of pectolite may generally be found on the dump, but also in Shaft No. 1, and especially No. 2. The veins of it are difficult to distinguish from the calcite, as they are almost identical in color, and many of the calcite veins are partly of pectolite in fact, every third or fourth vein will contain more or less of it. There is, however, a very fine vein of pectolite about twenty five feet further east from the natrolite bed; it runs from the floor to ceiling, and is about two inches in thickness; some specimens of which I took from these were unusually unique in both size and appearance. It makes a very handsome specimen for the cabinet, and should be carefully trimmed to show the characteristics of the mineral.

09851680014946285475260.jpg
Pectolite from Weehawken, New Jersey
With George F Kunz Label


Datholite [Datolite] — This mineral has been found very frequently in the tunnel, it occurring in pockets in the softer trap near the chlorite, and also in the latter, generally at a depth of one hundred and fifty feet from the surface, and consequently near the ceiling of the tunnel. All that has been found of any great beauty has been in the western end of the Shaft No. 1 and the eastern of Shaft No. 2, where the trap is quite soft; here it is found nearly every day in greater or less quantity, and from this some may generally be found on the dump, or, in the vein of chlorite which I mentioned as a locality for the dogtooth spar, considerable may be obtained in it and on its western edge near the ceiling. A ladder about thirteen feet long is used for attending the lights, and may generally be borrowed, and access to the remainder of this pocket thus gained. Datholite is also very characteristic in appearance, and can only be confounded with some forms of calcite occurring near it. It occurs in small glassy, nearly globular crystals; they are generally not over three sixteenths of an inch in diameter, and generally pure and perfectly transparent, having a hardness of a little over 5, and specific gravity of 3; as it generally occurs as a druse upon the trap, or an apopholite, calcite, etc., this is seldom attainable, however, and we have a very distinctive characteristic in another test: this is the blowpipe, under which it at first intumesces and then fuses to a transparent globule, and the flame, after playing upon it, is of a deep green color. Nitric acid must be used to boil it up with, and with it it may be readily gelatinized. This last test will seldom be necessary, however, and may be dispensed with if the hardness and blowpipe reactions may be ascertained.

Apopholite [Apophyllite] — This beautiful mineral has been found in fair abundance at times in Shafts No. 1 and 2 in pockets, and seldom in place, most of it being taken from the loose stone at the mouth of the shaft, and it may generally be found on the dump. It is readily mistaken for calcite by the miners and those unskilled in mineralogy, but a drop of acid will quickly show the difference. The sizes of the crystals are very various, from an eighth of an inch long or thick, to, in one case, an inch and a half. The colors have been varied from white to nearly all tints, including pink, purple, blue, and green; the white variety is, however, the most abundant, and makes a handsome cabinet specimen. The crystals are generally packed together in a mass, but are frequently set apart as heavy druses of crystals having the form shown in Fig. 7. Sometimes, as in the former grouping, the crystals are without the pyramidal terminations, and are then right square prisms. The fracture being at perfect right angles, distinguishes it from calcite. Its hardness is generally fully 5, the specific gravity between 2.4 and 2.5; it is difficult to fuse before the blowpipe, but is finally fused into an opaque globule. Upon heating with nitric acid it partly dissolves, and the remainder becomes flaky and gelatinous. Apopholite, although quite rare, now may be bought from the men, or at least one of the engineers of Shaft No. 2's elevator, and generally at low terms.

Phrenite [Prehnite] — This mineral is quite abundant in Shafts No. 1 and 2, in very small masses, incrustations, and even in small crystals. It occurs embedded in or incrusting the trap, and also with calcite and apopholite. The only sure place to find it is at the southwest side of an opening through the pile of drift rock under the trestle work of the tramway, between shaft No. 1 and the dump, and within a few feet of a number of wooden vats sunk into the ground seen just before descending the hills and near the edge. Here on a number of blocks of trap it may be found, a greenish white incrustation about as thick as a knife blade; it also may be found on the main dump, and is sometimes found in plates one eighth of an inch thick, of a darker green color, upon calcite. Its easiest distinguishment from the other minerals of this locality, with which it might be confounded, is its great hardness of from 6 to 7. It is very fragile and brittle, however, and is never perfectly transparent, but quite opaque; its specific gravity is 2.9, and it is readily fused before the blowpipe after intumescing. It partly dissolves in acid without gelatinizing, leaving a flaky residue; it is a beautiful mineral when in masses or crystals of a dark green color, but the best place in the vicinity to secure specimens of this kind is, as I will detail hereafter, at Paterson, N. J.

Iron and Copper Pyrites [Pyrite and Chalcopyrite] — Both of these common but frequently beautiful minerals occur in the tunnel and adjacent rocks in great abundance. The crystals are generally about one fourth of an inch in diameter, and groups of these may be frequently obtained on the dump in the shafts, especially No. 1 and 2, and where the rock is being cleared away for the eastern entrance to the tunnel. They resemble each other very much; the iron pyrites, however, is in cubical forms and having the great hardness of from 6 to 7, while the copper pyrites, less abundant and in forms having triangles for bases, but having sometimes other forms and a hardness of but 3 to 4. Both are similar in aspect to a piece of brass, and cannot be mistaken for any other mineral. The form of the copper pyrites is shown in Fig. 8; the iron is, as before noted, in cubes, more or less modified.

Stilbite — Small quantities of this beautiful mineral have been found in Shaft No. 2, in a small bed of but a few square feet in area, but quite thick and appearing much like natrolite. This bed was about one hundred feet east from Shaft No. 2, and in the center of the heading when it was at that point. It has been encountered since in small quantities, and it would do well to look out for it in the fresh tunneled portion after the date appended to this paper. It generally occurs in the form shown in Fig. 9, grouped very similarly to natrolite, and being right upon the rock or a thin bed of itself. The crystals are generally half an inch long, but often less. The modifications of the above form, which are frequent in this species, strike one forcibly of the resemblance they bear to a broad stone spear head on a diminutive scale, with a blunted edge; their hardness is about 4, specific gravity 2.2, the color generally a pearly white or grayish. After a long boiling with nitric acid it gelatinizes, but it foams up and fuses to a transparent glass before the blowpipe. A little stilbite may often be found on the dumps.

Laumonite — occurs in very small quantities on calcite or apopholite, and can hardly be expected to be found on the trip; but as it might be found, I will detail some of its characteristics. Hardness 4, specific gravity 2.3; it generally occurs in small crystals, but more frequently in a crumbly, chalky mass, which it becomes upon exposure to the air. The crystals are generally transparent and frequently tinged yellow in color. It gelatinizes by boiling with acid, and after intumescing before the blowpipe, fuses to a frothy mass. To keep this mineral when in crystals from crumbling upon exposure it may be dipped in a thin mastic varnish or in a gum arabic solution.

Heulandite — This rare mineral has been found under the same conditions as laumonite in Shaft No. 2, but it is seldom to be met with, and then in small crystals. It is of a pure white color, sometimes transparent. It intumesces and readily fuses before the blowpipe, and dissolves in acid without gelatinizing. Hardness 4, specific gravity 2.2.

The few other minerals occurring in the tunnel are so extremly rare as not to be met with by any other than an expert, and it is impossible to detail the localities, as they generally occur as minute druses or incrustations upon other minerals with which they may be confounded, and have been removed as soon as discovered. The minerals referred to are analcime, chabazite, thompsonite, and finally, the mineral which I first found in this formation, Hayesine, which is extremely rare, and of which I only obtained sufficient to cover a square inch. The particulars in regard to its locality, etc., maybe found in the American Journal of Sciences for June, page 458.




Article has been viewed at least 11628 times.
 
Mineral and/or Locality  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2024, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: April 24, 2024 02:32:09
Go to top of page