Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

GeneralMineral Evolution: Episodic Metallogenesis, the Supercontinent Cycle, and the Coevolving Geosphere and Biosphere

10th Nov 2015 08:17 UTCUwe Kolitsch Manager

Hazen, R.M., Liu, X.-M., Downs, R.T., Golden, J., Pires, A.J., Grew, E.S., Hystad, G., Estrada, C. and Sverjensky, D.A. (2014): Mineral Evolution: Episodic Metallogenesis, the Supercontinent Cycle, and the Coevolving Geosphere and Biosphere. Society of Economic Geologists Special Publication 18, 1-15.


Free download here: http://www.geo.arizona.edu/xtal/group/pdf/SEGSP18_1.pdf


Analyses of temporal and geographic distributions of the minerals of beryllium, boron, copper, mercury, and molybdenum reveal episodic deposition and diversification. We observe statistically significant increases in the number of reported mineral localities and/or the appearance of new mineral species at ~2800 to 2500, ~1900 to 1700, ~1200 to 1000, ~600 to 500, and ~430 to 250 Ma. These intervals roughly correlate with presumed episodes of supercontinent assembly and associated collisional orogenies of Kenorland (which included Superia), Nuna (a part of Columbia), Rodinia, Pannotia (which included Gondwana), and Pangea, respectively. In contrast, fewer deposits or new mineral species containing these elements have been reported from the intervals at ~2500 to 1900, ~1700 to 1200, 1000 to 600, and 500 to 430 Ma. Metallogenesis is thus relatively sparse during periods of presumed supercontinent stability, breakup, and maximum dispersion. Variations in the details of these trends, such as comparatively limited Hg metallogenesis during the assumed period of Rodinia assembly; Proterozoic Be and B mineralization associated with extensional environments; Proterozoic Cu, Zn, and U deposits at ~1600 and 830 Ma; and Cenozoic peaks in B, Cu, and Hg mineral diversity, reveal complexities in the relationship between episodes of mineral deposition and diversification on the one hand, and supercontinent assembly and preservational biases on the other. Temporal patterns of metallogenesis also reflect changing near-surface environments, including differing degrees of production and preservation of continental crust; the shallowing geotherm; changing ocean chemistry; and biological influences, especially those associated with atmospheric oxygenation, biomineralization, and the rise of the terrestrial biosphere. A significant unresolved question is the extent to which these peaks in metallogenesis reflect true episodicity, as opposed to preservational bias.

10th Nov 2015 08:54 UTCOlav Revheim Manager

Thanks for sharing Uwe


Olav

10th Nov 2015 08:55 UTCTimothy Greenland

That is fascinating! Thank you Uwe


Tim

10th Nov 2015 11:39 UTCSpencer Ivan Mather

Very interesting, thanks Uwe..


Spencer.

10th Nov 2015 16:05 UTCD. Peck

I still think that anthropogenic materials should remain distinct from geologic materials. Archaeologists have no trouble differentiating such materials when they are thousands of years old, and I expect that future archaeologists and geologists will have even less difficulty. If geological processes rework the materials over tens or hundreds of thousands of years, that is another question . . . and one I am willing to leave to future scientists.

10th Nov 2015 23:07 UTCTony Albini

Uwe,


Thank you for the information. Tony
 
Mineral and/or Locality  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2024, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: April 19, 2024 21:18:09
Go to top of page