Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Golconda pegmatite field, Governador Valadares, Minas Gerais, Brazili
Regional Level Types
Golconda pegmatite fieldPegmatite Field
Governador ValadaresMunicipality
Minas GeraisState
BrazilCountry

This page is currently not sponsored. Click here to sponsor this page.
PhotosSearch
Latitude & Longitude (WGS84):
18° South , 42° West (est.)
Estimate based on other nearby localities or region boundaries.
Margin of Error:
~9km
KΓΆppen climate type:
Mindat Locality ID:
4513
Long-form identifier:
mindat:1:2:4513:4
GUID (UUID V4):
2a419411-77ea-4130-83e9-d1c8c7f65a5d
Other Languages:
Portuguese:
Distrito da Golconda, Governador Valadares, Minas Gerais, Brasil


See also https://www.mindat.org/loc-281837.html (Golconda, Governador Valadares) and https://www.mindat.org/loc-257186.html (Alto da Golconda mine, Golconda, Governador Valadares)

Safira pegmatite district, Eastern Brazilian pegmatite province.

Located about 25 km NW of downtown Governador Valadares.

Mine Information: The Golconda pegmatite was first mined for muscovite in 1908, first by open pit, and then in 1945 (again for muscovite) by underground extraction via an adit along the pegmatite's hanging wall. The mine name was not given.

Geology: Regionally, the geology comprises Archean metamorphics--mainly schists and gneisses--emplaced by sheet-like granite pegmatites varying in thickness from 3 to 11 meters and nearly horizontal. The host rock for the Golconda pegmatite itself is a mica schist, generally grading (west to east) from quartz-biotite-garnet to hornblende-rich. Intense deformations in the schists manifest as asymmetrical drag folds and the attendant faulting is thought to be the source of entry for the granitic fluids. The shearing of the country rock and introduction of granitic fluid were probably related to the same general diastrophism.

Grain size increases towards the centre of the pegmatite. Compositionally, the pegmatite exhibits an upper and lower border zone, a central zone, and a quartz-perthite zone in the western (and thickest) end of the pegmatite, above the central zone. The border and central zones are essentially K-feldspar, quartz, and muscovite. The greatest diversity of accessory minerals occurs in the more weathered central zone: beryl (morganite and aquamarine), tourmaline, garnet (spessartine), cassiterite, tantalite, microlite, spodumene, cookeite, and muscovite.

Irregular cavities hosting crystallization of the accessory minerals are most numerous in the central zone--especially towards the west.



Golconda is the name of a pegmatite field located approximately 20 km NE of Governador Valadares, where several pegmatites are famous for the production of outstanding mineral specimens; the most important pegmatites on the area are listed below:

Golconda I - also known as "Golconda of the Tourmalines"; in the 1960s it produced several hundreds of kilos of top-quality gem-grade elbaites (green and blue), and also light bicolour crystals (green-pink); associated minerals are quartz, albite, microcline, schorl, muscovite, cookeite, lepidolite; the mine was exhausted in the late 1960s and since then no production came from there.

Golconda II - also known as "Golconda of the Micas"; the mine was opened at the time of the Second World War to produce muscovite and clear quartz for industrial purposes; it was operated intermittently until the late 1990s; the most important minerals produced there are elbaite (blue and green), bertrandite (world-class clusters of crystals measuring up to 5 cm), fluorapatite (pink, purple, blue), quartz, albite, schorl, microcline, muscovite, cookeite, cassiterite, columbite-tantalite, hydroxylherderite

Faria mine (in the local language "Lavra do Faria") β€” it is the main producer of fluorapatites, as short prismatic millimetric crystals showing blue or purple colour, over quartz, albite, microcline, or muscovite matrix; bertrandite (always as millimetric white crystals) is a common accessory mineral, together with schorl, elbaite (dark green), rhodochrosite (iron-rich), todorokite, cassiterite, columbite-tantalite; beryl is found as coarse crystals embedded in the microcline on the intermediate zone of the pegmatite

ZΓ© Pedra mine - ("Lavra ZΓ© Pedra") β€” it produced large schorl crystals (up to 30 cm long) over albite (cleavelandite), muscovite and microcline matrix; in the mid 1990s it produced long and thin (up to 5 x 50 cm) curved schorl crystals; since 2008 it has been producing centimetric crystals of purple fluorapatite; large quartz crystals (up to 50 cm) have also been found, associated with albite, microcline, schorl and muscovite; millimetric white bertrandite crystals are also a common accessory mineral.

Escondido mine - ("Lavra do Escondido") β€” it produced large quartz crystals showing the so-called "cathedral habit"; long and thin dark-green elbaite crystals (up to 5 cm long) were found growing outside and/or inside the quartz crystals; in 2000 a few hundreds of clusters of centimetric pink fluorapatite crystals were found

Olhos D'Água mine - ("Lavra Olhos D'Água") β€” it became famous for the production, in the early 1970s, of clusters of beige-coloured, twinned hydroxylherderite crystals measuring up to 10 cm

JacΓ³ mine - ("Lavra do JacΓ³") β€” it is a producer of industrial albite and microcline; occasionally coarse beryl crystals (blue, with some yield of cutting-rough) are found inside the intermediate zone; pockets in the central zone produce flattened morganite crystals, blue or green elbaite, quartz, albite, and muscovite crystals.

Select Mineral List Type

Standard Detailed Gallery Strunz Chemical Elements

Commodity List

This is a list of exploitable or exploited mineral commodities recorded from this region.


Mineral List

Mineral list contains entries from the region specified including sub-localities

22 valid minerals. 1 erroneous literature entry.

Rock Types Recorded

Note: data is currently VERY limited. Please bear with us while we work towards adding this information!

Rock list contains entries from the region specified including sub-localities

Select Rock List Type

Alphabetical List Tree Diagram

Detailed Mineral List:

β“˜ Albite
Formula: Na(AlSi3O8)
β“˜ Albite var. Cleavelandite
Formula: Na(AlSi3O8)
β“˜ Autunite
Formula: Ca(UO2)2(PO4)2 · 10-12H2O
β“˜ Bertrandite
Formula: Be4(Si2O7)(OH)2
β“˜ Beryl
Formula: Be3Al2(Si6O18)
β“˜ Beryl var. Aquamarine
Formula: Be3Al2Si6O18
Description: Medium to low gem quality.
β“˜ Beryl var. Morganite
Formula: Be3Al2(Si6O18)
β“˜ Cassiterite
Formula: SnO2
β“˜ Columbite-(Fe)
Formula: Fe2+Nb2O6
β“˜ Cookeite
Formula: (LiAl4◻)[AlSi3O10](OH)8
β“˜ Elbaite
Formula: Na(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
β“˜ 'Feldspar Group'
β“˜ 'Feldspar Group var. Perthite'
β“˜ Fluorapatite
Formula: Ca5(PO4)3F
β“˜ Fluorcalciomicrolite
Formula: (Ca,Na)2(Ta,Nb)2O6F
Habit: ~1 mm transparent yellowish octahedrons precepitations over albite crystalline crusts
Colour: honey-yellow
Fluorescence: none
Description: Composition of the mineral is (Ca.95Na.62Pb.05)1.62(Ta1.54Nb.34Ti.12)2.00O5.50(F1.00OH.50)1.50
β“˜ 'Garnet Group'
Formula: X3Z2(SiO4)3
β“˜ Herderite ?
Formula: CaBe(PO4)F
Description: Leavens, P. et al. (1978) studied Brazilian "herderite" from this and other localities and found them to be very OH-rich hydroxylherderite, instead.
β“˜ Hydroxylherderite
Formula: CaBe(PO4)(OH)
References:
β“˜ 'K Feldspar'
β“˜ 'Lepidolite'
β“˜ 'Manganese Oxides'
β“˜ 'Manganese Oxides var. Manganese Dendrites'
β“˜ Microcline
Formula: K(AlSi3O8)
β“˜ 'Microlite Group'
Formula: A2-mTa2X6-wZ-n
Habit: octahedrons to 7mm
β“˜ Muscovite
Formula: KAl2(AlSi3O10)(OH)2
Localities: Reported from at least 6 localities in this region.
β“˜ Orthoclase
Formula: K(AlSi3O8)
β“˜ Oxycalciomicrolite
Formula: Ca2Ta2O6O
β“˜ Quartz
Formula: SiO2
β“˜ Rhodochrosite
Formula: MnCO3
β“˜ Schorl
Formula: NaFe2+3Al6(Si6O18)(BO3)3(OH)3(OH)
β“˜ 'Tantalite'
Formula: (Mn,Fe)(Ta,Nb)2O6
β“˜ Tantalite-(Fe)
Formula: Fe2+Ta2O6
β“˜ Tantalite-(Mn)
Formula: Mn2+Ta2O6
β“˜ 'Tapiolite'
Formula: (Fe,Mn)(Ta,Nb)2O6
β“˜ Todorokite
Formula: (Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
β“˜ Zircon
Formula: Zr(SiO4)

Gallery:

List of minerals arranged by Strunz 10th Edition classification

Group 4 - Oxides and Hydroxides
β“˜'Microlite Group'4.00.A2-mTa2X6-wZ-n
β“˜Quartz4.DA.05SiO2
β“˜Cassiterite4.DB.05SnO2
β“˜Columbite-(Fe)4.DB.35Fe2+Nb2O6
β“˜Tantalite-(Mn)4.DB.35Mn2+Ta2O6
β“˜Tantalite-(Fe)4.DB.35Fe2+Ta2O6
β“˜Oxycalciomicrolite4.DH.15Ca2Ta2O6O
β“˜Fluorcalciomicrolite4.DH.15(Ca,Na)2(Ta,Nb)2O6F
β“˜Todorokite4.DK.10(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 Β· 3-4H2O
Group 5 - Nitrates and Carbonates
β“˜Rhodochrosite5.AB.05MnCO3
Group 8 - Phosphates, Arsenates and Vanadates
β“˜Herderite ?8.BA.10CaBe(PO4)F
β“˜Hydroxylherderite8.BA.10CaBe(PO4)(OH)
β“˜Fluorapatite8.BN.05Ca5(PO4)3F
β“˜Autunite8.EB.05Ca(UO2)2(PO4)2 Β· 10-12H2O
Group 9 - Silicates
β“˜Zircon9.AD.30Zr(SiO4)
β“˜Bertrandite9.BD.05Be4(Si2O7)(OH)2
β“˜Beryl
var. Aquamarine
9.CJ.05Be3Al2Si6O18
β“˜var. Morganite9.CJ.05Be3Al2(Si6O18)
β“˜9.CJ.05Be3Al2(Si6O18)
β“˜Schorl9.CK.05NaFe2+3Al6(Si6O18)(BO3)3(OH)3(OH)
β“˜Elbaite9.CK.05Na(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
β“˜Muscovite9.EC.15KAl2(AlSi3O10)(OH)2
β“˜Cookeite9.EC.55(LiAl4β—»)[AlSi3O10](OH)8
β“˜Microcline9.FA.30K(AlSi3O8)
β“˜Orthoclase ?9.FA.30K(AlSi3O8)
β“˜Albite
var. Cleavelandite
9.FA.35Na(AlSi3O8)
β“˜9.FA.35Na(AlSi3O8)
Unclassified
β“˜'Tantalite'-(Mn,Fe)(Ta,Nb)2O6
β“˜'Tapiolite'-(Fe,Mn)(Ta,Nb)2O6
β“˜'Feldspar Group'-
β“˜'Lepidolite'-
β“˜'Feldspar Group
var. Perthite'
-
β“˜'K Feldspar'-
β“˜'Garnet Group'-X3Z2(SiO4)3
β“˜'Manganese Oxides
var. Manganese Dendrites'
-
β“˜''-

List of minerals for each chemical element

HHydrogen
Hβ“˜ AutuniteCa(UO2)2(PO4)2 · 10-12H2O
Hβ“˜ BertranditeBe4(Si2O7)(OH)2
Hβ“˜ Cookeite(LiAl4◻)[AlSi3O10](OH)8
Hβ“˜ ElbaiteNa(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
Hβ“˜ HydroxylherderiteCaBe(PO4)(OH)
Hβ“˜ MuscoviteKAl2(AlSi3O10)(OH)2
Hβ“˜ SchorlNaFe32+Al6(Si6O18)(BO3)3(OH)3(OH)
Hβ“˜ Todorokite(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
LiLithium
Liβ“˜ Cookeite(LiAl4◻)[AlSi3O10](OH)8
Liβ“˜ ElbaiteNa(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
BeBeryllium
Beβ“˜ Beryl var. AquamarineBe3Al2Si6O18
Beβ“˜ BertranditeBe4(Si2O7)(OH)2
Beβ“˜ BerylBe3Al2(Si6O18)
Beβ“˜ HerderiteCaBe(PO4)F
Beβ“˜ HydroxylherderiteCaBe(PO4)(OH)
Beβ“˜ Beryl var. MorganiteBe3Al2(Si6O18)
BBoron
Bβ“˜ ElbaiteNa(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
Bβ“˜ SchorlNaFe32+Al6(Si6O18)(BO3)3(OH)3(OH)
CCarbon
Cβ“˜ RhodochrositeMnCO3
OOxygen
Oβ“˜ AlbiteNa(AlSi3O8)
Oβ“˜ Beryl var. AquamarineBe3Al2Si6O18
Oβ“˜ AutuniteCa(UO2)2(PO4)2 · 10-12H2O
Oβ“˜ BertranditeBe4(Si2O7)(OH)2
Oβ“˜ BerylBe3Al2(Si6O18)
Oβ“˜ CassiteriteSnO2
Oβ“˜ Cookeite(LiAl4◻)[AlSi3O10](OH)8
Oβ“˜ ElbaiteNa(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
Oβ“˜ Columbite-(Fe)Fe2+Nb2O6
Oβ“˜ Tantalite-(Fe)Fe2+Ta2O6
Oβ“˜ FluorapatiteCa5(PO4)3F
Oβ“˜ HerderiteCaBe(PO4)F
Oβ“˜ HydroxylherderiteCaBe(PO4)(OH)
Oβ“˜ Tantalite-(Mn)Mn2+Ta2O6
Oβ“˜ MicroclineK(AlSi3O8)
Oβ“˜ Beryl var. MorganiteBe3Al2(Si6O18)
Oβ“˜ MuscoviteKAl2(AlSi3O10)(OH)2
Oβ“˜ OrthoclaseK(AlSi3O8)
Oβ“˜ QuartzSiO2
Oβ“˜ RhodochrositeMnCO3
Oβ“˜ SchorlNaFe32+Al6(Si6O18)(BO3)3(OH)3(OH)
Oβ“˜ Tantalite(Mn,Fe)(Ta,Nb)2O6
Oβ“˜ Tapiolite(Fe,Mn)(Ta,Nb)2O6
Oβ“˜ Todorokite(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
Oβ“˜ ZirconZr(SiO4)
Oβ“˜ Albite var. CleavelanditeNa(AlSi3O8)
Oβ“˜ Garnet GroupX3Z2(SiO4)3
Oβ“˜ Fluorcalciomicrolite(Ca,Na)2(Ta,Nb)2O6F
Oβ“˜ OxycalciomicroliteCa2Ta2O6O
FFluorine
Fβ“˜ FluorapatiteCa5(PO4)3F
Fβ“˜ HerderiteCaBe(PO4)F
Fβ“˜ Fluorcalciomicrolite(Ca,Na)2(Ta,Nb)2O6F
NaSodium
Naβ“˜ AlbiteNa(AlSi3O8)
Naβ“˜ ElbaiteNa(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
Naβ“˜ SchorlNaFe32+Al6(Si6O18)(BO3)3(OH)3(OH)
Naβ“˜ Todorokite(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
Naβ“˜ Albite var. CleavelanditeNa(AlSi3O8)
Naβ“˜ Fluorcalciomicrolite(Ca,Na)2(Ta,Nb)2O6F
MgMagnesium
Mgβ“˜ Todorokite(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
AlAluminium
Alβ“˜ AlbiteNa(AlSi3O8)
Alβ“˜ Beryl var. AquamarineBe3Al2Si6O18
Alβ“˜ BerylBe3Al2(Si6O18)
Alβ“˜ Cookeite(LiAl4◻)[AlSi3O10](OH)8
Alβ“˜ ElbaiteNa(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
Alβ“˜ MicroclineK(AlSi3O8)
Alβ“˜ Beryl var. MorganiteBe3Al2(Si6O18)
Alβ“˜ MuscoviteKAl2(AlSi3O10)(OH)2
Alβ“˜ OrthoclaseK(AlSi3O8)
Alβ“˜ SchorlNaFe32+Al6(Si6O18)(BO3)3(OH)3(OH)
Alβ“˜ Todorokite(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
Alβ“˜ Albite var. CleavelanditeNa(AlSi3O8)
SiSilicon
Siβ“˜ AlbiteNa(AlSi3O8)
Siβ“˜ Beryl var. AquamarineBe3Al2Si6O18
Siβ“˜ BertranditeBe4(Si2O7)(OH)2
Siβ“˜ BerylBe3Al2(Si6O18)
Siβ“˜ Cookeite(LiAl4◻)[AlSi3O10](OH)8
Siβ“˜ ElbaiteNa(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
Siβ“˜ MicroclineK(AlSi3O8)
Siβ“˜ Beryl var. MorganiteBe3Al2(Si6O18)
Siβ“˜ MuscoviteKAl2(AlSi3O10)(OH)2
Siβ“˜ OrthoclaseK(AlSi3O8)
Siβ“˜ QuartzSiO2
Siβ“˜ SchorlNaFe32+Al6(Si6O18)(BO3)3(OH)3(OH)
Siβ“˜ ZirconZr(SiO4)
Siβ“˜ Albite var. CleavelanditeNa(AlSi3O8)
Siβ“˜ Garnet GroupX3Z2(SiO4)3
PPhosphorus
Pβ“˜ AutuniteCa(UO2)2(PO4)2 · 10-12H2O
Pβ“˜ FluorapatiteCa5(PO4)3F
Pβ“˜ HerderiteCaBe(PO4)F
Pβ“˜ HydroxylherderiteCaBe(PO4)(OH)
KPotassium
Kβ“˜ MicroclineK(AlSi3O8)
Kβ“˜ MuscoviteKAl2(AlSi3O10)(OH)2
Kβ“˜ OrthoclaseK(AlSi3O8)
Kβ“˜ Todorokite(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
CaCalcium
Caβ“˜ AutuniteCa(UO2)2(PO4)2 · 10-12H2O
Caβ“˜ FluorapatiteCa5(PO4)3F
Caβ“˜ HerderiteCaBe(PO4)F
Caβ“˜ HydroxylherderiteCaBe(PO4)(OH)
Caβ“˜ Todorokite(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
Caβ“˜ Fluorcalciomicrolite(Ca,Na)2(Ta,Nb)2O6F
Caβ“˜ OxycalciomicroliteCa2Ta2O6O
MnManganese
Mnβ“˜ Tantalite-(Mn)Mn2+Ta2O6
Mnβ“˜ RhodochrositeMnCO3
Mnβ“˜ Tantalite(Mn,Fe)(Ta,Nb)2O6
Mnβ“˜ Tapiolite(Fe,Mn)(Ta,Nb)2O6
Mnβ“˜ Todorokite(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
FeIron
Feβ“˜ Columbite-(Fe)Fe2+Nb2O6
Feβ“˜ Tantalite-(Fe)Fe2+Ta2O6
Feβ“˜ SchorlNaFe32+Al6(Si6O18)(BO3)3(OH)3(OH)
Feβ“˜ Tantalite(Mn,Fe)(Ta,Nb)2O6
Feβ“˜ Tapiolite(Fe,Mn)(Ta,Nb)2O6
SrStrontium
Srβ“˜ Todorokite(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
ZrZirconium
Zrβ“˜ ZirconZr(SiO4)
NbNiobium
Nbβ“˜ Columbite-(Fe)Fe2+Nb2O6
Nbβ“˜ Tantalite(Mn,Fe)(Ta,Nb)2O6
Nbβ“˜ Tapiolite(Fe,Mn)(Ta,Nb)2O6
Nbβ“˜ Fluorcalciomicrolite(Ca,Na)2(Ta,Nb)2O6F
SnTin
Snβ“˜ CassiteriteSnO2
BaBarium
Baβ“˜ Todorokite(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
TaTantalum
Taβ“˜ Tantalite-(Fe)Fe2+Ta2O6
Taβ“˜ Tantalite-(Mn)Mn2+Ta2O6
Taβ“˜ Microlite GroupA2-mTa2X6-wZ-n
Taβ“˜ Tantalite(Mn,Fe)(Ta,Nb)2O6
Taβ“˜ Tapiolite(Fe,Mn)(Ta,Nb)2O6
Taβ“˜ Fluorcalciomicrolite(Ca,Na)2(Ta,Nb)2O6F
Taβ“˜ OxycalciomicroliteCa2Ta2O6O
UUranium
Uβ“˜ AutuniteCa(UO2)2(PO4)2 · 10-12H2O

Localities in this Region

Other Regions, Features and Areas that Intersect

South America PlateTectonic Plate

This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.

References

 
Mineral and/or Locality  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2024, except where stated. Most political location boundaries are Β© OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: April 25, 2024 19:04:38 Page updated: April 3, 2024 11:25:31
Go to top of page