Mindat Logo

Helvetia-Rosemont District, Santa Rita Mts, Pima Co., Arizona, USA
This page is currently not sponsored. Click here to sponsor this page.

 
 
‡Ref.: The Resources of Arizona - A Manual of Reliable Information Concerning the Territory, compiled by Patrick Hamilton (1881), Scottsdale, AZ: 47.

Schrader, F.C. & J.M. Hill (1915), Mineral deposits of the Santa Rita and Patagonia Mountains, Arizona, USGS Bull. 582: 91-141.

Schrader, F.C. (1917), The geologic distribution and genesis of the metals in the Santa Rita-Patagonia Mountains, Arizona, Economic Geology: 12: 237-269.

Galbraith, F.W. (1947), Arizona Bureau of Mines Bull. 153, Minerals of Arizona: 20.

Creasy, S.C. & G.L. Quick (1955), Copper deposits of part of Helvetia mining district, Pima County, Arizona, USGS Bull. 1027-F: 301-323.

Galbraith, F.W. & D.J. Brennan (1959), Minerals of Arizona: 81, 90.

Drewes, H.D., and Finnell, T.L. (1968) Mesozoic stratigraphy and Laramide tectonics of part of the Santa Rita and Empire Mountains, southeast of Tucson, Arizona, Field Trip II, in Titley, S.R., ed., Southern Arizona Guidebook III: Arizona Geological Society, p. 315-324.

Drewes, H.D. (1969) The Laramide orogeny of Arizona southeast of Tucson [abs.], in Abstracts for 1968: Geological Society of America Special Paper 121, p. 501-502.

Drewes, Harald (1970) Structural control of geochemical anomalies in the Greaterville mining district, southeast of Tucson: U.S. Geological Survey Bulletin 1312-A, p. A1-A49, 1 sheet, scale 1:24,000.

Anthony, J.W. & R.B. Laughon (1970), Kinoite, a new hydrous copper calcium silicate mineral from Arizona, American Mineralogist: 55: 709-713.

Frondel, J.W. & F.E. Wickman (1970), Molybdonite polytypes in theory and occurrence. II. Some naturally occurring polytypes of molybdenite, American Mineralogist: 55: 1857-1875.

Drewes, H.D. (1971) Mesozoic stratigraphy of the Santa Rita Mountains, southeast of Tucson, Arizona: U.S. Geological Survey Professional Paper 658-C, 81 p.

Drewes, H.D. (1971) Geologic map of the Mount Wrightson quadrangle, southeast of Tucson, Santa Cruz and Pima Counties, Arizona: U.S. Geological Survey Miscellaneous Geologic Investigations Map I-614, 1 sheet, scale 1:48,000.

Finnell, T.L. (1971), Preliminary Geologic Map of the Empire Mts quadrangle, Pima County, Arizona, USGS Open-file Report.

Drewes, H.D. (1972) Cenozoic rocks of the Santa Rita Mountains, southeast of Tucson, Arizona: U.S. Geological Survey Professional Paper 746, 66 p.

Drewes, H.D. (1972) Structural geology of the Santa Rita Mountains, southeast of Tucson, Arizona: U.S. Geological Survey Professional Paper 748, 35 p., scale 1:12,000, 4 sheets.

Drewes, H.D. (1973) Geochemical reconnaissance of the Santa Rita Mountains, southeast of Tucson, Arizona: U.S. Geological Survey Bulletin 1365, 67 p., 2 sheets, scale 1:24,000.

Keith, Stanton B. (1974), Arizona Bureau of Geology & Mineral Technology, Geological Survey Branch Bull. 189, Index of Mining Properties in Pima County, Arizona: 123 (Table 4).

Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd. ed.: 101, 142, 161, 163, 185, 205, 262, 302, 345-346, 363, 391, 411, 424;

Anzalone, S.A. (1995) The Helvetia area porphyry systems, Pima County, Arizona, in Pierce, F.W., and Bolm, J.G., eds., Porphyry copper deposits of the American Cordillera: Arizona Geological Society Digest 20, p. 436-441.

A Cu-Pb-Zn-Ag-Au-W-Mo-limestone-marble mining area located in T.17-18S., R.15-16E., in the northern and central Santa Rita Mountains, north-central part of the Patagonia quadrangle, in the eastern part of Pima County, comprising a northeast-southwest area about 12 miles long and 7 miles wide, or about 90 square miles, between the Empire District to the East and the Greaterville District to the SW.

The Helvetia District contains the north end of the Santa Rita Mountains, which here rise to about 6,000 feet and in or near whose axis most of the mines are situated. It extends from Box Canyon on the south to and beyond the Cuprite Camp in the head of Pantano Wash on the north and from the west base of te Santa Rita Mountains to Davidson Canyon on the east.

The principal camp is Helvetia, located SW of the center of the district. The Rosemont Camp is 4 miles SE of Helvetia on the east slope of the range.

Mineralization is varied: (1) Irregular, partly oxidized, pyrometasomatic replacement copper deposits with subordinate and spotty lead, zinc, tungsten, and molybdenum mineralization in thrust-faulted, sheared and altered Paleozoic limestone and quartzite, and in Cretaceous limy beds. Controlled by structures or bedding planes in contact with, or close to, Laramide quartz latite porphyry stocks & dikes. Locally the intrusive contains disseminated copper mineralization; (2) Spotty and irregular, partly oxidized base metal sulfides with some scheelite along quartz-shear zones or breccia zones in Precambrian and Laramide granitic intrusives; and, (3) PAleozoic limestones, locally metamorphosed to marble.

The main structural feature is a thrust fault with gentle dip to the SW, whose contact with the sedimentary rocks runs in an irregular line. This fault has brought the basal granite against the altered overlying Paleozoic limestones. The beds of limestone dip in toward the center from the north, south and west, while the east side is cut off by a fault.

At some time after the faulting and folding took place both the sediments and the granite were freely intruded by dikes, chiefly of the very acidic magma that produced principally the alaskite aplite. Since the intrusion of the various igneous rocks differential movement has produced considerable gouge and material resembling fault breccia along the dikes and elsewhere, and the movement was probably also attended by ore deposition.

The granite occupying the western half of the area is probably Precambrian. It is coarse-textured and in places porphyritic, with large feldspar phenocrysts. It is composed of orthoclase (including microcline), quartz, albite-oligoclase. biotite, and hornblende, with magnetite and zircon as accessory minerals. It is cut by 2 sets of joints trending north and east and by a sheeting which inclines gently to the west but in places is nearly horizontal. Along the faults it is shattered and altered, manganese and iron oxides are developed in the jloints, and locally it is epidotized.

Next above the granite come the pink to red Cambrian (?) quartzites, which are mostly heavy bedded and massive and in places considerably altered. They occur in three areas. Tghis rock forms the so-called buttes or high dome-shaped bald knobs that stud the crest of the range.

The limestones contain most of the ores of the camp.

Workings include fifty or more small to medium-sized mines and prospects that have been opened and worked since the early 1880's. Total estimated and reported production through 1972 would be some 430,000 tons of ore containing about 17,500 tons of copper, 350,000 oz. of silver, 680 tons of zinc, 260 tons of lead and a minor amount of gold, molybdenum and tungsten. An indefinate amount of limestone and marble have been produced.

Mineral List

Mineral list contains entries from the region specified including sub-localities
Acanthite
Actinolite
Albite
var: Oligoclase

Almandine
Analcime
Andradite
Anglesite
Anthophyllite
Antimony
Antlerite
'Apophyllite'
'Asbestos'
Aurichalcite
Azurite
Bayldonite
'Bindheimite'
'Biotite'
Bornite
Bournonite
Calcite
Cerussite
Chalcanthite
Chalcocite
Chalcopyrite
'Chert'
Chlorargyrite
'Chlorite Group'
Chrysocolla
Conichalcite
Copper
'Copper Stain'
Covellite
Cuprite
Cuprotungstite
Datolite
Diopside
Dioptase
Djurleite
Epidote
'Feldspar Group'
Fluorite
Galena
var: Argentiferous Galena
'Garnet'
Goethite
Gold
Grossular
Gypsum
Hematite
var: Specularite
'Hornblende'
Jarosite
Kinoite
Libethenite
'Limonite'
Magnetite
Malachite
Marcasite
Microcline
Mimetite
Molybdenite
'Molybdenite-2H'
Muscovite
var: Sericite
Nontronite
Opal
var: Diatomite
var: Opal-AN
Orthoclase
Osarizawaite
Powellite
Prehnite
Pyrite
var: Cupriferous Pyrite
Pyrrhotite
Quartz
var: Chalcedony
Rosasite
Scheelite
Smithsonite
Sphalerite
Tenorite
Tetrahedrite
Tremolite
Uraninite
Vanadinite
Vesuvianite
Wollastonite
Wulfenite
Zircon


111 entries listed. 70 valid minerals.

Localities in this Region

USA
USA

The above list contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
Mineral and/or Locality  
Search Google  
Copyright © Jolyon Ralph and Ida Chau 1993-2014. Site Map. Locality, mineral & photograph data are the copyright of the individuals who submitted them. Site hosted & developed by Jolyon Ralph. Mindat.org is an online information resource dedicated to providing free mineralogical information to all. Mindat relies on the contributions of thousands of members and supporters. Mindat does not offer minerals for sale. If you would like to add information to improve the quality of our database, then click here to register.
Current server date and time: July 30, 2014 15:19:25 Page generated: July 8, 2014 20:42:34
Mineral and Locality Search
Mineral:
and/or Locality:
Options
Fade toolbar when not in focusFix toolbar to bottom of page
Hide Social Media Links
Slideshow frame delay seconds