Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Ross-Adams Mine, Bokan Mountain, Prince of Wales Island, Ketchikan Mining District, Prince of Wales-Hyder Census Area, Alaska, USAi
Regional Level Types
Ross-Adams MineMine
Bokan MountainMountain
Prince of Wales IslandIsland
Ketchikan Mining DistrictMining District
Prince of Wales-Hyder Census AreaCensus Area
AlaskaState
USACountry

This page is currently not sponsored. Click here to sponsor this page.
PhotosMapsSearch
Latitude & Longitude (WGS84):
54° 54' 33'' North , 132° 8' 27'' West
Latitude & Longitude (decimal):
Type:
Köppen climate type:
Nearest Settlements:
PlacePopulationDistance
Ketchikan8,197 (2017)57.4km
Mindat Locality ID:
199753
Long-form identifier:
mindat:1:2:199753:1
GUID (UUID V4):
4d20f933-7fde-4f2b-b3c9-65a6d97d76a3


Location: The Ross-Adams Mine is about 0.7 mile southeast of Bokan Mountain. It is shown as a mine symbol on the U.S.G.S., 1:63,360-scale topographic map in the NW1/4 section 27, T. 80 S., R. 88 E. The location of the Ross-Adams mine relative to the other uranium and REE prospects in the vicinity of Bokan Mountain is best shown on Plate 1 of MacKevett (1963).
Geology: This and several other nearby uranium-thorium-REE deposits (DE015 to DE024 and DE026 to DE031) are spatially and genetically related to a stock of Jurassic, peralkaline granite about 2 miles in outcrop diameter centered on Bokan Mountain. It commonly is referred to as the Bokan Mountain peralkakline granite or Bokan Mountain complex. The intrusion and its deposits have been mapped in detail several times using slightly different subdivisions of the granite (MacKevett, 1963; Thompson and others, 1980, 1982; Saint-Andre and others, 1983; Gehrels, 1992; Thompson, 1997). This description largely follows Gehrels' (1992) map units. The intrusion is a ring-dike complex with an outer border zone up to 14 meters thick of pegmatite and aplite; a nearly complete intermediate zone of aegirine granite porphyry, 15 to 180 meters thick; and a core of several varieties of riebeckite granite porphyry. It has been dated by several methods at 151 Ma to 191 Ma (Lanphere and others, 1964; Saint-Andre and others, 1983; Armstrong, 1985; Gehrels, 1992; Thompson, 1997). The peralkaline granite mainly intrudes a regionally extensive body of Silurian or Ordovician quartz monzonite, granite, and quartz diorite that makes up much of the southeast tip of Prince of Wales Island. The south and west sides of the peralkaline granite are in contact with a band up to about 3,000 feet wide of shale and argillite of the Silurian or Ordovician Descon Formation. The Bokan Mountain complex and surrounding Paleozoic rocks are cut by numerous pegmatite, andesite, dacite, and aplite dikes. The dikes are genetically related to the complex and commonly are associated with the uranium, thorium, and REE deposits. The deposits are marked by intense albitization, pervasive or fracture-controlled chloritization, calcite-fluorite replacement of aegirine, and hematitization. Three types of U-Th-REE deposits occur in the Bokan Mountain complex: 1) irregular cylindrical pipes; 2) steep, shear-zone-related pods or lenses ('veins'); and 3) quartz veins. The Ross-Adams Mine was found in 1955 by Don Ross with an airborne radiometric survey; a radioactive anomaly over the future site of the mine was then prospected on the ground by Kelly Adams. In 1957, about 15,000 tons of ore with a grade of more than 0.80 percent U3O8 was mined from an open pit by Climax Molybdenum Company. Bay West Inc. leased the property in 1961 and began underground exploration and mining from a haulage adit beneath the open pit. Standard Metals Corporation took control of the property in 1963 and Newmont Exploration Ltd. operated the property until 1971. From 1957 to 1971, a total of 79,500 metric tons of ore was mined with an average grade of 0.76 percent U3O8 (MacKevett, 1963, Anonymous, 1980; Warner and Barker, 1989; Roppel, 1991). Thorium was not recovered. The Ross-Adams deposit is in the Bokan Mountain peralkaline complex near its southeast boundary (MacKevett, 1959, 1963; Thompson, 1980; Thompson and others, 1982; Thompson, 1988 [FIR]; Thompson 1988 [PGR]; Warner and Barker, 1989; Philpotts and others, 1996; Thompson, 1997). The ore deposit is an irregularly-shaped pipelike body about 800 feet long and 20 to 100 feet in diameter, inclined to the south. The body is gently inclined at its north end where it was mined from an open pit . The southern two-thirds inclines to a plunge of about 40 degrees to the south. This southern portion was mined over a vertical extent of about 450 feet from two haulage levels. The mineralized pipe is offset by several large faults, and cut by many smaller fractures and microfractures. The fractures tend to localize the ore body, but its general form and location is probably related to a contact between aegirine granite porphyry and aegirine syenite. The pipe typically has a core with more than 0.5 percent U3O8 and an outer shell 2-20 feet thick of lower grade material. The pipe is intensely albitized and chloritized and the effects of this alteration often extend as much as 50 feet beyond the ore body. The primary ore mineral is uranothorite; uraninite and uranothorinite also occur, and, rarely, brannerite and coffinite. The pipe is oxidized at the surface where it was mined in an open pit. Several secondary uranium minerals have been identified, including gummite, sklodowskite, beta-uranophane, bassetite, and novacekite. Sulfides commonly make up as much as 2 percent of the ore; they include pyrite, pyrrhotite, chalcopyrite, sphalerite, galena, and bornite. Thompson and others (1980, 1982, 1997) propose the following genesis of the Ross-Adams deposit: 1) emplacement of a sodium-rich oxidized magma with a normal uranium and thorium content; 2) low initial calcium and titanium, preventing the formation of early accessory minerals; 3) development of a separate volatile phase with high uranium, thorium, and REE content; 4) rapid degassing of the magma chamber, resulting in a silica-saturated magma and a volatile phase emplaced in a zone of structural weakness; and 5) precipitation of the uranium, thorium, and REE minerals. In 1980 (after the last mining), Standard Metals Corp. identified the remaining reserves as 365,000 short tons of ore with an average grade of 0.17 percent U3O8 and 0.46 percent thorium (Anonymous, 1980). Based on an analysis of drill core, Warner and Barker (1989) estimated an additional resource 'on the order of'' 2,300,000 pounds of yttrium, 537, 000 pounds of REE, and 1,752,000 pounds of zirconium.
Workings: The ore deposit is an irregularly-shaped pipelike body about 800 feet long and 20 to 100 feet in diameter, inclined to the south. The body is gently inclined at its north end where it was mined from an open pit . The southern two-thirds inclines to a plunge of about 40 degrees to the south. This southern portion was mined over a vertical extent of about 450 feet from two haulage levels.
Age: Genetically related to the Jurassic, Bokan Mountain peralkaline granite.
Production: In 1957, about 15,000 tons of ore with a grade of more than 0.80 percent U3O8 was mined from an open pit by Climax Molybdenum Company. Bay West Inc. leased the property in 1961 and began underground exploration and mining from a haulage adit beneath the open pit. Standard Metals Corporation took control of the property in 1963 and Newmont Exploration Ltd. operated the property until 1971. From 1957 to 1971, a total of 79,500 metric tons of ore was mined with an average grade of 0.76 percent U3O8 (MacKevett, 1963, Anonymous, 1980; Warner and Barker, 1989). Thorium was not recovered.
Reserves: In 1980, Standard Metals Corp. identified the remaining reserves as 365,000 short tons of ore with an average grade of 0.17 percent U3O8 and 0.46 percent thorium (Anonymous, 1980). Based on an analysis of drill core by the U.S. Bureau of Mines, they indicated an additional resource 'on the order of' 2,300,000 pounds of yttrium, 537, 000 pounds of REE, and 1,752,000 pounds of zirconium (Warner and Barker, 1989; Maas and others, 1995).

Commodities (Major) - U; (Minor) - REE, Th
Development Status: Yes; medium
Deposit Model: U-Th-REE deposit associated with a peralkaline granite.

Select Mineral List Type

Standard Detailed Gallery Strunz Chemical Elements

Commodity List

This is a list of exploitable or exploited mineral commodities recorded at this locality.


Mineral List


22 valid minerals.

Rock Types Recorded

Note: data is currently VERY limited. Please bear with us while we work towards adding this information!

Select Rock List Type

Alphabetical List Tree Diagram

Detailed Mineral List:

Aegirine
Formula: NaFe3+Si2O6
Albite
Formula: Na(AlSi3O8)
Bassetite
Formula: Fe2+(UO2)2(PO4)2 · 10H2O
Bornite
Formula: Cu5FeS4
Brannerite
Formula: UTi2O6
Calcite
Formula: CaCO3
Chalcopyrite
Formula: CuFeS2
'Chlorite Group'
Coffinite
Formula: U(SiO4) · nH2O
Fluorite
Formula: CaF2
Galena
Formula: PbS
'Gummite'
Hematite
Formula: Fe2O3
Hydronováčekite
Formula: Mg(UO2)2(AsO4)2 · 12H2O
Molybdenite
Formula: MoS2
Nováčekite
Formula: Mg(UO2)2(AsO4)2 · 10H2O
Parauranophane
Formula: Ca(UO2)2(SiO3OH)2 · 5H2O
Pyrite
Formula: FeS2
Pyrrhotite
Formula: Fe1-xS
Quartz
Formula: SiO2
Sklodowskite
Formula: Mg(UO2)2(SiO3OH)2 · 6H2O
Sphalerite
Formula: ZnS
Thorite
Formula: Th(SiO4)
Thorite var. Uranothorite
Formula: (Th,U)SiO4
Uraninite
Formula: UO2

Gallery:

List of minerals arranged by Strunz 10th Edition classification

Group 2 - Sulphides and Sulfosalts
Bornite2.BA.15Cu5FeS4
Sphalerite2.CB.05aZnS
Chalcopyrite2.CB.10aCuFeS2
Pyrrhotite2.CC.10Fe1-xS
Galena2.CD.10PbS
Molybdenite2.EA.30MoS2
Pyrite2.EB.05aFeS2
Group 3 - Halides
Fluorite3.AB.25CaF2
Group 4 - Oxides and Hydroxides
Hematite4.CB.05Fe2O3
Quartz4.DA.05SiO2
Brannerite4.DH.05UTi2O6
Uraninite4.DL.05UO2
Group 5 - Nitrates and Carbonates
Calcite5.AB.05CaCO3
Group 8 - Phosphates, Arsenates and Vanadates
Nováčekite8.EB.05Mg(UO2)2(AsO4)2 · 10H2O
Hydronováčekite8.EB.05Mg(UO2)2(AsO4)2 · 12H2O
Bassetite8.EB.10Fe2+(UO2)2(PO4)2 · 10H2O
Group 9 - Silicates
Coffinite9.AD.30U(SiO4) · nH2O
Thorite9.AD.30Th(SiO4)
var. Uranothorite9.AD.30(Th,U)SiO4
Sklodowskite9.AK.10Mg(UO2)2(SiO3OH)2 · 6H2O
Parauranophane9.AK.15Ca(UO2)2(SiO3OH)2 · 5H2O
Aegirine9.DA.25NaFe3+Si2O6
Albite9.FA.35Na(AlSi3O8)
Unclassified
'Gummite'-
'Chlorite Group'-

List of minerals for each chemical element

HHydrogen
H BassetiteFe2+(UO2)2(PO4)2 · 10H2O
H CoffiniteU(SiO4) · nH2O
H HydronováčekiteMg(UO2)2(AsO4)2 · 12H2O
H SklodowskiteMg(UO2)2(SiO3OH)2 · 6H2O
H ParauranophaneCa(UO2)2(SiO3OH)2 · 5H2O
H NováčekiteMg(UO2)2(AsO4)2 · 10H2O
CCarbon
C CalciteCaCO3
OOxygen
O AegirineNaFe3+Si2O6
O AlbiteNa(AlSi3O8)
O BassetiteFe2+(UO2)2(PO4)2 · 10H2O
O BranneriteUTi2O6
O CalciteCaCO3
O CoffiniteU(SiO4) · nH2O
O HematiteFe2O3
O HydronováčekiteMg(UO2)2(AsO4)2 · 12H2O
O QuartzSiO2
O SklodowskiteMg(UO2)2(SiO3OH)2 · 6H2O
O ThoriteTh(SiO4)
O UraniniteUO2
O ParauranophaneCa(UO2)2(SiO3OH)2 · 5H2O
O Thorite var. Uranothorite(Th,U)SiO4
O NováčekiteMg(UO2)2(AsO4)2 · 10H2O
FFluorine
F FluoriteCaF2
NaSodium
Na AegirineNaFe3+Si2O6
Na AlbiteNa(AlSi3O8)
MgMagnesium
Mg HydronováčekiteMg(UO2)2(AsO4)2 · 12H2O
Mg SklodowskiteMg(UO2)2(SiO3OH)2 · 6H2O
Mg NováčekiteMg(UO2)2(AsO4)2 · 10H2O
AlAluminium
Al AlbiteNa(AlSi3O8)
SiSilicon
Si AegirineNaFe3+Si2O6
Si AlbiteNa(AlSi3O8)
Si CoffiniteU(SiO4) · nH2O
Si QuartzSiO2
Si SklodowskiteMg(UO2)2(SiO3OH)2 · 6H2O
Si ThoriteTh(SiO4)
Si ParauranophaneCa(UO2)2(SiO3OH)2 · 5H2O
Si Thorite var. Uranothorite(Th,U)SiO4
PPhosphorus
P BassetiteFe2+(UO2)2(PO4)2 · 10H2O
SSulfur
S BorniteCu5FeS4
S ChalcopyriteCuFeS2
S GalenaPbS
S MolybdeniteMoS2
S PyriteFeS2
S PyrrhotiteFe1-xS
S SphaleriteZnS
CaCalcium
Ca CalciteCaCO3
Ca FluoriteCaF2
Ca ParauranophaneCa(UO2)2(SiO3OH)2 · 5H2O
TiTitanium
Ti BranneriteUTi2O6
FeIron
Fe AegirineNaFe3+Si2O6
Fe BassetiteFe2+(UO2)2(PO4)2 · 10H2O
Fe BorniteCu5FeS4
Fe ChalcopyriteCuFeS2
Fe HematiteFe2O3
Fe PyriteFeS2
Fe PyrrhotiteFe1-xS
CuCopper
Cu BorniteCu5FeS4
Cu ChalcopyriteCuFeS2
ZnZinc
Zn SphaleriteZnS
AsArsenic
As HydronováčekiteMg(UO2)2(AsO4)2 · 12H2O
As NováčekiteMg(UO2)2(AsO4)2 · 10H2O
MoMolybdenum
Mo MolybdeniteMoS2
PbLead
Pb GalenaPbS
ThThorium
Th ThoriteTh(SiO4)
Th Thorite var. Uranothorite(Th,U)SiO4
UUranium
U BassetiteFe2+(UO2)2(PO4)2 · 10H2O
U BranneriteUTi2O6
U CoffiniteU(SiO4) · nH2O
U HydronováčekiteMg(UO2)2(AsO4)2 · 12H2O
U SklodowskiteMg(UO2)2(SiO3OH)2 · 6H2O
U UraniniteUO2
U ParauranophaneCa(UO2)2(SiO3OH)2 · 5H2O
U Thorite var. Uranothorite(Th,U)SiO4
U NováčekiteMg(UO2)2(AsO4)2 · 10H2O

Other Databases

Link to USGS - Alaska:DE025

Other Regions, Features and Areas containing this locality


This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.

References

 
Mineral and/or Locality  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2024, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: April 25, 2024 09:02:29 Page updated: March 23, 2024 00:01:09
Go to top of page