Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Mineralogical ClassificationStructure refinement and vibrational spectroscopy of vauxite from type-locality

5th Jan 2017 09:33 UTCMarco E. Ciriotti Manager

Reference:

▪ Ventruti, G., Schingaro, E., Monno, A., Lacalamita, M., Della Ventura, G., Bellatreccia, F., Cuocci, C., Rossi, M., Capitelli, F. (2016): Structure Refinement and Vibrational Spectroscopy of Vauxite From the Type Locality, Llallagua (Bolivia). Canadian Mineralogist, 54, 163-176.


Abstract:

A crystal-chemical investigation of vauxite, ideally FeAl2(PO4)2(OH)2·6H2O, from Llallagua (Bolivia) has been performed using a multi-methodological approach based on WDS-electron microprobe, single-crystal X-ray diffraction, and vibrational spectroscopies (Raman and FTIR). The structure was refined in the triclinic P-1 space group, with the following unit-cell constants: a 9.1276(2), b 11.5836(3), c 6.15960(10) Å, α 98.3152(10)°, β 92.0139(10)°, γ 108.1695(9)°, and V 610.05(2) Å3. The vauxite structure is based on a building unit oriented parallel to the c axis and composed of a chain of Fe2 and Al2 edge-sharing octahedra and two chains of corner-sharing P2 tetrahedra and Al1 octahedra, interconnected via corners and P1 tetrahedra. Neighboring building units are interconnected by Al3 octahedra and via Fe1 octahedra. The framework is completed with two non-coordinated water molecules. The latter, together with the two hydroxyl groups and the other four coordinated water molecules, form a complex hydrogen bonding network whose interactions further compact the whole framework. Both FTIR and Raman spectra show, in the H2O stretching region, a broad absorption consisting of several overlapping components due to the six water molecules plus the OH groups. The band multiplicity observed in the low-wavenumber region (<1400 cm−1) is compatible with the presence of two distorted PO4 tetrahedra.
 
Mineral and/or Locality  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2024, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: March 29, 2024 11:51:52
Go to top of page