Help mindat.org|Log In|Register|
Home PageMindat NewsThe Mindat ManualHistory of MindatCopyright StatusManagement TeamContact UsAdvertise on Mindat
Donate to MindatSponsor a PageSponsored PagesTop Available PagesMindat AdvertisersAdvertise on MindatThe Mindat Store
Minerals by PropertiesMinerals by ChemistryRandom MineralSearch by minIDLocalities Near MeSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportAdd Glossary Item
StatisticsMember ListBooks & MagazinesMineral Shows & EventsThe Mindat DirectoryHow to Link to MindatDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery

Corrensite

This page is currently not sponsored. Click here to sponsor this page.
Formula:
(Mg,Fe)9((Si,Al)8O20)(OH)10 · nH2O
System:
Orthorhombic
Colour:
Dark green, Yellow ...
Hardness:
1 - 2
Name:
For Carl W. Correns (1893-1980), professor of mineralogy and petrography in the University of Göttingen, Germany.
A 1:1 regular interstratification of a trioctahedral chlorite with either a trioctahedral vermiculite (low layer charge corrensite, LLC) or a trioctahedral smectite (high layer charge corrensite, HLC).

Classification of Corrensite

Valid - first described prior to 1959 (pre-IMA) - "Grandfathered" 1954
Explanation of status:
Corrensite consists of two different structural sequences and should be divided into two species.
9.EC.60

9 : SILICATES (Germanates)
E : Phyllosilicates
C : Phyllosilicates with mica sheets, composed of tetrahedral and octahedral nets
71.4.2.5

71 : PHYLLOSILICATES Sheets of Six-Membered Rings
4 : Sheets of 6-membered rings interlayered 1:1, 2:1, and octahedra
16.19.23

16 : Silicates Containing Aluminum and other Metals
19 : Aluminosilicates of Fe and Mg
mindat.org URL:
http://www.mindat.org/min-1135.html
Please feel free to link to this page.

Type Occurrence of Corrensite

General Appearance of Type Material:
Dense fine-grained mixtures, also thin dustings on late minerals in cavities
Year of Discovery:
1954
Geological Setting of Type Material:
Found in pelitic sediments, also in evaporites, marbles, also late stage hydrothermal coatings in basalts, etc. Corrensite may persist through chlorite grade metamorphism.

Physical Properties of Corrensite

Waxy, Dull, Earthy
Diaphaneity (Transparency):
Translucent
Comment:
Low luster due to fine-grained particles
Colour:
Dark green, Yellow green,Blackish green, Brown, Light golden brown, gray white
Streak:
White to light gray
Hardness (Mohs):
1 - 2
Tenacity:
Flexible
Cleavage:
Perfect
{001} perfect, but rarely visible on casual inspection due to small particle size.
Fracture:
Micaceous

Crystallography of Corrensite

Crystal System:
Orthorhombic
Cell Parameters:
a = 5.337Å, b = 9.215Å, c = 29.0Å
Ratio:
a:b:c = 0.579 : 1 : 3.147
Unit Cell Volume:
V 1,426.23 ų (Calculated from Unit Cell)
Morphology:
Fine-grained, occasionally as barely visible flakes.
Comment:
Various unit cells have been proposed including hexagonal, also monoclinic
X-Ray Powder Diffraction Data:
d-spacingIntensity
29.0 (30)
14.0(100)
7.83 (30)
7.08 (60)
4.72 (30)
4.62 (30)
3.53 (60)
2.57 (30)
(
Comments:
LLC d-values (31-794). Basal d-values vary with type of corrensite. LLC usually is 28-29 Angstroms, but HLC ranges up to 32 Angstroms. LLC and HLC corrensite may be present in mixtures, but samples may contain only one type. LLC corrensite is uncommon compared to HLC corrensite. Intercalation with glycerol or ethylene glycol increases HLC basal spacing to 32 Angstroms, while LLC corrensite does not expand.

Optical Data of Corrensite

Type:
Biaxial (-)
RI values:
nα = 1.560 - 1.585 nβ = 1.582 - 1.612 nγ = 1.582 - 1.612
Birefringence:
May be 0.01-0.03, but 0.00 reported
Max Birefringence:
δ = 0.022 - 0.027
Image shows birefringence interference colour range (at 30µm thickness) and does not take into account mineral colouration.
Surface Relief:
Moderate
Dispersion:
r < v strong

Chemical Properties of Corrensite

Formula:
(Mg,Fe)9((Si,Al)8O20)(OH)10 · nH2O
Essential elements:
All elements listed in formula:
Common Impurities:
Ti,Fe,Mn,K

Relationship of Corrensite to other Species

9.EC.05Minnesotaite(Fe,Mg)3(Si4O10)(OH)2
9.EC.05TalcMg3(Si4O10)(OH)2
9.EC.05Willemseite(Ni,Mg)3(Si4O10)(OH)2
9.EC.10FerripyrophylliteFe23+(Si4O10)(OH)2
9.EC.10PyrophylliteAl2(Si4O10)(OH)2
9.EC.15BoromuscoviteKAl2(BSi3O10)(OH)2
9.EC.15CeladoniteK(Mg,Fe2+)Fe3+(Si4O10)(OH)2
9.EC.15Chernykhite(Ba,Na)(V3+,Al,Mg)2((Si,Al)4O10)(OH)2
9.EC.15Montdorite(K,Na)2(Fe2+,Mn2+,Mg)5(Si4O10)2(OH,F)4
9.EC.15MuscoviteKAl2(AlSi3O10)(OH)2
9.EC.15NanpingiteCsAl2(AlSi3O10)(OH,F)2
9.EC.15ParagoniteNaAl2(AlSi3O10)(OH)2
9.EC.15RoscoeliteK(V3+,Al)2(AlSi3O10)(OH)2
9.EC.15Tobelite(NH4,K)Al2(AlSi3O10)(OH)2
9.EC.15AluminoceladoniteK(Mg,Fe2+)Al(Si4O10)(OH)2
9.EC.15ChromphylliteK(Cr,Al)2(AlSi3O10)(OH,F)2
9.EC.15FerroaluminoceladoniteK(Fe2+,Mg)(Al,Fe3+)(Si4O10)(OH)2
9.EC.15FerroceladoniteK(Fe2+,Mg)(Fe3+,Al)(Si4O10)(OH)2
9.EC.15ChromceladoniteK(Mg,Fe2+)(Cr,Al)(Si4O10)(OH)2
9.EC.15TainioliteKLiMg2(Si4O10)F2
9.EC.15Ganterite(Ba,Na,K)(Al,Mg)2(AlSi3O10)(OH)2
9.EC.20AnniteKFe32+(AlSi3O10)(OH)2
9.EC.20EphesiteLiNaAl2(Al2Si2O10)(OH)2
9.EC.20HendricksiteK(Zn,Mg,Mn2+)3(AlSi3O10)(OH)2
9.EC.20Masutomilite(K,Rb)(Li,Mn3+,Al)3(AlSi3O10)(F,OH)2
9.EC.20NorrishiteKLiMn23+(Si4O10)O2
9.EC.20PhlogopiteKMg3(AlSi3O10)(OH)2
9.EC.20PolylithioniteKLi2Al(Si4O10)(F,OH)2
9.EC.20PreiswerkiteNaMg2Al(Al2Si2O10)(OH)2
9.EC.20SiderophylliteKFe22+Al(Al2Si2O10)(OH)2
9.EC.20TetraferriphlogopiteKMg3(Fe3+Si3O10)(OH,F)2
9.EC.20FluorotetraferriphlogopiteKMg3(Fe3+Si3O10)F2
9.EC.20Wonesite(Na,K)(Mg,Fe,Al)6((Al,Si)4O10)2(OH,F)4
9.EC.20EastoniteKMg2Al(Al2Si2O10)(OH)2
9.EC.20TetraferrianniteKFe32+((Fe3+,Al)Si3O10)(OH)2
9.EC.20TrilithioniteK(Li1.5Al1.5)(AlSi3O10)(F,OH)2
9.EC.20FluoranniteKFe32+(AlSi3O10)(F,OH)2
9.EC.20ShirokshiniteKNaMg2(Si4O10)F2
9.EC.20ShirozuliteK(Mn2+,Mg)3(AlSi3O10)(OH)2
9.EC.20SokolovaiteCsLi2Al(Si4O10)F2
9.EC.20AspidoliteNaMg3(AlSi3O10)(OH)2
9.EC.20FluorophlogopiteKMg3(AlSi3O10)(F,OH)2
9.EC.20UM2004-49-SiO:AlCsFHKLi(Cs,K)(Al,Li)2.6((Si,Al)4O10)(F,OH)2
9.EC.20Suhailite(NH4)Fe32+(AlSi3O10)(OH)2
9.EC.20YangzhumingiteKMg2.5(Si4O10)F2
9.EC.20OrloviteKLi2Ti(Si4O10)OF
9.EC.20OxyphlogopiteK(Mg,Ti,Fe)3[(Si,Al)4O10](O,F)2
9.EC.25Brammallite(Na,H3O)(Al,Mg,Fe)2((Si,Al)4O10)(OH)2
9.EC.30MargariteCaAl2(Al2Si2O10)(OH)2
9.EC.35Anandite(Ba,K)(Fe2+,Mg)3((Si,Al,Fe)4O10)(S,OH)2
9.EC.35BityiteLiCaAl2(AlBeSi2O10)(OH)2
9.EC.35ClintoniteCa(Mg,Al)3(Al3SiO10)(OH)2
9.EC.35Kinoshitalite(Ba,K)(Mg,Mn2+,Al)3(Al2Si2O10)(OH)2
9.EC.35Ferrokinoshitalite(Ba,K)(Fe2+,Mg)3(Al2Si2O10)(OH,F)2
9.EC.35Oxykinoshitalite(Ba,K)(Mg,Ti,Fe3+,Fe2+)3((Si,Al)4O10)(O,OH,F)2
9.EC.35FluorokinoshitaliteBaMg3(Al2Si2O10)F2
9.EC.40Beidellite(Na,Ca0.5)0.3Al2((Si,Al)4O10)(OH)2 · nH2O
9.EC.40Kurumsakite(Zn,Ni,Cu)8Al8V25+Si5O35 · 27H2O (?)
9.EC.40Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
9.EC.40NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
9.EC.40VolkonskoiteCa0.3(Cr,Mg,Fe)2((Si,Al)4O10)(OH)2 · 4H2O
9.EC.40Yakhontovite(Ca,Na)0.5(Cu,Fe,Mg)2(Si4O10)(OH)2 · 3H2O
9.EC.45HectoriteNa0.3(Mg,Li)3(Si4O10)(F,OH)2
9.EC.45SaponiteCa0.25(Mg,Fe)3((Si,Al)4O10)(OH)2 · nH2O
9.EC.45SauconiteNa0.3Zn3((Si,Al)4O10)(OH)2 · 4H2O
9.EC.45SpadaiteMgSiO2(OH)2 · H2O (?)
9.EC.45Stevensite(Ca,Na)xMg3-x(Si4O10)(OH)2
9.EC.45SwineforditeLi(Al,Li,Mg)4((Si,Al)4O10)2(OH,F)4 · nH2O
9.EC.45ZincsiliteZn3(Si4O10)(OH)2 · 4H2O
9.EC.45FerrosaponiteCa0.3(Fe2+,Mg,Fe3+)3((Si,Al)4O10)(OH)2 · 4H2O
9.EC.50Vermiculite(Mg,Fe,Al)3((Al,Si)4O10)(OH)2 · 4H2O
9.EC.55Baileychlore(Zn,Fe,Al,Mg)6((Si,Al)4O10)(OH)8
9.EC.55Chamosite(Fe2+,Mg)5Al(AlSi3O10)(OH)8
9.EC.55Clinochlore(Mg,Fe2+)5Al(AlSi3O10)(OH)8
9.EC.55Cookeite(Al2Li)Al2(AlSi3O10)(OH)8
9.EC.55FranklinfurnaceiteCa2Fe3+Mn32+Mn3+(Zn2Si2O10)(OH)8
9.EC.55Gonyerite(Mn2+,Mg)5Fe3+(Fe3+Si3O10)(OH)8
9.EC.55Nimite(Ni,Mg,Al)6((Si,Al)4O10)(OH)8
9.EC.55Orthochamosite(Fe2+,Mg,Fe3+)5Al(AlSi3O10)(OH,O)8
9.EC.55PennantiteMn52+Al(AlSi3O10)(OH)8
9.EC.55Sudoite(Mg,Fe2+)2Al3(AlSi3O10)(OH)8
9.EC.55DonbassiteAl4.33(AlSi3O10)(OH)8
9.EC.55GlagoleviteNa(Mg,Al)6(AlSi3O10)(OH,O)8
9.EC.55BorocookeiteLi1+3xAl4-x(BSi3O10)(OH)8
9.EC.60AliettiteCa0.2Mg6((Si,Al)8O20)(OH)4 · 4H2O
9.EC.60DozyiteMg7Al2(Al2Si4O15)(OH)12
9.EC.60HydrobiotiteK(Mg,Fe2+)6((Si,Al)8O20)(OH)4 · nH2O
9.EC.60Karpinskite(Ni,Mg)2Si2O5(OH)2 (?)
9.EC.60KulkeiteMg8Al(AlSi7O20)(OH)10
9.EC.60LunijianlaiteLi0.7Al6.2(AlSi7O20)(OH,O)10
9.EC.60Rectorite(Na,Ca)Al4((Si,Al)8O20)(OH)4 · 2H2O
9.EC.60Saliotite(Li,Na)Al3(AlSi3O10)(OH)5
9.EC.60TosuditeNa0.5(Al,Mg)6((Si,Al)8O18)(OH)12 · 5H2O
9.EC.60BrinrobertsiteNa0.3Al4(Si4O10)2(OH)4 · 3.5 H2O
9.EC.65Macaulayite(Fe,Al)24Si4O43(OH)2
9.EC.70BurckhardtitePb2(Fe3+Te6+)[AlSi3O8]O6
9.EC.75Ferrisurite(Pb,Ca)2.4Fe23+(Si4O10)(CO3)1.7(OH)3 · nH2O
9.EC.75Surite(Pb,Ca)3(Al,Fe2+,Mg)2((Si,Al)4O10)(CO3)2(OH)2
9.EC.75Niksergievite(Ba,Ca)2Al3(AlSi3O10)(CO3)(OH)6 · nH2O
9.EC.80KegelitePb8Al4(Si8O20)(SO4)2(CO3)4(OH)8
16.19.1IndialiteMg2Al3(AlSi5O18)
16.19.2Cordierite(Mg,Fe)2Al3(AlSi5O18)
16.19.3Sekaninaite(Fe,Mg)2Al3(AlSi5O18)
16.19.4Ferro-gedrite☐{Fe22+}{Fe32+Al2}(Al2Si6O22)(OH)2
16.19.5StauroliteFe22+Al9Si4O23(OH)
16.19.6Chloritoid(Fe2+,Mg,Mn2+)Al2(SiO4)O(OH)2
16.19.7AmesiteMg2Al(AlSiO5)(OH)4
16.19.8Corundophilite(Mg,Fe,Al)6(Si,Al)4O10(OH)8
16.19.9YoderiteMg(Al,Fe3+)3(SiO4)2O(OH)
16.19.10Delessite(Mg,Fe,Fe,Al)(Si,Al)4O10(O,OH)8
16.19.11Ferrocarpholite(Fe2+,Mg)Al2(Si2O6)(OH)4
16.19.12Magnesiocarpholite(Mg,Fe2+)Al2(Si2O6)(OH)4
16.19.13Chamosite(Fe2+,Mg)5Al(AlSi3O10)(OH)8
16.19.14Orthochamosite(Fe2+,Mg,Fe3+)5Al(AlSi3O10)(OH,O)8
16.19.15Berthierine(Fe2+,Fe3+,Al)3(Si,Al)2O5(OH)4
16.19.16Odinite(Fe,Mg,Al,Fe,Ti,Mn)2.4((Si,Al)2O5)(OH)4
16.19.17Clinochlore(Mg,Fe2+)5Al(AlSi3O10)(OH)8
16.19.18Gedrite☐{Mg2}{Mg3Al2}(Al2Si6O22)(OH)2
16.19.19Magnesiogedrite
16.19.20Diabantite(Mg,Fe,Al)6((Si,Al)4O10)(OH)8
16.19.21Sudoite(Mg,Fe2+)2Al3(AlSi3O10)(OH)8
16.19.22Vermiculite(Mg,Fe,Al)3((Al,Si)4O10)(OH)2 · 4H2O

Other Names for Corrensite

Name in Other Languages:
German:Corrensit
Spanish:Corrensita

Other Information

IR Spectrum:
Clays and Clay Minerals 33:458 (1985).
Thermal Behaviour:
HLC corrensite basal spacings collapse to 24 Angstroms at 500 degrees C.
Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.

References for Corrensite

Reference List:
Lippmann, F. (1954): Über einen Keuperton von Zaisersweiher bei Maulbronn. Contributions to Mineralogy and Petrology 4(1), 130-134 (in German).

American Mineralogist (1982): 67: 394-398.

Shau, Y.-H., D.R. Peacor, and E.J. Essene (1990): Corrensite and mixed-layer chlorite/corrensite in metabasalt from northern Taiwan: TEM/AEM, EMPA, XRD, and optical studies. Contr. Mineral. Petrol., 105, 123-142.

Li, G., Peacor, D.R., and Essene, E.J. (1998) The formation of sulfides during alteration of biotite to chlorite-corrensite. Clays and Clay Minerals: 46: 649-657.

Internet Links for Corrensite

Localities for Corrensite

map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.
(TL) indicates type locality for a valid mineral species. (FRL) indicates first recorded locality for everything else. ? indicates mineral may be doubtful at this locality. All other localities listed without reference should be considered as uncertain and unproven until references can be found.
Canada
 
  • Ontario
    • Frontenac Co.
      • Oso Township
C. R. de Kimpe, N. Miles, H. Kodama, and J. Dejou Alteration of phlogopite to corrensite at Sharbot Lake Ontario Clays and Clay Minerals, April 1987, v. 35, p. 150-158
Egypt
 
  • Red Sea Governorate
    • Eastern Desert
      • Hafafit
Harraz, H. Z.; Hamdy, M. M. 2010. Interstratified vermiculite-mica in the gneiss-metapelite-serpentinite rocks at Hafafit area, Southern Eastern Desert, Egypt: From metasomatism to weathering. Journal of African Earth Sciences, Volume 58, Issue 2, p. 305-320.
Estonia
 
  • Hiiu Co.
    • Hiiumaa Island
Meteoritics & Planetary Science Volume 40, Issue 1, pages 3–19, January 2005
Finland
 
  • Northern Finland Region
    • Hyrynsalmi
Lindquist, K. & Harle, S. 1991. Corrensite of hydrothermal origin from Veitsivaara, eastern Finland. Clays and Clay minerals, 39 (2), 219-223.
France
 
  • Auvergne
    • Allier
      • Le Mayet-de-Montagne
J.C. Parneix, A Meunier : "Les paragenèses de remplacement des biotites utilisées comme marqueurs des conditions de température et de composition des fluides dans les altérations hydrothermales et supergène du granite de Mayet-la-Montagne (Allier, France), Bull. Minéral. , 1982, 105, 662-672.
    • Haute-Loire
      • Lavoûte-Chilhac
        • Villeneuve d'Allier
F.H. Forestier : "Les Péridotites Serpentinisées en France, Groupe I, Fascicule IV, Bassin du Haut Allier", BRGM, 1964
      • Paulhaguet
        • Mazerat-Aurouze
          • Aurouze
P.G. Pélisson : "Etude Minéralogique et Métallogénique du District Filonien Polytype de Paulhaguet (Haute-Loire, Massif Central Français)", Doctorate Thesis, Orléans, France, 1989
        • Salzuit
      • Pinols
        • Desges
P.G. Pelisson : "Etude Mineralogique et Metallogenique du district filonien polytype de Paulhaguet, Haute-Loire, Massif Central Français. Doctorate Thesis, 1989
  • Limousin
    • Creuse
      • Soumans
        • Montebras
Patureau, J., Chiappero, P-J. & Lebocey, J. (2011): Mines et minéraux de Montebras, Soumans, Creuse. Le Règne Minéral. 99, 5-33
Germany (TL)
 
  • Baden-Württemberg
    • Kraichgau
      • Maulbronn
Lippmann, F. (1954): Contributions to Mineralogy and Petrology 4(1), 130-134; Clays Clay Min. 21 (1973), 207; Am. Min. (1982) 67, 394-398
  • Hesse
    • Großalmerode
      • Hundelshausen
Dreizler, I. (1962): Contributions to Mineralogy and Petrology 8, 323-338.
Hungary
 
  • Baranya Co.
    • Mecsek Mts
      • Hetvehely
Mineral Species of Hungary, 2005
      • Pécs
Szakáll & Gatter, 1993
  • Komárom-Esztergom Co.
    • Gerecse Mts
      • Lábatlan
Szakáll-Gatter-Szendrei: Mineral Species of Hungary, 2006
New Zealand
 
  • Kermadec Islands
de Ronde, C.E.J.; Hannington, M.D.; Stoffers, P.; Wright, I.C.; Ditchburn, R.G.; Reyes, A.G.; Baker, E.T.; Massoth, G.J.; Lupton, J.E.; Walker, S.L.; Greene, R.R.; Soong, C.W.R.; Ishibashi, J.; Lebon, G.T.; Bray, C.J.; Resing, J.A. 2005 Evolution of a submarine magmatic-hydrothermal system : Brothers volcano, southern Kermadec arc, New Zealand. Economic geology, 100(6): 1097-1133
  • North Island
    • Waikato
      • Hauraki
        • Waihi
Simpson, M. P. & Mauk, J. L. (2007): The Favona epithermal gold-silver deposit, Waihi, New Zealand. Econ. Geol. 102, 817-839.
Simpson, Mauk, & Simmons, 2001, Hydrothermal Alteration and Hydrologic Evolution of the Golden Cross Epithermal Au-Ag Deposit, Economic Geology 96, pp773-796
Simpson, M. P., & Mauk, J. L. (2011). Hydrothermal alteration and veins at the epithermal Au-Ag deposits and prospects of the Waitekauri area, Hauraki goldfield, New Zealand. Economic Geology, 106(6), 945-973.
  • South Island
Gejing Li et al. : "Solid solution in the celadonite family: The new minerals ferroceladonite and and ferroaluminoceladonite", American Mineralogist, Volume 82, pages 503–511, 1997
Pacific Ocean
 
  • Kermadec-Tonga trench
A. G. Reyes, C.E.J. DE Ronde, and C. W. R. Soong (2004) a Submarine Magmatic-hydrothermal System at Brothers Volcano, Kermadecs. Proceedings 26th NZ Geothermal Workshop pp 46-52
Poland
 
Clays & Clay Minerals 43:630-636
Russia
 
  • Eastern-Siberian Region
    • Taymyrskiy Autonomous Okrug
      • Taimyr Peninsula
        • Putoran Plateau
Spiridonov, E.M., Gritsenko, Y.D., and Ponomarenko, A.I. (2008): Geology of Ore Deposits 50(8), 755-762.
Slovakia
 
  • Banská Bystrica Region
    • Detva Co.
      • Detva
Koděra P., Lexa J., Biroň A., Bakos F. (2008): Mineralogy and alteration pattern of the Biely Vrch Au-porphyry deposit, Slovakia. Mineralogia - Special Papers, 32, 94-95.
Sweden
 
  • Värmland
    • Filipstad
      • Nordmark district
No reference listed
  • Västergötland
    • Karlsborg
      • Undenäs
Ljunggren, P. (1958): Origin of the manganese ore deposit of Bölet, southern Sweden. Kungliga Fysiografiska Sällskapets i Lund Förhandlingar, 28, nr 10. ( cited in: Sandström, F. (2002): Mangangruvor och -skärpningar i Karlsborgs kommun, Västergötland. Litiofilen. 14 (1), 22-38)
Turkey
 
  • Marmara Region
    • Bursa Province
      • Mustafa Kemalpafla
Koc, S., Kavrazli, O., and Kocak, I. (2008): Proceedings of the 33rd International Geological Congress, Oslo (Norway), Aug 6-14, 2008.
UK
 
  • England
    • Worcestershire
Stephen, I., and McEwan, D.M.C. (1951): Clay Minerals Bull. 1(5), 157-162; Lippmann, F. (1954): Contributions to Mineralogy and Petrology 4(1), 130-134.
  • Wales
    • Powys
      • Builth Wells
NNational Museum of Wales database; Garvie, L. A. J., & Metcalfe, R. (1997). A vein occurrence of co-existing talc, saponite, and corrensite, Builth Wells, Wales. Clay Minerals, 32(2), 223-240.
USA
 
  • Arizona
    • Coconino Co.
Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 189; McKee, E.D. (1982), The Supai Group of the Grand Canyon, USGS PP 1173.
  • California
    • Santa Clara Co.
      • Diablo Range
        • Mount Hamilton
  • Colorado
    • Boulder Co.
Minerals of Colorado (1997) Eckels, E. B.
    • Custer Co.
      • Rosita District
Minerals of Colorado (1997) Eckels, E. B.
    • El Paso Co.
      • Crystal Park
C.R. Carnein collection
C.R. Carnein collection
    • Moffat Co.
      • Juniper Canyon
Minerals of Colorado (1997) Eckels, E. B.
  • Kansas
    • Reno Co.
      • Hutchinson
American Mineralogist, Volume 59, pages 623424, 1974
    • Rice Co.
Am Min 59:623, 1974
  • Michigan
    • Keweenaw Co.
Mineralogy of Michigan (2004) Heinrich & Robinson
  • North Carolina
    • Cherokee Co.
A.M Blount,Douglas Williams,Janice Jenkins,and Ben Warner,1983,Expandable layer silicates associated with hydrothermal talc deposits of Murphy,North Carolina,Economic Geology;May 1983;Vol.78;No.3;pg.486-497
    • Durham Co.
      • Durham
Willian J.Furbish,1975,Corrensite of Deuteric Orgin,The American Mineralogist,Vol.60.pg 928-930,1975
  • Pennsylvania
    • Montgomery Co.
      • Marlborough Township
        • Perkiomenville
Collection of NHM, Vienna
  • Wisconsin
    • Iron Co.
Cordua, W. (2011) Geology of new exposures of the 1100 MA (Keweenawan) Kallander Creek Volcanics in Iron County, Wisconsin: Geological Society of America 2011 Annual Meeting Abstracts with Program: p. 93.
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2015, except where stated. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: July 30, 2015 11:17:31 Page generated: July 26, 2015 11:37:33