Help|Log In|Register|
Home PageMindat NewsThe Mindat ManualHistory of MindatCopyright StatusManagement TeamContact UsAdvertise on Mindat
Donate to MindatSponsor a PageSponsored PagesTop Available PagesMindat AdvertisersAdvertise on MindatThe Mindat Store
Minerals by PropertiesMinerals by ChemistryRandom MineralSearch by minIDLocalities Near MeSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportAdd Glossary Item
StatisticsMember ListBooks & MagazinesMineral Shows & EventsThe Mindat DirectoryHow to Link to MindatDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery


This page kindly sponsored by Robert Manson North
Déodat Gratet de Dolomieu
Colourless, white, grey, ...
Vitreous, Pearly
3½ - 4
Member of:
Named in 1791 by Nicolas Théodore de Saussure in honor of the French mineralogist and geologist, Déodat(Dieudonné) Guy Silvain Tancrède Gratet de Dolomieu [June 24, 1750 Dolomieu, near Tour-du-Pin, Isère, France - November 26, 1801 Château-Neuf, Sâone-et-Loire, France]. de Dolomieu wrote numerous books on observations on geology, notably about the Alps and Pyrrenes, in addition to theoretical books about the internal structure of the Earth. He discovered a specimen of what would eventually be called dolomite during his participation in Napoleon Bonaparte's expedition into Egypt in 1798.
Isostructural with:
Dolomite Group. Ankerite-Dolomite Series.

Usually found as druzes or clusters of small rhombohedral crystals with a somewhat "saddle"-like shape, white to tan to pink in color.

Visit for gemological information about Dolomite.

Classification of Dolomite

Valid - first described prior to 1959 (pre-IMA) - "Grandfathered"

A : Carbonates without additional anions, without H2O
B : Alkali-earth (and other M2+) carbonates
Dana 7th ed.:

2 : AB(XO3)2

11 : Carbonates
4 : Carbonates of Ca URL:
Please feel free to link to this page.

Occurrences of Dolomite

Geological Setting:
An important sedimentary and metamorphic mineral, found as the principal mineral in dolostones and metadolostones, and as an important mineral in limestones and marbles where calcite is the principal mineral present. Also found as a hydrothermal vein mineral, forming crystals in cavities; and found in serpentinites and similar rocks.

Physical Properties of Dolomite

Vitreous, Pearly
Diaphaneity (Transparency):
Transparent, Translucent
Colourless, white, grey, reddish-white, brownish-white, or pink; colourless in transmitted light
Hardness (Mohs):
3½ - 4
Hardness Data:
On {1011}.
Noted in lamellar twins on {0221}. Twin gliding on {0221};
Translation gliding:
translation gliding with T{0001}, t[1010].
2.84 - 2.86 g/cm3 (Measured)    2.876 g/cm3 (Calculated)

Crystallography of Dolomite

Crystal System:
Class (H-M):
3 - Rhombohedral
Space Group:
Cell Parameters:
a = 4.8012(1) Å, c = 16.002Å
a:c = 1 : 3.333
Unit Cell Volume:
V 319.45 ų (Calculated from Unit Cell)
Crystals typically rhombohedral with {1011} or {4041} dominant, may also be prismatic {1120} terminated by rhombohedral faces; tabular {0001} with {1120}; {1011} often striated horizontally or curved - "saddle" or "fingernail" habit. Also massive, coarse to fine granular, fibrous or pisolitic.
On {0001}, common with re-entrant angles around the middle edges; on {1010} common; on {1120}, common, as complementary twins simulating holohedral symmetry; also as double twins by combination of this law and twins on {1010} or {0001}. On {1011}, rare. On {0221} as lamellae, especially in grains of dolomite marble.

Crystallographic forms of Dolomite

Crystal Atlas:
Image Loading
Click on an icon to view
Dolomite no.2 - Goldschmidt (1913-1926)
Dolomite no.7 - Goldschmidt (1913-1926)
Dolomite no.18 - Goldschmidt (1913-1926)
Dolomite no.54 - Goldschmidt (1913-1926)
Dolomite no.59 - Goldschmidt (1913-1926)
Dolomite no.89 - Goldschmidt (1913-1926)
3d models and HTML5 code kindly provided by

Edge Lines | Miller Indicies | Axes

Opaque | Translucent | Transparent

Along a-axis | Along b-axis | Along c-axis | Start rotation | Stop rotation

Epitaxial Relationships of Dolomite

Epitaxial Minerals:
Epitaxy Comments:
Growths of dolomite on calcite or vice versa, with parallel axes; also dolomite on rhodochrosite or siderite. Also occurs in oriented growths with antigorite (uncertain), and with chlorite [{0001} and {001} parallel].
X-Ray Powder Diffraction:
Image Loading

Radiation - Copper Kα
Data Set:
Data courtesy of RRUFF project at University of Arizona, used with permission.
X-Ray Powder Diffraction Data:

Optical Data of Dolomite

Uniaxial (-)
RI values:
nω = 1.679 - 1.681 nε = 1.500
Max Birefringence:
δ = 0.179 - 0.181
Image shows birefringence interference colour range (at 30µm thickness) and does not take into account mineral colouration.
Surface Relief:
Anomalously biaxial.

Chemical Properties of Dolomite

Essential elements:
All elements listed in formula:
Common Impurities:

Relationship of Dolomite to other Species

Forms a series with Ankerite (see here)
Member of:
Other Members of Group:
11.4.4MonohydrocalciteCaCO3 · H2O
11.4.5IkaiteCaCO3 · 6H2O
11.4.8SergeeviteCa2Mg11(CO3)13 · 10H2O,Mg)(CO3)2

Other Names for Dolomite

Other Information

Some types fluoresce in either SW or LW UV.
Other Information:
Very slowly dissolved in cold acids. Powder readily dissolves in warm acids with effervescence.

May exhibit triboluminescence.

Dolomite and ferroan dolomite occur frequently as pseudomorphs after calcite and also after aragonite. Rarely pseudomorphic after cerussite, baryte and fluorite.

Several species have been recognized as incrustation or substitution pseudomorphs after dolomite crystals. These include siderite, calcite, smithsonite, quartz, talc, limonite; and more rarely, hematite, pyrite, malachite, azurite, magnetite, cinnabar, sphalerite, pyrolusite, marcasite and serpentine.
Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.
Industrial Uses:
A major source of magnesium, particularly for agricultural and pharmaceutical applications.

References for Dolomite

Reference List:
Saussure (1792) Journal phys.: 40: 161 (as Dolomie).

Delamétherie, J.C. (1792) New Edition of Mongez’s Sciagraphie (French translation of Bergmann’s Sciagraphia, with additions). 2 volumes, Paris: 1: 207 (as Spath magnésien).

Kirwan, R. (1794) Elements of Mineralogy, second edition: 1: 111 (as Dolomite).

Klaproth, M.H. (1802) Beiträge zur chemischen Kenntniss der Mineralkörper, vol. 3: 3: 292 (as Miemit).

Wollaston (1812) Royal Society of London, Philosophical Transactions: 159.

Hausmann, J.F.L. (1813) Handbuch der Mineralogie 3 volumes, Göttingen. Second edition: 960 (as Bitterkalk).

Gibbs (1847) Annalen der Physik, Halle, Leipzig: 71: 361.

Sella (1856) Studii sulla min. Sarda, Torino.

Bořický (1876) Mineralogische und petrographische Mitteilungen, Vienna: 47.

Tschermak (1881) Mineralogische und petrographische Mitteilungen, Vienna: 4: 102, 109.

Tschermak (1882) Mineralogische und petrographische Mitteilungen, Vienna: 4: 111.

Becke (1889) Mineralogische und petrographische Mitteilungen, Vienna: 10: 138.

Becke (1890) Mineralogische und petrographische Mitteilungen, Vienna: 11: 224.

Eisenhuth (1902) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 35: 582.

Johnsen (1902) Neues Jahrbuch für Mineralogie, Geologie und Paleontologie, Heidelberg, Stuttgart: II: 133.

Mügge (1903) Jb. Min., Beil.-Bd.: 16: 374.

Doelter, C. (1911) Handbuch der Mineral-chemie (in 4 volumes divided into parts): 1: 360.

Rinne (1914) Centralblatt für Mineralogie, Geologie und Paleontologie, Stuttgart: 705.

Goldschmidt, V. (1916) Atlas der Krystallformen. 9 volumes, atlas, and text: vol. 3: 65.

Ford (1917) Trans. Conn. Ac. Arts Sc.: 22: 213.

Honess (1917) American Mineralogist: 2: 57.

Koller (1918) Neues Jahrbuch für Mineralogie, Geologie und Paleontologie, Heidelberg, Stuttgart, Beil.-Bd.: 42: 457.

Gaubert (1919) Bulletin de la Société française de Minéralogie: 42: 88.

Harding et al (1920) Chemical News and Journal of Industrial Science, London: 121: 50.

Niggli (1921) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 56: 230.

Garnett (1923) Mineralogical Magazine: 20: 54.

Mellor, J.W. (1923) A Comprehensive Treatise on Inorganic and Theoretical Chemistry. 16 volumes, London: 4: 372.

Mitchell (1923) Journal of the Chemical Society, London: 123: 1055.

Ungemach (1923) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 58: 161.

Bäckström (1924) Journal of the Chemical Society, London: 125: 430.

Wyckoff and Merwin (1924) American Journal of Science: 8: 447.

de Klerk and Goldschmidt (1925) Mineralogische und petrographische Mitteilungen, Vienna: 38: 159.

Eitel (1925) Jb. Min., Beil.-Bd.: 51: 477.

Garrabos (1926) Bulletin de la Société française de Minéralogie: 49: 110.

Rocza (1926) Zentralblatt Mineralien: 229.

Strobentz (1926) Földtani Közlöny, Budapest (Magyarhone Földtani Torsulat): 55: 49.

Zsivny (1926) Ann. Hist.-Nat. Mus. Nat. Hungar.: 24: 423.

Hintze, Carl (1927) Handbuch der Mineralogie. Berlin and Leipzig. 6 volumes: 1[3A]: 3333.

Zsivny (1927) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 65: 728.

Kani (1928) Journal of the Geological Society of Tokyo: 35: 279.

Halla (1930) Ak Wien, Sitzber.: 139: 683.

Onorato E. (1930) Sulla natura della dolomite. Periodico di Mineralogia - Roma pp. 216-220.

Vavrinecz (1932) Magyar Chemiai Folyóirat, Budapest: 38: 140.

Ulke (1933) American Mineralogist: 18: 312.

Koch and Zombory (1934) Földtani Közlöny, Budapest (Magyarhone Földtani Torsulat): 64: 160.

Tokody (1934) Magyar Tudom. Akad. Mat. Termeszett. Ertisitö, Budapest: 50: 650.

Du Rietz (1935) Geologiska Föeningens I Stockholm. Förhandlinger, Stockholm: 57: 133.

Hawkes and Smythe (1935) Mineralogical Magazine: 24: 65.

Koiké (1935) Journal of the Japanese Association of Min. Petr. Ec. Geol.: 14: 216.

Schoklitsch (1935) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 90: 433.

Tertsch (1935) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 92: 39.

Royer (1936) Comptes rendus de l’Académie des sciences de Paris: 202: 429.

Siegl (1936) Mineralogische und petrographische Mitteilungen, Vienna: 48: 288.

Koritnig and Ehrlich (1940) Zentralblatt Mineralien: 41.

Rodgers (1940) American Journal of Science: 238: 788.

Fairbairn and Hawkes (1941) American Journal of Science: 239: 617.

Smythe and Dunham (1947) Mineralogical Magazine: 28: 53.

Johansson (1948) Geologiska Föeningens I Stockholm. Förhandlinger, Stockholm: 70: 349.

Faust (1949) American Mineralogist: 34: 789.

Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: Halides, Nitrates, Borates, Carbonates, Sulfates, Phosphates, Arsenates, Tungstates, Molybdates, Etc. John Wiley and Sons, Inc., New York, 7th edition, revised and enlarged: 208-217.

Goldsmith, J.R., D.L. Graf, J. Witters & D.A. Northrop (1962), Studies in the system CaCO3•MgCO3•FeCO3: (1) Phase relations; (2) A method for major element spectrochemical analyses; and (3) Composition of some ferroan dolomites Jour. Geol.: 70: 659-688.

Van der Veen, A.H. (1965) Calcite-dolomite intergrowths in high-temperature carbonate rocks. American Mineralogist: 50: 2070-2077.

Peterson, M.N.A., Von der Borch, C.C., and Bien, G.S. (1966) Growth of dolomite crystals. American Journal of Science: 264: 252-272. Zeitschrift für Kristallographie: 156: 233-243.

Reeder, R., Dollase, W. (1989): Structural variation in the dolomite-ankerite solid-solution series: An X-ray, Mössbauer, and TEM study. Am. Mineral. 74, 1159-1167.

Ross, N. L. & Reeder, R. (1992): High-pressure structural study of dolomite and ankerite. American Mineralogist, 77, 412-421.

Chai, L., Navrotsky, A., Reeder, R.J. (1995): Energetics of calcium-rich dolomite. Geochim. Cosmochim. Acta 59, 939-944.

Gaines, Richard V., H. Catherine, W. Skinner, Eugene E. Foord, Brian Mason, Abraham Rosenzweig (1997), Dana's New Mineralogy : The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana: 4.

Anthony, J.W., Bideaux, R.A., Bladh, K.W., and Nichols, M.C. (2003) Handbook of Mineralogy, Volume V. Borates, Carbonates, Sulfates. Mineral Data Publishing, Tucson, AZ, 813pp.: 191.

Antao, S.M., Mulder, W.H., Hassan, S., Crichton, W.A., and Parise, J.B. (2004) Cation disorder in dolomite, CaMg(CO3)2, and its influence on the aragonite + magnesite ↔ dolomite reaction boundary. American Mineralogist: 89: 1142-1147.

Drits, V.A., McCarty, D.K., Sakharov, B., Milliken, K.L. (2005): New insights into structural and compositional variability in some ancient excess-Ca dolomite. Can. Mineral. 43, 1255-1290.

Perchiazzi, N. (2015): Crystal structure study of a cobaltoan dolomite from Kolwezi, Democratic Republic of Congo. Acta Crystallographica E71, i3.

Internet Links for Dolomite

The following Dolomite specimens are currently listed for sale on

Localities for Dolomite

map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.
Mineral and/or Locality is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © and the Hudson Institute of Mineralogy 1993-2015, except where stated. relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: August 2, 2015 09:20:32 Page generated: July 27, 2015 10:38:10