Help mindat.org|Log In|Register|
Home PageMindat NewsThe Mindat ManualHistory of MindatCopyright StatusManagement TeamContact UsAdvertise on Mindat
Donate to MindatSponsor a PageSponsored PagesTop Available PagesMindat AdvertisersAdvertise on MindatThe Mindat Store
Minerals by PropertiesMinerals by ChemistryRandom MineralSearch by minIDLocalities Near MeSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportAdd Glossary Item
StatisticsMember ListBooks & MagazinesMineral Shows & EventsThe Mindat DirectoryHow to Link to MindatDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery

Fluorapatite

This page kindly sponsored by Donald A Dallaire
Formula:
Ca2Ca3(PO4)3F
System:
Hexagonal
Colour:
Colorles to white when ...
Lustre:
Vitreous, Sub-Vitreous, Resinous, Waxy, Greasy
Hardness:
5
Name:
Renamed in 1860 from the original apatite of Abraham Werner by Carl F. Rammelsberg to emphasize the chemical composition. Apatite is from the Greek απατείν ("apatein"), "to deceive" or "to be misleading", as apatite was often confused with other minerals (e.g. beryl, milarite). Rammelsberg added the "Fluor-" prefix in allusion to the dominance of fluorine in the composition. See Weiss (2012) and Meier (2013) for the nomenclature history of apatite.
Apatite Group.
The fluorine analogue of chlorapatite and hydroxylapatite, phosphate analogue of svabite. The Ca5 analogue of belovite-(Ce), belovite-(La), and kuannersuite-(Ce). Note that the five cation sites are non-equivalent and substituents in the larger 3 sites preferentially accommodate larger cations.

Fluorapatite is by far the most common species in the apatite group. It occurs in almost all igneous rocks, during initial phases of paragenesis, as an accessory mineral, commonly in microscopic crystals, and may occur as very large bodies as late-magmatic segregations in alkaline igneous rocks. Also occurs crystallized in pegmatitic facies of acidic and basic types of igneous rocks. Common in magnetite deposits, and in hydrothermal veins, particularly those formed at high temperatures, and in Alpine cleft-type veins.

Visit gemdat.org for gemological information about Fluorapatite.

Classification of Fluorapatite

Approved
8.BN.05

8 : PHOSPHATES, ARSENATES, VANADATES
B : Phosphates, etc., with additional anions, without H2O
N : With only large cations, (OH, etc.):RO4 = 0.33:1
41.8.1.1

41 : ANHYDROUS PHOSPHATES, ETC.CONTAINING HYDROXYL OR HALOGEN
8 : A5(XO4)3Zq
22.1.9

22 : Phosphates, Arsenates or Vanadates with other Anions
1 : Phosphates, arsenates or vanadates with fluoride
mindat.org URL:
http://www.mindat.org/min-1572.html
Please feel free to link to this page.

First Recorded Occurrence of Fluorapatite

Year of Discovery:
1823

Occurrences of Fluorapatite

Geological Setting:
Most common rock forming phosphate. Accessory mineral in most igneous rocks with important concentrations in carbonatites. Common in marbles and skarns. Major mineral in sedimentary phosphorites.

Physical Properties of Fluorapatite

Vitreous, Sub-Vitreous, Resinous, Waxy, Greasy
Diaphaneity (Transparency):
Transparent, Opaque
Colour:
Colorles to white when pure, also green, blue, pink, yellow, brown, violet, purple.
Streak:
White
Hardness (Mohs):
5
Hardness Data:
Mohs hardness reference species
Tenacity:
Brittle
Cleavage:
Poor/Indistinct
Indistinct (0001) and (1010)
Fracture:
Irregular/Uneven, Conchoidal
Density:
3.1 - 3.25 g/cm3 (Measured)    3.18 g/cm3 (Calculated)

Crystallography of Fluorapatite

Crystal System:
Hexagonal
Class (H-M):
6/m - Dipyramidal
Space Group:
P63/m
Space Group Setting:
P63/m
Cell Parameters:
a = 9.3973Å, c = 6.8782Å
Ratio:
a:c = 1 : 0.732
Unit Cell Volume:
V 526.03 ų (Calculated from Unit Cell)
Z:
2
Morphology:
Crystals short to long hexagonal prisms [0001], with {1010} and {1011} dominant; also thick tabular {0001}, frequently in the crystals of hydrothermal origin in pegmatites and veins, with {1010}, relatively large {0001}, and often also {1011} or low pyramids. Massive, coarse granular to compact.
Twinning:
Rare contact twins on {1121}. Twin plane {1013} rare. Also twinning reported on {1010} and {1123}.
Comment:
May be space group P21/b

Epitaxial Relationships of Fluorapatite

Epitaxi Comments:
Needle-like rutile crystals included in the apatite with the c-axes of the two species parallel; Monazite in oriented inclusions; Carbonate-fluorapatite enclosing Fluorapatite
X-Ray Powder Diffraction:
Image Loading

Radiation - Copper Kα
Data Set:
Data courtesy of RRUFF project at University of Arizona, used with permission.
X-Ray Powder Diffraction Data:
d-spacingIntensity
3.442 (40)
2.800 (100)
2.772 (55)
2.702 (60)
2.624 (30)
1.937 (25)
1.837 (30)
Comments:
Synthetic

Optical Data of Fluorapatite

Type:
Uniaxial (-)
RI values:
nω = 1.631 - 1.650 nε = 1.627 - 1.646
Birefringence:
0.004
Max Birefringence:
δ = 0.004
Image shows birefringence interference colour range (at 30µm thickness) and does not take into account mineral colouration.
Surface Relief:
Moderate
Pleochroism:
Visible
Comments:
Weak to strong in coloured crystals:
Colour: .Violet .........Pale Green .............Yellow ..............Blue
O = ..Deep violet .....Pale yellow ..Yellow-brown ......Sky-blue
E = ..Red-violet .Pale blue-green ..Dark green ...Green-blue
Comments:
Refractive index increases with diminished Fluorine.

Chemical Properties of Fluorapatite

Formula:
Ca2Ca3(PO4)3F
Essential elements:
All elements listed in formula:
Common Impurities:
OH,Cl,TR,La,Ce,Pr,Nd,Sm,Eu,Gd,Dy,Y,Er,Mn

Relationship of Fluorapatite to other Species

Other Members of Group:
AlforsiteBa5(PO4)3Cl
BellitePb5 (AsO4,CrO4, SiO2)3Cl
Carbonate-rich FluorapatiteCa5(PO4,CO3)3(F,O)
ChlorapatiteCa5(PO4)3Cl
HydroxylapatiteCa5(PO4)3(OH)
Hydroxylapatite-MCa5(PO4)3OH
HydroxylpyromorphitePb5(PO4)3(OH)
JohnbaumiteCa5(AsO4)3OH
Johnbaumite-MCa5(AsO4)3OH
Manganapatite
MimetitePb5(AsO4)3Cl
Mimetite-2M
Miyahisaite(Sr,Ca)2Ba3(PO4)3F
Mn-bearing Fluorapatite(Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
OxypyromorphitePb10(PO4)6O
PieczkaiteMn5(PO4)3Cl
PyromorphitePb5(PO4)3Cl
StronadelphiteSr5(PO4)3F
SvabiteCa5(AsO4)3F
TurneaureiteCa5(AsO4)3Cl
Unnamed (F-analogue of Pyromorphite)Pb5(PO4)3F
Unnamed (OH-analogue of Mimetite)Pb5(AsO4)3(OH)
VanadinitePb5(VO4)3Cl
8.BN.05AlforsiteBa5(PO4)3Cl
8.BN.05Belovite-(Ce)NaCeSr3(PO4)3F
8.BN.05Carbonate-rich FluorapatiteCa5(PO4,CO3)3(F,O)
8.BN.05Carbonate-rich HydroxylapatiteCa5(PO4,CO3)3(OH,O)
8.BN.05ChlorapatiteCa5(PO4)3Cl
8.BN.05Mimetite-MPb5(AsO4)3Cl
8.BN.05Johnbaumite-MCa5(AsO4)3OH
8.BN.05HedyphanePb3Ca2(AsO4)3Cl
8.BN.05HydroxylapatiteCa5(PO4)3(OH)
8.BN.05JohnbaumiteCa5(AsO4)3OH
8.BN.05MimetitePb5(AsO4)3Cl
8.BN.05MorelanditeCa2Ba3(AsO4)3Cl
8.BN.05PyromorphitePb5(PO4)3Cl
8.BN.05FluorstrophiteSrCaSr3(PO4)3F
8.BN.05SvabiteCa5(AsO4)3F
8.BN.05TurneaureiteCa5(AsO4)3Cl
8.BN.05VanadinitePb5(VO4)3Cl
8.BN.05Belovite-(La)NaLaSr3(PO4)3F
8.BN.05Deloneite(Na0.5REE0.25Ca0.25)(Ca0.75REE0.25)Sr1.5(CaNa0.25REE0.25)(PO4)3F0.5(OH)0.5
8.BN.05FluorcaphiteSrCaCa3(PO4)3F
8.BN.05Kuannersuite-(Ce)NaCeBa3(PO4)3F0.5Cl0.5
8.BN.05Hydroxylapatite-MCa5(PO4)3OH
8.BN.05PhosphohedyphaneCa2Pb3(PO4)3Cl
8.BN.05StronadelphiteSr5(PO4)3F
8.BN.05FluorphosphohedyphaneCa2Pb3(PO4)3F
8.BN.05Carlgieseckeite-(Nd)NaNdCa3(PO4)3F
8.BN.05Miyahisaite(Sr,Ca)2Ba3(PO4)3F
8.BN.10ArctiteNa2Ca4(PO4)3F
22.1.1AmblygoniteLiAl(PO4)F
22.1.2LacroixiteNaAl(PO4)F
22.1.3NatrophosphateNa7(PO4)2F · 19H2O
22.1.5NacaphiteNa2Ca(PO4)F
22.1.6ArctiteNa2Ca4(PO4)3F
22.1.7NefedoviteNa5Ca4(PO4)4F
22.1.10HerderiteCaBePO4(F,OH)
22.1.11IsokiteCaMg(PO4)F
22.1.12PanasqueiraiteCaMg(PO4)(OH,F)
22.1.13BabefphiteBaBePO4(F,OH)
22.1.14FluelliteAl2(PO4)F2(OH) · 7H2O
22.1.15MinyuliteKAl2(PO4)2(OH,F) · 4H2O
22.1.16MoriniteNaCa2Al2(PO4)2(OH)F4 · 2H2O
22.1.17BøggilditeNa2Sr2Al2PO4F9
22.1.18FluorstrophiteSrCaSr3(PO4)3F
22.1.19ViitaniemiiteNa(Ca,Mn2+)Al(PO4)(F,OH)3
22.1.20VäyryneniteMn2+Be(PO4)(OH,F)
22.1.21MaxwelliteNaFe3+(AsO4)F
22.1.22Wagnerite(Mg,Fe2+)2(PO4)F
22.1.23Triplite(Mn2+,Fe2+)2(PO4)(F,OH)
22.1.24Magniotriplite(Mg,Fe2+,Mn2+)2PO4F
22.1.25Zwieselite(Fe2+,Mn2+)2(PO4)F
22.1.26McauslaniteFe3Al2(PO4)3(PO3OH)F · 18H2O
22.1.27RichelliteCaFe23+(PO4)2(OH,F)2
22.1.28SvabiteCa5(AsO4)3F
22.1.29TilasiteCaMg(AsO4)F
22.1.30Johnbaumite-MCa5(AsO4)3OH
22.1.31DurangiteNaAl(AsO4)F

Other Names for Fluorapatite

Name in Other Languages:

Other Information

Often fluorescent bright yellow or blue white and phosphorescent, especially the manganoan varieties.
Electrical:
Non-piezoelectric
Thermal Behaviour:
Strongly thermoluminescent at times.
Other Information:
Soluble in HCl or in HNO3. Varieties containing CO3 may dissolve with slight effervescence.
Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.
Industrial Uses:
Source of phosphorus.

References for Fluorapatite

Reference List:
Koksharov, N. von (1854) Materialien zur Mineralogie Russlands. 11 volumes with atlas: vol. 2: 39.

Rammelsberg, C.F. (1860) Handbuch der Mineralchemie. First edition, Leipzig: 353 (as Fluorapatit).

Koksharov, N. von (1866) Materialien zur Mineralogie Russlands. 11 volumes with atlas: vol. 5: 5: 86.

Baumhauer (1887) Akademie der Wissenschaften, Berlin (Sitzungsberichte der): 42: 863.

Hidden and Washington (1887) American Journal of Science: 33: 501.

Karnojitsky (1895) Vh. Min. Ges. St. Petersburg: 33: 65.

Washington (1895) Journal of Geology, Chicago: 3: 25.

Baumhauer (1899) Akademie der Wissenschaften, Berlin (Sitzungsberichte der): 45: 447.

Heddle, M.F. (1901) The Mineralogy of Scotland. 2 volumes, Edinburgh: 2: 158.

Wolff and Palache (1902) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 36: 438.

Baumhauer (1908) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 45: 555.

Pöschl (1909) Härte der fest. Körper: 55.

Lacroix, A. (1910) Minéralogie de la France et des ses colonies, Paris. 5 volumes: vol. 4: 387.

Dürrfeld (1912) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 50: 590.

Nacken (1912) Centralblatt für Mineralogie, Geologie und Paleontologie, Stuttgart: 547.

Eissner (1913) Inaugural Dissertation, Leipzig.

Elschner (1913) Corallogene Phosphat-Insel Austral Oceanien, Lubeck (as Nauruite).

Goldschmidt, V. (1913) Atlas der Krystallformen. 9 volumes, atlas, and text: vol. 1: 73.

Elschner (1914) Centralblatt für Mineralogie, Geologie und Paleontologie, Stuttgart: 543 (as Nauruite).

Grosspietsch (1915) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 54: 461.

Brauns (1916) Jb. Min., Beil.-Bd.: 41: 60 (as Sulfatapatit).

Holmquist (1916) Geologiska Föeningens I Stockholm. Förhandlinger, Stockholm: 38: 501.

Bellucci and Grassi (1919) Gazzetta chimica italiana, Rome: 49: 232.

Bianchi (1919) Atti soc. ital. sc. Nat.: 58: 306.

Lorenz (1921) Ber. Ak. Leipzig, Sitzber., math.-phys.: 73: 249, 267.

Mieleitner (1921) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 56: 90.

Hawkins (1922) American Mineralogist: 7: 27.

Zambonini (1923) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 58: 226.

Bornemann-Starinkevitch (1924) Comptes rendus de l’académie des sciences de l’U.R.S.S., n.s.: 39.

Fersman (1924) Comptes rendus de l’académie des sciences de l’U.R.S.S., n.s.: 42.

Barthoux (1925) Bulletin de la Société française de Minéralogie: 48: 225.

Niggli and Faesy (1925) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 62: 154-166.

Whitlock (1925) American Museum Nov., No. 190.

Parker (1926) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 64: 224.

Honess, A.P. (1927) The Nature, Origin and Interpretation of the Etch Figures on Crystals. 171pp., New York: 98.

Ichikawa (1927) American Journal of Science: 14: 231.

Hausen (1929) Acta Ac. Aboensis, Math. Physica: Kl. 5, no. 3.

Himmelbauer (1929) Konigliche Akademie der Wissenschaften, Vienna, Sitzber.: 138: 251.

Kalb (1930) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 74: 469.

Mehmel (1930) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 75: 323.

Náray-Szabó (1930) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 75: 387.

Gennaro (1931) Reale accademia delle scienze di Torino, Att.: 66: 433.

Mehmel (1931) Zeitschrift für Physikalische Chemie, Leipzig, Berlin: 15: 223.

Hendricks, Jefferson, and Mosley (1932) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 81: 352.

de Jesus (1933) Com. Serv. Geol. Portugal: 19: 142 (as Mangualdite).

Granigg (1933) Zeitschrift für praktische Geologie, Berlin, hale a.S. 41: 1.

Antonov (1934) State Chem. Tech. Publ., Leningrad: 7, 196 pp.

Köhler and Haberlandt (1934) Chemie der Erde, Jena: 9: 88 (luminescence).

Dadson (1935) University of Toronto Stud., Geology Series, no. 35: 51.

Iwase (1935) Sci. Pap. Inst. Phys. Chem. Res., Tokyo: 27, no. 567: 1.

Otto (1935) Mineralogische und petrographische Mitteilungen, Vienna: 47: 89.

Royer (1936) Comptes rendus de l’Académie des sciences de Paris: 202: 1346.

Gruner and McConnell (1937) Zeitschrift für Kristallographie, Mineralogie und Petrographie, Leipzig: 97: 208.

McConnell (1937) American Mineralogist: 22: 977.

Hoffmann (1938) Chemie der Erde, Jena: 11: 552 (colour).

Kind (1938) Chemie der Erde, Jena: 12: 50.

McConnell (1938) American Mineralogist: 23: 1.

Volkova and Melentiev (1939) Comptes rendus de l’académie des sciences de l’U.R.S.S., n.s.: 25: 120 (REE substitution).

Bale (1940) American Journal of Roentg. Rad. Therapy: 43: 735.

McConnell and Gruner (1940) American Mineralogist: 25: 157.

Ulrich (1940) Mineralogical Abstracts: 7: 529.

Baker (1941) American Mineralogist: 26: 382.

Sahama (1941) Bull. Comm.. géol. Finlande: no. 126: 50.

Dihn and Klement (1942) Zeitschrift für Elektrochemie und angewandte physikalische Chemie, Halle a.S.: 48: 331.

Hendricks and Hill (1942) Science: 96: 255.

Beevers and McIntyre (1945) Mineralogical Magazine: 27: 254.

Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II. John Wiley and Sons, Inc., New York, 7th edition, revised and enlarged, 1124 pp.: 879-889.

Kohn, M. Hughes, J.M. and Rakovan, J. Eds. (2002) Phosphates: Geochemical, Geobiological and Materials Importance, Kohn, M., Rakovan, J., Hughes, J.M. (eds). Reviews in Mineralogy and Geochemistry. Mineralogical Society of America. Washington, DC. 742 p.

Segall, B., Ludwig, G.W., Woodbury, H.H., and Johnson, P.D. (1962) Electron spin resonance of a centre in calcium fluorophosphate Phys. Rev.: 128: 76-79.

Piper, W.W., Kravitz, L.C., and Swank, R.K. (1965) Axially symmetric paramagnetic color centres in fluorapatite. Phys. Rev.: 138: A1802-A1814.

Prener, J.S. (1967) The growth and crystallographic properties of calcium fluor- and chlorapatite. Journal of the Electrochem. Society: 114: 77-83.

Young, E.J., Mayers, A.T., Munson, E.L., and Cankln, N.M. (1969) Mineralogy and geochemistry of fluorapatite from Cerro de Mercado, Mexico. U.S. Geological Survey, Professional Paper 650-D: 84-93.

Warren, R.W. (1972) Defect centres in calcium fluorophosphate. Phys. Rev.: B 6: 4679-4689.

American Mineralogist (1990): 75: 295-304.

Elliott, J. C. (1994): Structure and chemistry of the apatites and other calcium orthophosphates. Elservier, Amsterdam, 389 pp.

Fleet, M.E. and Pan, Y. (1994b) Site preference of Nd in fluorapatite [Ca10(PO4)6F2]. Journal of Solid State Chemistry: 111: 78-81.

Fleet, M.E. and Pan, Y. (1995) Site preference of rare earth elements in fluorapatite. American Mineralogist: 80: 329-335.

Fleet, M.E. and Pan, Y. (1997a) Site preference of rare earth elements in fluorapatite: binary (LREE+HREE)-substituted crystals. American Mineralogist: 82: 870-877.

Anthony, J.W., Bideaux, R.A., Bladh, K.W., and Nichols, M.C. (2000) Handbook of Mineralogy, Volume IV. Arsenates, Phosphates, Vanadates. Mineral Data Publishing, Tucson, AZ, 680pp.: 189.

Haohao Yi, Etienne Balan, Christel Gervais, Loïc Segalen, Franck Fayon, Damien Roche, Alain Person, Guillaume Morin, Maxime Guillaumet, Marc Blanchard, Michele Lazzeri, and Florence Babonneau (2013): A carbonate-fluoride defect model for carbonate-rich fluorapatite. Am. Mineral. 98, 1066-1069.

Rakovan, J., Staebler, G. and Dallaire, D. Editors (2013) Apatite - The Great Pretender. Mineral monographs V. 17. Lithographie, LLC. Denver. 128 p.

Weiss, S. (2012): Der Ehrenfriedersdorfer Sauberg – Typlokalität für Apatit. – Lapis, Jg. 37, H. 7-8, S. 42-43, München 2012. (In German)

Meier, S. (2013) Type Locality-Ehrenfriedersdorf. In Rakovan, J., Staebler, G. and Dallaire, D. Editors Apatite - The Great Pretender. Mineral monographs V. 17. Lithographie, LLC. Denver. p.18-20. (In English)

Internet Links for Fluorapatite

Specimens:
The following Fluorapatite specimens are currently listed for sale on minfind.com.

Localities for Fluorapatite

map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.
Mineral and/or Locality  
Copyright © mindat.org 1993-2015, except where stated. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: January 25, 2015 12:29:34 Page generated: January 25, 2015 05:19:39