Help mindat.org|Log In|Register|
Home PageMindat NewsThe Mindat ManualHistory of MindatCopyright StatusManagement TeamContact UsAdvertise on Mindat
Donate to MindatSponsor a PageSponsored PagesTop Available PagesMindat AdvertisersAdvertise on MindatThe Mindat Store
Minerals by PropertiesMinerals by ChemistryRandom MineralSearch by minIDLocalities Near MeSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportAdd Glossary Item
StatisticsMember ListBooks & MagazinesMineral Shows & EventsThe Mindat DirectoryHow to Link to MindatDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery

Analcime

This page is currently not sponsored. Click here to sponsor this page.
Formula:
Na2(Al2Si4O12) · 2H2O
System:
Triclinic
Colour:
White, colourless, gray, ...
Lustre:
Vitreous
Hardness:
5 - 5½
Member of:
Name:
Named in 1797 by Rene Just Haüy from the Greek ανάλκιμος ("analkimos"), "weak" or "without force", alluding to weak electrostatic charge developed when the mineral is heated or rubbed.
Zeolite Group. Analcime-Pollucite Series and the Analcime-Wairakite Series. The sodium analogue of Pollucite.

The aluminosilicate framework of the crystal structure does not change in topology at all. The reduction to various lower symmetries occurs because of slight changes in the ordering of Si and Al atoms and slight crumpling of the framework. Macroscopically, the crystals always look pseudocubic, apart from the very slight nonzero birefringence and fine lamellar twinning visible in the polarising microscope, because the ordering and crumpling happens in different directions in different lamellae, and over the whole crystal it averages out. Hence, the differences are far too slight to merit multiple species names, and analcime is a common example of a number of minerals which occur in multiple crystal system/space group varieties. The crystal structure topology and maximum possible symmetry of the idealised structure are what really matters. There is a slight analogy with hand specimen colour versus streak: a hand specimen can show a range of colours due to trace impurities, but these are diluted out in the small particles of the streak powder, so that only the true inherent colour of the material, much more constant, remains. (Andy Christy, 2010)

Visit gemdat.org for gemological information about Analcime.

Classification of Analcime

Valid - first described prior to 1959 (pre-IMA) - "Grandfathered"
9.GB.05

9 : SILICATES (Germanates)
G : Tektosilicates with zeolitic H2O; zeolite family
B : Chains of single connected 4-membered rings
Dana 7th ed.:
77.1.1.1
77.1.1.1

77 : TECTOSILICATES Zeolites
1 : Zeolite group - True zeolites
16.2.2

16 : Silicates Containing Aluminum and other Metals
2 : Aluminosilicates of Na
mindat.org URL:
http://www.mindat.org/min-210.html
Please feel free to link to this page.

First Recorded Occurrence of Analcime

Place of Conservation of First Recorded Material:
Natural History Museum, Paris, France, 13.77, H4154.

Occurrences of Analcime

Geological Setting:
In the groundmass or vesicles of silica-poor intermediate and mafic igneous rocks, typically basalts and phonolites, from late-stage hydrothermal solutions, or disseminated due to deuteric alteration. In lake beds, altered from pyroclastics or clays, or as a primary precipitate; authigenic in sandstones and siltstones.

Physical Properties of Analcime

Vitreous
Diaphaneity (Transparency):
Transparent, Translucent
Colour:
White, colourless, gray, pink, greenish, yellowish
Comment:
colourless in thin section
Streak:
White
Hardness (Mohs):
5 - 5½
Tenacity:
Brittle
Cleavage:
Poor/Indistinct
on {100}
Fracture:
Sub-Conchoidal
Density:
2.24 - 2.29 g/cm3 (Measured)    2.271 g/cm3 (Calculated)

Crystallography of Analcime

Crystal System:
Triclinic
Morphology:
Crystals commonly trapezohedra {211}, to 25 cm. Also granular, compact, massive, typically showing concentric structure.
Twinning:
Polysynthetic on {001} and {110}
Comment:
May be cubic, tetragonal, orthorhombic, monoclinic depending upon ordering. Cubic/pseudocubic cell parameter: a = 13.723-13.733 A, Z = 16.

Crystallographic forms of Analcime

Crystal Atlas:
Image Loading
Click on an icon to view
Analcime no.1 - Goldschmidt (1913-1926)
Analcime no.2 - Goldschmidt (1913-1926)
Analcime no.3 - Goldschmidt (1913-1926)
Analcime no.5 - Goldschmidt (1913-1926)
Analcime no.9 - Goldschmidt (1913-1926)
3d models and HTML5 code kindly provided by www.smorf.nl.

Toggle
Edge Lines | Miller Indicies | Axes

Transparency
Opaque | Translucent | Transparent

View
Along a-axis | Along b-axis | Along c-axis | Start rotation | Stop rotation
X-Ray Powder Diffraction:
Image Loading

Radiation - Copper Kα
Data Set:
Data courtesy of RRUFF project at University of Arizona, used with permission.

Optical Data of Analcime

Type:
Biaxial (-)
RI values:
nα = 1.479 - 1.493 nγ = 1.480 - 1.494
Max Birefringence:
δ = 0.001
Image shows birefringence interference colour range (at 30µm thickness) and does not take into account mineral colouration.
Surface Relief:
Moderate
Dispersion:
weak
Comments:
Also isotropic.

Chemical Properties of Analcime

Formula:
Na2(Al2Si4O12) · 2H2O
Essential elements:
All elements listed in formula:

Relationship of Analcime to other Species

Series:
Forms a series with Pollucite (see here)
Forms a series with Wairakite (see here)
Member of:
Other Members of Group:
AlflarseniteNaCa2Be3Si4O13(OH) · 2H2O
AmiciteK2Na2Al4Si4O16 · 5H2O
Ammonioleucite(NH4,K)(AlSi2O6)
Barrerite(Na,K,Ca0.5)2[Al2Si7O18] · 7H2O
Beaumontite (of Lévy)
Bellbergite(K,Ba,Sr)2Sr2Ca2(Ca,Na)4[Al3Si3O12]6 · 30H2O
BikitaiteLiAlSi2O6 · H2O
BoggsiteCa8Na3(Si,Al)96O192 · 70H2O
Brewsterite
Brewsterite-Ba(Ba,Sr)[Al2Si6O16] · 5H2O
Brewsterite-Sr(Sr,Ba,Ca)[Al2Si6O16] · 5H2O
Chabazite-Ca(Ca,K2,Na2)2[Al2Si4O12]2 · 12H2O
Chabazite-K(K2,Ca,Na2,Sr,Mg)2[Al2Si4O12]2 · 12H2O
Chabazite-Levyne Subgroup
Chabazite-Mg(Mg0.7K0.5Ca0.5Na0.1)[Al3Si9O24]·10H2O
Chabazite-Na(Na2,K2,Ca,Sr,Mg)2[Al2Si4O12]2 · 12H2O
Chabazite-SrSr2[Al2Si4O12]2 · 12H2O
ChiavenniteCaMnBe2Si5O13(OH)2 · 2H2O
Clinoptilolite-Ca(Ca,Na,K)2-3Al3(Al,Si)2Si13O36 · 12H2O
Clinoptilolite-K(K,Na,Ca)2-3Al3(Al,Si)2Si13O36 · 12H2O
Clinoptilolite-Na(Na,K,Ca)2-3Al3(Al,Si)2Si13O36 · 12H2O
CowlesiteCaAl2Si3O10 · 6H2O
Dachiardite-Ca(Ca,Na2,K2)5Al10Si38O96 · 25H2O
Dachiardite-Na(Na2,Ca,K2)5Al10Si38O96 · 25H2O
DirenzoiteNaK6MgCa2(Al13Si47O120) · 36H2O
EdingtoniteBa[Al2Si3O10] · 4H2O
EpistilbiteCaAl2Si6O16 · 5H2O
Erionite-Ca(Ca,K2,Na2)2[Al4Si14O36] · 15H2O
Erionite-K(K2,Ca,Na2)2[Al4Si14O36] · 15H2O
Erionite-Na(Na2,K2,Ca)2[Al4Si14O36] · 15H2O
Faujasite Subgroup
Faujasite-Ca(Ca,Na2,Mg)3.5[Al7Si17O48] · 32H2O
Faujasite-Mg(Mg,Na2,Ca)3.5[Al7Si17O48] · 32H2O
Faujasite-Na(Na2,Ca,Mg)3.5[Al7Si17O48] · 32H2O
Ferrierite
Ferrierite-K(K2,Na2,Mg,Ca)3-5Mg[Al5-7Si27.5-31O72] · 18H2O
Ferrierite-Mg(Mg,Na2,K2,Ca)3-5Mg[Al5-7Si27.5-31O72] · 18H2O
Ferrierite-Na(Na2,K2,Mg,Ca)3-5Mg[Al5-7Si27.5-31O72] · 18H2O
FerrochiavenniteCa1-2Fe[(Si,Al,Be)5Be2O13(OH)2]•2H2O
Flörkeite(K3Ca2Na)[Al8Si8O32] · 12H2O
GarroniteNa2Ca5Al12Si20O64 · 27H2O
GaultiteNa4Zn2Si7O18 · 5H2O
Gismondine
Gismondine-BaBa2Al4Si4O16 · 4-6H2O
Gismondine-CaCaAl2Si2O8 · 4H2O
Gmelinite
Gmelinite-Ca(Ca,Na2)[Al2Si4O12] · 6H2O
Gmelinite-K(K2,Na2,Ca)[Al2Si4O12] · 6H2O
Gmelinite-Na(Na2,Ca)[Al2Si4O12] · 6H2O
GobbinsiteNa4(Ca,Mg,K2)Al6Si10O32 · 12H2O
Gonnardite(Na,Ca)2(Si,Al)5O10 · 3H2O
GoosecreekiteCa[Al2Si6O16] · 5H2O
GottardiiteNa3Mg3Ca5Al19Si117O272 · 93H2O
Harmotome(Ba0.5,Ca0.5,K,Na)5[Al5Si11O32] · 12H2O
Heulandite-Ba(Ba,Ca,K,Na,Sr)5Al9Si27O72 · 22H2O
Heulandite-Ca(Ca,Na)2-3Al3(Al,Si)2Si13O36 · 12H2O
Heulandite-K(K,Na,Ca)2-3Al3(Al,Si)2Si13O36 · 12H2O
Heulandite-Na(Na,Ca)2-3Al3(Al,Si)2Si13O36 · 12H2O
Heulandite-Sr(Sr,Na,Ca)2-3Al3(Al,Si)2Si13O36 · 12H2O
HsianghualiteCa3Li2(Be3Si3O12)F2
KirchhoffiteCs(BSi2O6)
LaumontiteCaAl2Si4O12 · 4H2O
LeuciteK(AlSi2O6)
Lévyne
Lévyne-Ca(Ca,Na2,K2)[Al2Si4O12] · 6H2O
Lévyne-Na(Na2,Ca,K2)[Al2Si4O12] · 6H2O
LovdariteK2Na6Be4Si14O36•9H2O
MaricopaitePb7Ca2(Si,Al)48O100 · 32H2O
Mazzite-Mg(Mg,K,Ca)5(Si26Al10)O72 · 28H2O
Mazzite-NaNa8[Al4Si14O36]2 · 30H2O
Merlinoite(K,Na)5(Ca,Ba)2Al9Si23O64 · 23H2O
MesoliteNa2Ca2Si9Al6O30 · 8H2O
Montesommaite(K,Na)9Al9Si23O64 · 10H2O
Mordenite(Na2,Ca,K2)Al2Si10O24 · 7H2O
MutinaiteNa3Ca4Si85Al11O192 · 60H2O
NabesiteNa2BeSi4O10 · 4H2O
NatroliteNa2Al2Si3O10 · 2H2O
Natrolite Subgroup
OffretiteKCaMgAl5Si13O36 · 16H2O or near
PahasapaiteLi8(Ca,Li,K)10.5Be24(PO4)24 · 38H2O
ParanatroliteNa2Al2Si3O10 · 3H2O
ParthéiteCaAl2Si2O8 · 2H2O
Paulingite
Paulingite-Ca(Ca,K2,Na2,Ba)5[Al10Si35O90] · 45H2O
Paulingite-K(K2,Ca,Na2,Ba)5[Al10Si35O90] · 45H2O
Paulingite-Na(Na2,K2,Ca,Ba)5[Al10Si35O90] · 45H2O
PerlialiteK9Na(Ca,Sr)[Al2Si4O12]6 · 15H2O
Phillipsite-Ca(Ca0.5,K,Na,Ba0.5)4-7[Al4-7Si12-9O32 . 12H2O
Phillipsite-K(K,Na,Ca0.5,Ba0.5)4-7[Al4-7Si12-9O32] . 12H2O
Phillipsite-Na(Na,K,Ca0.5,Ba0.5)4-7[Al4-7Si12-9O32] · 12H2O
Pollucite(Cs,Na)2(Al2Si4O12) · 2H2O
RoggianiteCa2Be(OH)2Al2Si4O13 · 2.5H2O
ScoleciteCaAl2Si3O10 · 3H2O
StelleriteCa4(Si28Al8)O72 · 28H2O
Stilbite-CaNaCa4[Al9Si27O72] · nH2O
Stilbite-Na(Na,Ca,K)6-7[Al8Si28O72] · nH2O
StrontiohurlbutiteSrBe2(PO4)2
Terranovaite(Na,Ca)8(Si68Al12)O160 · 29H2O
Tetranatrolite
Thomsonite-CaNaCa2[Al5Si5O20] · 6H2O
Thomsonite-SrNa(Sr,Ca)2[Al5Si5O20] · 7H2O
Tschernichite(Ca,Na2)[Al2Si4O12] · 4-8H2O
TschörtneriteCa4(Ca,Sr,K,Ba)3Cu3[(OH)2|Al3Si3O12]4 · nH2O
WairakiteCa(Al2Si4O12) · 2H2O
WeinebeneiteCaBe3(PO4)2(OH)2 · 4H2O
Wenkite(Ba,K)4(Ca,Na)6[(SO4)3|(Si,Al)20O39(OH)2] · 0.5H2O
WillhendersoniteKCa[Al3Si3O12] · 5H2O
YugawaraliteCaAl2Si6O16 · 4H2O
9.GB.05Ammonioleucite(NH4,K)(AlSi2O6)
9.GB.05HsianghualiteCa3Li2(Be3Si3O12)F2
9.GB.05LithositeK6Al4Si8O25 · 2H2O
9.GB.05LeuciteK(AlSi2O6)
9.GB.05Pollucite(Cs,Na)2(Al2Si4O12) · 2H2O
9.GB.05WairakiteCa(Al2Si4O12) · 2H2O
9.GB.05KirchhoffiteCs(BSi2O6)
9.GB.10LaumontiteCaAl2Si4O12 · 4H2O
9.GB.15YugawaraliteCaAl2Si6O16 · 4H2O
9.GB.20RoggianiteCa2Be(OH)2Al2Si4O13 · 2.5H2O
9.GB.25GoosecreekiteCa[Al2Si6O16] · 5H2O
9.GB.30Montesommaite(K,Na)9Al9Si23O64 · 10H2O
9.GB.35ParthéiteCaAl2Si2O8 · 2H2O
16.2.1AlbiteNaAlSi3O8
16.2.3UssingiteNa2AlSi3O8OH
16.2.4ParagoniteNaAl2(AlSi3O10)(OH)2
16.2.5NatroliteNa2Al2Si3O10 · 2H2O
16.2.6Tetranatrolite
16.2.7ParanatroliteNa2Al2Si3O10 · 3H2O
16.2.8EphesiteLiNaAl2(Al2Si2O10)(OH)2
16.2.9Rectorite(Na,Ca)Al4((Si,Al)8O20)(OH)4 · 2H2O
16.2.10JadeiteNa(Al,Fe3+)Si2O6
16.2.11Brammallite(Na,H3O)(Al,Mg,Fe)2((Si,Al)4O10)(OH)2
77.1.1.2Pollucite(Cs,Na)2(Al2Si4O12) · 2H2O
77.1.1.3WairakiteCa(Al2Si4O12) · 2H2O

Other Names for Analcime

Other Information

Electrical:
Weakly piezoelectric, weakly electrostatic when rubbed or heated.
Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.

References for Analcime

Reference List:
Haüy, R.-J. ( 1797): Analcime. Journal des Mines, 5, 278-279.

Mineralogical Record: 30: 5-6.

Zeitschrift für Kristallographie: 184: 63-69.

Taylor, W.H. (1930), The structure of analcime (NaAlSi2O6·H2O): Zeitschrift für Kristallographie: 74: 1-19.

Coombs, D.S. (1955), X-ray investigation on wairakite and non-cubic analcime: Mineralogical Magazine: 30: 699-708.

Yoder, H.S. Jr. & C.E. Weir (1960), High-pressure form of analcime and free energy change with pressure of analcime reactions: American Journal of Science: 258A: 420-433.

Kim, K.T. & B.J. Burley (1971), Phase equilibria in the system NaAlSi3O8 - NaAlSiO4·H2O with special emphasis on the stability of analcime: Canadian Journal of Earth Sciences 8: 311-338, 549-558, 558-572.

Liou, J.G. (1971), Analcime equilibria, Lithos: 4: 389-402.

Ferraris, G., D.W. Jones, & J. Yerkess (1972), A neutron diffraction study of the crystal structure of analcime, NaAlSi2O6·H2O: Zeitschrift für Kristallographie: 135: 240-252.

Černý, P. (1974) The present status of the analcime-pollucite series. Canadian Mineralogist: 12: 334-341.

Roux, J. & D. Hamilton (1976), Primary igneous analcime; an experimental study: Journal of Petrology: 17: 244-257.

Woolley, A.R. & R.F. Symes (1976), The analcime-phyric phonolites (blairmorites) and associated analcime kenytes of the Lupata Gorge, Mocanbique: Lithos: 9: 9-15.

Wilkinson, J.F.G. (1977), Analcime phenocrysts in a vitrophyric analcimite; primary or secondary?: Contributions to Mineralogy and Petrology: 64: 1-10.

Mazzi, F. and Galli, E. (1978), Is each analcime different?: American Mineralogist: 63: 448-460.

Hazen, R.M. & L.W. Finger (1979), Polyhedral tilting: A common type of pure displacive phase transition and its relationship to analcime at high pressure: Phase Transitions: 1: 1-22.

Kim, K.T. & B.J. Burley (1980), A further study of analcime solid solutions in the system NaAlSi3O8 - NaAlSiO4·H2O with particular note of an analcime phase transformation: Mineralogical Magazine: 43: 1035-1045.

Pechar, F. (1988), The crystal structure of natural monoclinic analcime (NaAlSi2O6·H2O): Zeitschrift für Kristallographie: 184: 63-69.

Luhr, J.F. and Kyser, T.K. (1989), Primary igneous analcime: The Colima minettes: American Mineralogist: 74: 216-223.

Teertstra, D.K. and Černý, P. (1992) Controls on morphology of analcime-pollucite in natural minerals, synthetic phases, and nuclear waste products. Crystal Research Technology: 27: 931-939.

Putnis, A., G. Giampaolo, & A. Graeme-Barber (1993), High temperature X-ray diffraction and thermogravimetric analysis of the dehydration of analcime, NaAlSi2O6·H2O EUG VII, Strasourg, France, Terra Abstracts: 5: 497.

Phillips, B.L. and Kirkpatrick, R.J. (1994) Short-range Al-Si order in leucite and analcime: determination of the configurational entropy from 27Al and variable-temperature 29Si NMR spectroscopy of leucite, its Cs- and Rb-exchanged derivatives, and analcime. American Mineralogist: 79: 1025-1031.

Anthony, J.W., Bideaux, R.A., Bladh, K.W., and Nichols, M.C. (1995) Handbook of Mineralogy, Volume II. Silica, Silicates. Mineral Data Publishing, Tucson, AZ, 904pp., 2 volumes: 25.

Line, C.M.B. (1995), The behavior of water in analcime. PhD Thesis, University of Cambridge, Cambridge, UK.

Legache, M. (1995) New experimental data on the stability of the pollucite-analcime series: application to natural assemblages. European Journal of Mineralogy: 7: 319-323.

Line, C.M.B., Putnis, A., Putnis, C., and Gianpaolo, C. (1995), The dehydration kinetics and microtexture of analcime from two parageneses: American Mineralogist: 80: 268-279.

Goryainov, S.V., Fursenko, B.A., and Belitsky, I.A. (1996), Phase transition in analcime and wairakite at low-high temperature and pressure: Physics and Chemistry of Minerals: 23: 297-308.

Line, C.M.B., Dove, M.T., Knight, K.S., and Winkler, B. (1996), The low-temperature behavior of analcime: I. High-resolution neutron powder diffraction: Mineralogical Magazine: 60: 499-507.

Coombs, D.S., A. Alberti, T. Armbruster, G. Artioli, C. Colella, E. Galli, J.D. Grice, F. Liebau, J.A. Mandarino, H. Minato, E.H. Nickel, E. Passaglia, D.R. Peacor, S. Quartieri, R. Rinaldi, M. Ross, R.A. Sheppard, E. Tillmans & G. Vezzalini (1997) Recommended nomenclature for zeolite minerals: Report of the Subcommittee on Zeolites of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Canadian Mineralogist 35, 1571-1606.

Kapusta, J. & R. Wlodka (1997), The X-ray powder diffraction profile analysis of analcimes from the teschenitic sills of the Outer Carpathians, Poland: Neues Jahrbuch fuer Mineralogie, Monatshefte: 6: 241-255.

Kato, M. T. Hattori (1998), Ordered distribution of aluminum atoms in analcime: Physics and Chemistry of Minerals: 25: 556-565.

Takaishi, T. (1998), Ordered distribution of Al atoms in the framework of analcimes: Journal of the Chemical Society - Faraday Transactions: 94: 1507-1518.

Yokomori, Y. & S. Idaka (1998), The crystal structure of analcime: Microporous and Mesoporous Materials: 21: 365-370.

Cruciani, G. & A. Gualtieri (1999), Dehydration dynamics of analcime by in situ synchrotron powder diffraction: American Mineralogist: 84: 112-119.

Cheng, X., Zhao, P.D., and Stebbins, J.F. (2000), Solid state NMR study of oxygen site exchange and Al-O-Al site concentration in analcime: American Mineralogist: 85: 1030-1037.

Miroshnichenko Y.M. & S.V. Goryainov (2000), Raman study of high-pressure phase transitions in dehydrated analcime: Mineralogical Magazine: 64: 301-309.

Neuhoff, P.S., J.F. Stebbins, & D.K. Bird (2003): Si-Al disorder and solid solutions in analcime, chabazite, and wairakite: American Mineralogist: 88: 410-423.

Likhacheva, A.Y., Veniaminov, S.A., and Paukshtis, E.A. (2004): Thermal decomposition of NH4-analcime. Physics and Chemistry of Minerals: 31: 306-312.

Prelević, D., S.F. Foley, V. Cvetković, & R.L. Romer (2004): The analcime problem and its impact on the geochemistry of ultrapotassic rocks from Serbia: Mineralogical Magazine: 68: 633-648.

Gatta, G. Diego, Fabrizio Nestola, and Tizina Boffa Ballaran (2006): Elastic behavior, phase transition, and pressure induced structural evolution of analcime, American Mineralogist: 91(4): 568-578.

Chipera, S. J. & Bish, D. L. (2010): Rehydration kinetics of a natural analcime. European Journal of Mineralogy 22, 787-795.

Internet Links for Analcime

Specimens:
The following Analcime specimens are currently listed for sale on minfind.com.

Localities for Analcime

map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.
Mineral and/or Locality  
Copyright © mindat.org 1993-2015, except where stated. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: January 29, 2015 14:24:46 Page generated: January 26, 2015 11:12:58