Help mindat.org|Log In|Register|
Home PageMindat NewsThe Mindat ManualHistory of MindatCopyright StatusManagement TeamContact UsAdvertise on Mindat
Donate to MindatSponsor a PageSponsored PagesTop Available PagesMindat AdvertisersAdvertise on MindatThe Mindat Store
Minerals by PropertiesMinerals by ChemistryRandom MineralSearch by minIDLocalities Near MeSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportAdd Glossary Item
StatisticsMember ListBooks & MagazinesMineral Shows & EventsThe Mindat DirectoryHow to Link to MindatDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery

Pyrite

This page kindly sponsored by Frank Ruehlicke
Formula:
FeS2
System:
Isometric
Colour:
Pale brass-yellow
Hardness:
6 - 6½
Member of:
Name:
Named in antiquity from the Greek "pyr" for "fire", because sparks flew from it when hit with another mineral or metal. Known to Dioscorides (~50 CE) as περι υληζ ιατρικηζ and include both pyrite and chalcopyrite.
Pyrite Group.

Pyrite is a very common mineral, found in a wide variety of geological formations from sedimentary deposits to hydrothermal veins and as a constituent of metamorphic rocks. The brassy-yellow metallic colour of pyrite has in many cases lead to people mistaking it for Gold, hence the common nickname 'Fool's gold'. Pyrite is quite easy to distinguish from gold: pyrite is much lighter, but harder than gold and cannot be scratched with a fingernail or pocket knife.

Pyrite is commonly found to contain minor nickel, and forms a series with Vaesite; Bravoite is a nickeloan variety of pyrite.
It usually contains minor cobalt too, and forms a series with Cattierite. Many pyrites contain minor As, see Arsenian Pyrite. Pb-bearing pyrite has been described by Cabral et al. (2011). It can also contain traces of other metals, including gold. Most of foreign metal contents in pyrite can be traced back to metal nanoparticles (Deditius et al., 2011).

Pyrite cubes in limestone, Navajún, Spain
Pyrite dodecahedron, also known as "pyritohedron", Elba, Italy
Pyrite octahedra, Huánuco, Peru
Pyrite "Iron Cross" twin, Lemgo, Germany
Pyrite cubes in limestone, Navajún, Spain
Pyrite dodecahedron, also known as "pyritohedron", Elba, Italy
Pyrite octahedra, Huánuco, Peru
Pyrite "Iron Cross" twin, Lemgo, Germany
Pyrite cubes in limestone, Navajún, Spain
Pyrite octahedra, Huánuco, Peru
Pyrite dollar, Sparta, Illinois
Pyritized ammonite, Aveyron, France
Pyrite concretion, Pilbara, Australia
Elongated pyrite crystals, Lucca, Italy
Pyrite dollar, Sparta, Illinois
Pyritized ammonite, Aveyron, France
Pyrite concretion, Pilbara, Australia
Elongated pyrite crystals, Lucca, Italy
Pyrite dollar, Sparta, Illinois
Pyritized ammonite, Aveyron, France
Pyrite concretion, Pilbara, Australia
Elongated pyrite crystals, Lucca, Italy


Decomposed pyrite concretion
Decomposed pyrite concretion
Decomposed pyrite concretion

Pyrite will slowly oxidize in a moist environment, and release sulfuric acid that is formed during the process. Well crystallized specimens are generally relatively stable, while pyrite formed as sedimentary concretions has a tendency to decompose quickly.




Visit gemdat.org for gemological information about Pyrite.

Classification of Pyrite

Valid - first described prior to 1959 (pre-IMA) - "Grandfathered"
2.EB.05a

2 : SULFIDES and SULFOSALTS (sulfides, selenides, tellurides; arsenides, antimonides, bismuthides; sulfarsenites, sulfantimonites, sulfbismuthites, etc.)
E : Metal Sulfides, M: S <= 1:2
B : M:S = 1:2, with Fe, Co, Ni, PGE, etc.
Dana 7th ed.:
2.12.1.1
2.12.1.1

2 : SULFIDES
12 : AmBnXp, with (m+n):p = 1:2
3.9.3

3 : Sulphides, Selenides, Tellurides, Arsenides and Bismuthides (except the arsenides, antimonides and bismuthides of Cu, Ag and Au, which are included in Section 1)
9 : Sulphides etc. of Fe
mindat.org URL:
http://www.mindat.org/min-3314.html
Please feel free to link to this page.

Occurrences of Pyrite

Geological Setting:
Common in many rock types, igneous, metamorphic and sedimentary.

Physical Properties of Pyrite

Metallic
Diaphaneity (Transparency):
Opaque
Colour:
Pale brass-yellow
Streak:
Greenish-black
Hardness (Mohs):
6 - 6½
Hardness (Vickers):
VHN100=1505 - 1520 kg/mm2
Hardness Data:
Measured
Tenacity:
Brittle
Cleavage:
Poor/Indistinct
Indistinct on {001}.
Fracture:
Irregular/Uneven, Conchoidal
Density:
4.8 - 5 g/cm3 (Measured)    5.01 g/cm3 (Calculated)

Crystallography of Pyrite

Crystal System:
Isometric
Class (H-M):
m3 (2/m 3) - Diploidal
Space Group:
Pa3
Cell Parameters:
a = 5.417Å
Unit Cell Volume:
V 158.96 ų (Calculated from Unit Cell)
Z:
4
Morphology:
Typically cubic or pyritohedral (pentagonal dodecahedral), and combinations are common, resulting in striated faces. Less frequently octahedral, most commonly massive, granular, and sometimes radiating, reniform, discoidal or globular.
Twinning:
On [110], interpenetrating ('Iron Cross Law'). Twin axis [001] and twin plane {011}, penetration and contact twins. Twinning on (111) was described by Nicol (1904), Goldschmidt and Nicol (1904) and Gaubert (1928), all of whom considered it rare.

Crystallographic forms of Pyrite

Crystal Atlas:
Image Loading
Click on an icon to view
Pyrite no.1 - Goldschmidt (1913-1926)
Pyrite no.2 - Goldschmidt (1913-1926)
Pyrite no.3 - Goldschmidt (1913-1926)
Pyrite no.7 - Goldschmidt (1913-1926)
Pyrite no.8 - Goldschmidt (1913-1926)
Pyrite no.14 - Goldschmidt (1913-1926)
Pyrite no.59 - Goldschmidt (1913-1926)
Pyrite no.86 - Goldschmidt (1913-1926)
Pyrite no.92 - Goldschmidt (1913-1926)
Pyrite no.251 - Goldschmidt (1913-1926)
Pyrite no.565 - Goldschmidt (1913-1926)
3d models and HTML5 code kindly provided by www.smorf.nl.

Toggle
Edge Lines | Miller Indicies | Axes

Transparency
Opaque | Translucent | Transparent

View
Along a-axis | Along b-axis | Along c-axis | Start rotation | Stop rotation

Epitaxial Relationships of Pyrite

Epitaxial Minerals:
X-Ray Powder Diffraction:
Image Loading

Radiation - Copper Kα
Data Set:
Data courtesy of RRUFF project at University of Arizona, used with permission.
X-Ray Powder Diffraction Data:
d-spacingIntensity
3.13(40)
2.71(90)
2.43(70)
2.21(50)
1.92(40)
1.63(100)
1.45(30)
1.04(30)

Optical Data of Pyrite

Type:
Isotropic

Chemical Properties of Pyrite

Formula:
FeS2
Essential elements:
All elements listed in formula:
Common Impurities:
Ni,Co,As,Cu,Zn,Ag,Au,Tl,Se,V

Relationship of Pyrite to other Species

Series:
Forms a series with Cattierite (see here)
Member of:
Other Members of Group:
2.EB.05aAurostibiteAuSb2
2.EB.05bBambollaiteCu(Se,Te)2
2.EB.05aCattieriteCoS2
2.EB.05aErlichmaniteOsS2
2.EB.05aFukuchiliteCu3FeS8
2.EB.05aGeversitePtSb2
2.EB.05aHaueriteMnS2
2.EB.05aInsizwaitePt(Bi,Sb)2
2.EB.05aKrut'aiteCuSe2
2.EB.05aLauriteRuS2
2.EB.05aPenroseite(Ni,Co,Cu)Se2
2.EB.05aSperrylitePtAs2
2.EB.05aTrogtaliteCoSe2
2.EB.05aVaesiteNiS2
2.EB.05aVillamaninite(Cu,Ni,Co,Fe)S2
2.EB.05aDzharkeniteFeSe2
2.EB.05aGaotaiiteIr3Te8
2.EB.10bAlloclasiteCo1-xFexAsS
2.EB.10dCostibiteCoSbS
2.EB.10aFerroseliteFeSe2
2.EB.10aFrohbergiteFeTe2
2.EB.10cGlaucodot(Co0.50Fe0.50)AsS
2.EB.10aKulleruditeNiSe2
2.EB.10aMarcasiteFeS2
2.EB.10aMattagamiteCoTe2
2.EB.10eParacostibiteCoSbS
2.EB.10ePararammelsbergiteNiAs2
2.EB.10fOeniteCoSbAs
2.EB.15aAnduoite(Ru,Os)As2
2.EB.15aClinosaffloriteCoAs2
2.EB.15aLöllingiteFeAs2
2.EB.15aNisbiteNiSb2
2.EB.15aOmeiite(Os,Ru)As2
2.EB.15cPaxiteCuAs2
2.EB.15aRammelsbergiteNiAs2
2.EB.15aSaffloriteCoAs2
2.EB.15bSeinäjokite(Fe,Ni)(Sb,As)2
2.EB.20ArsenopyriteFeAsS
2.EB.20GudmunditeFeSbS
2.EB.20Osarsite(Os,Ru)AsS
2.EB.20Ruarsite(Ru,Os)AsS
2.EB.25CobaltiteCoAsS
2.EB.25GersdorffiteNiAsS
2.EB.25Hollingworthite(Rh,Pt,Pd)AsS
2.EB.25Irarsite(Ir,Ru,Rh,Pt)AsS
2.EB.25JolliffeiteNiAsSe
2.EB.25KrutoviteNiAs2
2.EB.25MaslovitePtBiTe
2.EB.25MicheneritePdBiTe
2.EB.25PadmaitePdBiSe
2.EB.25PlatarsitePtAsS
2.EB.25TestibiopalladitePdTe(Sb,Te)
2.EB.25TolovkiteIrSbS
2.EB.25UllmanniteNiSbS
2.EB.25Willyamite(Co,Ni)SbS
2.EB.25ChangchengiteIrBiS
2.EB.25MayingiteIrBiTe
2.EB.25Hollingsworthite
2.EB.25KalungaitePdAsSe
2.EB.25MilotaitePdSbSe
2.EB.30UrvantsevitePd(Bi,Pb)2
2.EB.35RheniiteReS2
3.9.1PyrrhotiteFe1-xS (x = 0 to 0.17)
3.9.4MarcasiteFeS2
3.9.5GreigiteFe2+Fe23+S4
3.9.6Mackinawite(Fe,Ni)9S8
3.9.7Smythite(Fe,Ni)3+xS4 (x=0-0.3)
3.9.8Achavalite(Fe,Cu)Se
3.9.9FerroseliteFeSe2
3.9.10FrohbergiteFeTe2
3.9.11LöllingiteFeAs2
3.9.12ArsenopyriteFeAsS
3.9.13GudmunditeFeSbS

Other Names for Pyrite

Name in Other Languages:
Basque:Pirita
Bosnian (Latin Script):Pirit
Catalan:Pirita
Czech:Pyrit
Danish:Pyrit
Dutch:Pyriet
Esperanto:Pirito
Estonian:Püriit
Finnish:Rikkikiisu
French:Pyrite
Galician:Pirita
Hebrew:פיריט
Hungarian:Pirit
Italian:Pirite
Japanese:黄鉄鉱
Lithuanian:Piritas
Norwegian (Bokmål):Svovelkis
Vasskis
Norwegian (Nynorsk):Svovelkis
Polish:Piryt
Portuguese:Pirita
Romanian:Pirită
Russian:Пирит
Sicilian:Petra fucali
Simplified Chinese:黄铁矿
Slovak:Pyrit
Slovenian:Pirit
Traditional Chinese:黃鐵礦
Turkish:Pirit
Ukrainian:Пірит

Other Information

Special Storage/
Display Requirements:
Many pyrites will tarnish over time, and some will even break down due to hydrous iron sulphates and other phases. This can be mitigated somewhat by storage in low-humidity environments, but is hard to stop once started. See: http://www.mindat.org/mesg-19-170458.html
Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.

References for Pyrite

Reference List:
Goldschmidt, V. and Nicol, W. (1904) Spinellgesetz beim Pyrit und über Rangordnung der Zwillingsgesetze. Neues Jahrb. Mineral. 2, 93-113.

Nicol, W. (1904) Spinel twins of pyrite. Amer. J. Sci. 167, 93.

Gaubert, P. (1928) Sur un cristal de pyrite, maclé suivant la loi des spinelles. Bull. Soc. Fr. Minéral., 51, 211-212.

Onorato E. (1931) Determinazione delle forme dirette ed inverse nella pirite. Periodico di Mineralogia – Roma pp. 13-16.

Grillo E. – (1932) Distinzione tra pirite e marcasite con H2O2. Periodico di Mineralogia – Roma pp. 84-86.

Palache, Charles, Harry Berman & Clifford Frondel (1944) The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana Yale University 1837-1892, Volume I: Elements, Sulfides, Sulfosalts, Oxides. John Wiley and Sons, Inc., New York. 7th edition, revised and enlarged: 282-290.

Love, L.G. and Amstutz, G.C. (1966) Framboidal pyrite in two andesites. Neues Jahrbuch für Mineralogie, Monatshefte: 3: 97-108.

Love, L.G. (1971) Early diagenetic polyframboidal pyrite, primary and redeposited, from the Wenlockian Denbigh Grit Group, Conway, North Wales, U.K. Journal of Sedimentary Petrology: 41: 1038-1044.

Berner, R.A. (1970) Sedimentary pyrite formation. American Journal of Science: 268: 1-23.

Yund, R.A. & H.T. Hall (1970) Kinetics and mechanism of pyrite exsolution from pyrrhotite: Journal of Petrology: 11: 381-404.

Sweeney, R.E. and Kaplan, I.R. (1973) Pyrite framboid formation: laboratory synthesis and marine sediments. Economic Geology: 68: 618-634.

Fleet, M.E. (1975) Structural chemistry of marcasite and pyrite type phases. Zeitschrift für Kristallographie: 142: 332-346.

American Mineralogist (1977) 62: 1168-1172.

Ostwald, J. and England, B.M. (1979) The relationship between euhedral and framboidal pyrite in base metal sulfide ores. Mineral Magmatic: 43: 297-300.

Raiswell, R. (1982) Pyrite texture, isotopic composition and availabilities of Fe. American Journal of Science: 282: 1244-1263.

American Mineralogist (1989) 74: 1168.

Schoonen, M.A.A. and Barnes, H.L. (1991a) Reaction forming pyrite and marcasite from solution I. Nucleation of FeS2 below 100° C. Geochimica et Cosmochimica Acta: 55: 1495-1504.

Schoonen, M.A.A. and Barnes, H.L. (1991b) Reaction forming pyrite and marcasite from solution II. Via FeS precursors below 100° C. Geochimica et Cosmochimica Acta: 55: 1505-1514.

Extra Lapis No. 11, Pyrite (1996).

Wilkin, R.T. and Barnes, H.L. (1996) Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species. Geochimica et Cosmochimica Acta: 60: 4167-4179.

Wilkin, R.T., Barnes, H.L., and Brantly, S.L. (1996) The size distribution of framboidal pyrite: an indicator of redox conditions. Geochimica et Cosmochimica Acta: 60: 3897-3912.

Fleet, M.E. and Mumin, A.H. (1997) Gold-bearing arsenian pyrite and marcasite and arsenopyrite from Carlin Trend gold deposits and laboratory synthesis. American Mineralogist: 82: 182-193.

Gaines, Richard V., H. Catherine, W. Skinner, Eugene E. Foord, Brian Mason, Abraham Rosenzweig (1997), Dana's New Mineralogy : The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana: 114.

Wilkin, R.T. and Barnes, H.L. (1997) Formation processes of framboidal pyrite. Geochimica et Cosmochimica Acta: 61: 323-339.

Nesbitt, H.W., Bancroft, G.M., Pratt, A.R., and Scaini, M.J. (1998) Sulfur and iron surface states on fractured pyrite surfaces. American Mineralogist: 83: 1067-1076.

Schaufuss, A.G., Nesbitt, H.W., Kartio, I., Laajalehto, K., Bancroft, G.M., and Szargan, R. (1998a) Reactivity of surface chemical states on fractured pyrite. Surface Sci.: 411: 321-328.

Schaufuss, A.G., Nesbitt, H.W., Kartio, I., Laajalehto, K., Bancroft, G.M., and Szargan, R. (1998b) Incipient oxidation of fractured pyrite surface in air. Journal Electron Spectroscopy and Related Phenomena: 96: 69-82.

Nesbitt, H.W., Scaini, M., Höchst, H., Bancroft, G.M., Schaufuss, A.G., and Szargan, R. (2000) Synchrotron XPS evidence for Fe 2+S and Fe 3+S surface species on pyrite fracture-surfaces, and their 3D electronic states. American Mineralogist: 85: 850-857.

Uhlig, I., Szargan, R., Nesbitt, H.W., and Laajalehto, K. (2001) Surface states and reactivity of pyrite and marcasite. Appl. Surf. Sci.: 179: 223-230.

Abraitis, P.K., Pattrick, R.A.D. & Vaughan, D.J. (2004) Variations in the compositional, textural and electrical properties of natural pyrite: a review. International Journal of Mineralogy Process: 74: 41–59.

Chouinard, A., Paquette, J. & Williams-Jones, A.E. (2005) Crystallographic controls on trace-element incorporation in auriferous pyrite from the Pascua epithermal high-sulfidation deposit, Chile-Argentina. Canadian Mineralogist: 43: 951–963.

Paktunic, D. (2005) Speciation of arsenic in pyrite (FeS2) by micro-XAFS. Advanced Photon Source, User Activity Report.

Blanchard, M., Alfredsson, M., Brodholt, J., Wright, K. & Catlow, C.R.A. (2007) Arsenic incorporation into FeS2 pyrite and its influence on dissolution: A DFT study. Geochem. Cosmochem. Acta: 71: 624-630.

Deditius, A. P., Utsunomiya, S., Reich, M., Kesler, S. E., Ewing, R. C., Hough, R. & Walshe, J. (2011): Trace metal nanoparticles in pyrite. Ore Geology Reviews 42, 32-46.

Cabral, A.R.; Beaudoin, G.; Munnik, F. (2011) Lead in diagenetic pyrite: evidence for Pb-tolerant bacteria in a red-bed Cu deposit, Quebec Appalachians, Canada. Mineral. Mag. 75, 295-302.

Internet Links for Pyrite

Specimens:
The following Pyrite specimens are currently listed for sale on minfind.com.

Localities for Pyrite

map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.
Mineral and/or Locality  
Copyright © mindat.org 1993-2015, except where stated. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: January 31, 2015 21:03:49 Page generated: January 31, 2015 17:08:21