Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Hematite

A valid IMA mineral species - grandfathered
This page kindly sponsored by IHO: Dr. Peter J Heaney
Hide all sections | Show all sections

About HematiteHide

Formula:
Fe2O3
Colour:
Steel-grey to black in crystals and massively crystalline ores, dull to bright "rust-red" in earthy, compact, fine-grained material.
Lustre:
Metallic, Sub-Metallic, Dull, Earthy
Hardness:
5 - 6
Specific Gravity:
5.26
Crystal System:
Trigonal
Member of:
Name:
Originally named about 300-325 BCE by Theophrastus from the Greek, "αιματίτις λίθος" ("aematitis lithos") for "blood stone". It is possibly the first mineral ever named ending with a "-ite" suffix. Translated in 79 by Pliny the Elder to haematites, "bloodlike", in allusion to the vivid red colour of the powder. The modern form evolved by authors frequently simplifying the spelling by excluding the "a", somewhat in parallel with other words originally utilising the root "haeme".
Polymorph of:
Hematite Group. The iron analogue of Corundum, Eskolaite, and Karelianite.

Hematite is rather variable in its appearance - it can be in reddish brown, ocherous masses, dark silvery-grey scaled masses, silvery-grey to black crystals, and dark-grey masses, to name a few. What they all have in common is a rust-red streak.
Black crystals may be confused with ilmenite.

NOTE: The 'hematite' used in jewelry, and often sold as magnetized items, is nothing of the sort and is an artificially created material, see Magnetic Hematite.

In an experimental volcanic gas condensation by Africano et al. (2002), it deposited in high fO2 conditions during cooling from ca. 800°C down to ca. 650°C.




Unique IdentifiersHide

Mindat ID:
1856
Long-form identifier:
mindat:1:1:1856:8
GUID
(UUID V4):
9258aa6e-d71d-4183-8b5b-ffda915468a6

IMA Classification of HematiteHide

Approved, 'Grandfathered' (first described prior to 1959)

Classification of HematiteHide

4.CB.05

4 : OXIDES (Hydroxides, V[5,6] vanadates, arsenites, antimonites, bismuthites, sulfites, selenites, tellurites, iodates)
C : Metal: Oxygen = 2: 3,3: 5, and similar
B : With medium-sized cations
Dana 7th ed.:
4.3.1.2
4.3.1.2

4 : SIMPLE OXIDES
3 : A2X3
7.20.4

7 : Oxides and Hydroxides
20 : Oxides of Fe

Mineral SymbolsHide

As of 2021 there are now IMA–CNMNC approved mineral symbols (abbreviations) for each mineral species, useful for tables and diagrams.

Please only use the official IMA–CNMNC symbol. Older variants are listed for historical use only.

SymbolSourceReference
HemIMA–CNMNCWarr, L.N. (2021). IMA–CNMNC approved mineral symbols. Mineralogical Magazine, 85(3), 291-320. doi:10.1180/mgm.2021.43
HemKretz (1983)Kretz, R. (1983) Symbols of rock-forming minerals. American Mineralogist, 68, 277–279.
HemSiivolam & Schmid (2007)Siivolam, J. and Schmid, R. (2007) Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks: List of mineral abbreviations. Web-version 01.02.07. IUGS Commission on the Systematics in Petrology. download
HemWhitney & Evans (2010)Whitney, D.L. and Evans, B.W. (2010) Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185–187 doi:10.2138/am.2010.3371
HemThe Canadian Mineralogist (2019)The Canadian Mineralogist (2019) The Canadian Mineralogist list of symbols for rock- and ore-forming minerals (December 30, 2019). download
HemWarr (2020)Warr, L.N. (2020) Recommended abbreviations for the names of clay minerals and associated phases. Clay Minerals, 55, 261–264 doi:10.1180/clm.2020.30

Pronunciation of HematiteHide

Pronunciation:
PlayRecorded byCountry
Jolyon RalphUnited Kingdom

Physical Properties of HematiteHide

Metallic, Sub-Metallic, Dull, Earthy
Transparency:
Opaque
Colour:
Steel-grey to black in crystals and massively crystalline ores, dull to bright "rust-red" in earthy, compact, fine-grained material.
Comment:
See Rossman, G. R. (1996) for cause of red colour.
Streak:
Reddish brown ("rust-red")
Hardness:
5 - 6 on Mohs scale
Hardness:
VHN100=1000 - 1100 kg/mm2 - Vickers
Hardness Data:
Measured
Tenacity:
Brittle
Cleavage:
None Observed
Parting:
Partings on {0001} and {1011} due to twinning. Unique cubic parting in masses and grains at Franklin Mine, Franklin, NJ.
Fracture:
Irregular/Uneven, Sub-Conchoidal
Comment:
Elastic in thin lamellae
Density:
5.26 g/cm3 (Measured)    5.255 g/cm3 (Calculated)

Optical Data of HematiteHide

Type:
Uniaxial (-)
RI values:
nω = 3.150 - 3.220 nε = 2.870 - 2.940
Max Birefringence:
δ = 0.280
Image shows birefringence interference colour range (at 30µm thickness)
and does not take into account mineral colouration.
Surface Relief:
Very High
Anisotropism:
Distinct
Reflectivity:
WavelengthR1R2imR1imR2
400nm26.8%30.5%12.2%15.6%
420nm28.5%31.8%13.9%17.0%
440nm28.9%32.1%14.3%17.3%
460nm28.2%31.9%13.6%17.0%
470nm28.1%31.7%13.4%16.8%
480nm27.9%31.6%13.3%16.7%
500nm27.5%31.3%12.9%16.3%
520nm27.2%30.5%12.6%15.6%
540nm26.7%30.1%12.2%15.3%
546nm26.4%30.0%12.0%15.1%
560nm26.1%29.8%11.8%15.0%
580nm25.5%29.3%11.3%14.6%
600nm24.8%28.6%10.8%14.0%
620nm24.1%27.7%10.3%13.2%
640nm23.6%26.7%9.9%12.4%
650nm23.3%26.3%9.7%12.0%
660nm23.0%25.9%9.5%11.7%
680nm22.6%25.3%9.2%11.2%
700nm22.3%25.1%9.0%11.1%

Reflectance graph
Graph shows reflectance levels at different wavelengths (in nm). Top of box is 100%. Peak reflectance is 32.1%.
R1 shown in black, R2 shown in red, imR1 shown in green, imR2 shown in blue
Colour in reflected light:
White to greyish white with bluish tint
Internal Reflections:
Red
Pleochroism:
Weak
Comments:
O = brownish red
E = yellowish red

Chemistry of HematiteHide

Mindat Formula:
Fe2O3
Common Impurities:
Ti,Al,Mn,H2O

Age distributionHide

Recorded ages:
Mesozoic : 236 ± 7 Ma to 145 ± 4 Ma - based on 5 recorded ages.

Chemical AnalysisHide

Crystallography of HematiteHide

Crystal System:
Trigonal
Class (H-M):
3m (3 2/m) - Hexagonal Scalenohedral
Space Group:
R3c
Cell Parameters:
a = 5.038(2) Å, c = 13.772(12) Å
Ratio:
a:c = 1 : 2.734
Unit Cell V:
302.72 ų (Calculated from Unit Cell)
Z:
6
Morphology:
Crystals generally thick to thin tabular {0001}, rarely prismatic [0001] or scalenohedral; also rarely rhombohedral {1011}, producing pseudo-cubic crystals. Often found in sub-parallel growths on {0001} or as rosettes ("iron roses.") Sometimes in micaceous to platy masses. May be compact columnar or fibrous masses, sometimes radiating, or in reniform masses with a smooth fracture ("kidney ore"), and botryoidal and stalactic. Frequently in earthy masses, also granular, friable to compact, concretionary and oolitic.
Twinning:
Penetration twins on {0001}, or with {1010} as a composition plane. Frequently exhibits a lamellar twinning on {1011} in polished section.

Crystallographic forms of HematiteHide

Crystal Atlas:
Image Loading
Click on an icon to view
Hematite no.319 - Goldschmidt (1913-1926)
Hematite no.331 - Goldschmidt (1913-1926)
Hematite no.337 - Goldschmidt (1913-1926)
3d models and HTML5 code kindly provided by www.smorf.nl.

Toggle
Edge Lines | Miller Indices | Axes

Transparency
Opaque | Translucent | Transparent

View
Along a-axis | Along b-axis | Along c-axis | Start rotation | Stop rotation

Crystal StructureHide

Load
Unit Cell | Unit Cell Packed
2x2x2 | 3x3x3 | 4x4x4
Show
Big Balls | Small Balls | Just Balls | Spacefill
Polyhedra Off | Si Polyhedra | All Polyhedra
Remove metal-metal sticks
Display Options
Black Background | White Background
Perspective On | Perspective Off
2D | Stereo | Red-Blue | Red-Cyan
View
CIF File    Best | x | y | z | a | b | c
Rotation
Stop | Start
Labels
Console Off | On | Grey | Yellow
IDSpeciesReferenceLinkYearLocalityPressure (GPa)Temp (K)
0000143HematiteBlake R L, Hessevick R E, Zoltai T, Finger L W (1966) Refinement of the hematite structure American Mineralogist 51 123-1291966Elba, Italy0293
0002228HematiteGualtieri A, Venturelli P (1999) In situ study of the goethite-hematite phase transformation by real time synchrotron powder diffraction American Mineralogist 84 895-90419990586
0002229HematiteGualtieri A, Venturelli P (1999) In situ study of the goethite-hematite phase transformation by real time synchrotron powder diffraction American Mineralogist 84 895-90419990790
0002230HematiteGualtieri A, Venturelli P (1999) In situ study of the goethite-hematite phase transformation by real time synchrotron powder diffraction American Mineralogist 84 895-904199901052
0017806HematiteMaslen E N, Streltsov V A, Streltsova N R, Ishizawa N (1994) Synchrotron X-ray study of the electron density in alpha-Fe2O3 Acta Crystallographica B50 435-4411994synthetic0293
0017807HematiteMaslen E N, Streltsov V A, Streltsova N R, Ishizawa N (1994) Synchrotron X-ray study of the electron density in alpha-Fe2O3 Acta Crystallographica B50 435-4411994synthetic0293
0017808HematiteMaslen E N, Streltsov V A, Streltsova N R, Ishizawa N (1994) Synchrotron X-ray study of the electron density in alpha-Fe2O3 Acta Crystallographica B50 435-4411994synthetic0293
0017731HematiteFinger L W, Hazen R M (1980) Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 kbars Journal of Applied Physics 51 5362-53671980synthetic0.0001293
0017732HematiteFinger L W, Hazen R M (1980) Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 kbars Journal of Applied Physics 51 5362-53671980synthetic1.54293
0017733HematiteFinger L W, Hazen R M (1980) Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 kbars Journal of Applied Physics 51 5362-53671980synthetic3.14293
0017734HematiteFinger L W, Hazen R M (1980) Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 kbars Journal of Applied Physics 51 5362-53671980synthetic4.16293
0017735HematiteFinger L W, Hazen R M (1980) Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 kbars Journal of Applied Physics 51 5362-53671980synthetic4.39293
0017736HematiteFinger L W, Hazen R M (1980) Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 kbars Journal of Applied Physics 51 5362-53671980synthetic5.24293
0014076HematitePauling L, Hendricks S B (1925) Crystal structures of hematite and corundum Journal of the American Chemical Society 47 781-79019250293
0018106HematitePauling L, Hendricks S (1925) The Structure of Hematite Journal of the American Chemical Society 47 781-79019250293
CIF Raw Data - click here to close

Epitaxial Relationships of HematiteHide

Epitaxial Minerals:
Epitaxy Comments:
Examples of rutile epitaxial on hematite are widespread. Dramatic specimens have been found at Novo Horizonte, Brazil.

Pseudobrookite on hematite with pseudobrookite {121}[210] parallel to hematite {0001}[1100].

X-Ray Powder DiffractionHide

Image Loading

Radiation - Copper Kα
Data Set:
Data courtesy of RRUFF project at University of Arizona, used with permission.
Powder Diffraction Data:
d-spacingIntensity
3.68 Å(30)
2.70 Å(100)
2.52 Å(70)
2.21 Å(20)
1.84 Å(40)
1.69 Å(50)
1.49 Å(30)
1.45 Å(30)

Geological EnvironmentHide

Paragenetic Mode(s):
Geological Setting:
Large ore bodies of hematite are usually of sedimentary origin; also found in high-grade ore bodies in metamorphic rocks due to contact metasomatism, and occasionally as a sublimate on igneous extrusive rocks ("lavas") as a result of volcanic activity. It is also usually the cause of red soils all over the planet.

Synonyms of HematiteHide

Other Language Names for HematiteHide

Varieties of HematiteHide

AlumohematiteAluminian Hematite
CrucilitePseudomorphs of Hematite and/or Goethite after Arsenopyrite, named for cruciform shape of crystals.
Originally described from Clonmel, Co. Waterford, Ireland.
HydrohematiteOriginally considered as a hydrated hematite, Fe2O3 x nH2O, based on specimens from Bavaria and Prussia having ~5 wt% H2O (Breithaupt, 1847).

A crystal-structure study by Wolska (1981) showed the presence of OH groups and suggested the formula Fe2-x(OH)x...
Iridescent HematiteAn iridescent variety of specularite (hematite), its colour play caused by a very thin coating of nanoparticles of an unidentified aluminium phosphate (Nadin, 2007).
Iron RoseA term used to describe rounded aggregates of tabular crystals. In these formations, the arrangement of the crystals somewhat reminds of the leaves in a rose blossom, hence the name.
Kidney OreA reniform (kidney-shaped) or botryoidal variety of hematite. The internal structure of the kidney-shaped nodules is usually concentric and radiating.
Manganese-bearing Hematite
MartiteThe name given for hematite pseudomorphs after magnetite, formed under conditions of increasing oxygen fugacity.

For pseudomorphs of magnetite after hematite see "mushketovite".


Originally described from Itabira, Minas Gerais, Southeast Region, Brazil...
Red OchreEarthy, reddish variety of hematite.
Used as a natural red pigment.
SpeculariteA variety of hematite characterized by aggregates of silvery, metallic, specular ("mirror-like") hematite flakes or tabular, anhedral crystals.
Stannian Cuprian Antimonian HematiteThe Tolbachik material has up to 2.6 wt.% Sb2O5.
Stannian Cuprian HematiteThe Tolbachik material has up to 9.2 wt.% SnO2 (maximum Sn content for natural hematite) and up to 4.7 wt.% CuO.
TitanohematiteTi-bearing variety of hematite.

Relationship of Hematite to other SpeciesHide

Member of:
Other Members of this group:
CorundumAl2O3Trig. 3m (3 2/m) : R3c
EskolaiteCr2O3Trig. 3m (3 2/m) : R3c
KarelianiteV3+2O3Trig. 3m (3 2/m) : R3c
TistariteTi3+2O3Trig. 3m (3 2/m) : R3c

Common AssociatesHide

Associated Minerals Based on Photo Data:
4,852 photos of Hematite associated with QuartzSiO2
2,490 photos of Hematite associated with CalciteCaCO3
1,305 photos of Hematite associated with RutileTiO2
691 photos of Hematite associated with Goethiteα-Fe3+O(OH)
678 photos of Hematite associated with AmethystSiO2
566 photos of Hematite associated with FluoriteCaF2
552 photos of Hematite associated with PyriteFeS2
402 photos of Hematite associated with MagnetiteFe2+Fe3+2O4
376 photos of Hematite associated with Smoky QuartzSiO2
364 photos of Hematite associated with DolomiteCaMg(CO3)2

Related Minerals - Strunz-mindat GroupingHide

4.CB.Ferrohögbomite-2N2S[(Fe2+,Mg,Zn,Al)3(Al,Ti,Fe3+)8O15(OH)]2Hex. 6mm : P63mc
4.CB.Magnesiohögbomite-6N12SMg5Al11TiO23(OH)Trig. 3m (3 2/m) : R3m
4.CB.Zhenruite(MoO3)2 · H2OMon. 2/m : P21/m
4.CB.Pengite(Pb8Sb3+3)Σ11Sb5+9O35Trig. 3m (3 2/m) : R3m
4.CB.VirgilluethiteMoO3 · H2OMon. 2/m : P21/b
4.CB.05BrizziiteNaSb5+O3Trig. 3 : R3
4.CB.05CorundumAl2O3Trig. 3m (3 2/m) : R3c
4.CB.05Ecandrewsite(Zn,Fe2+,Mn2+)TiO3Trig. 3 : R3
4.CB.05EskolaiteCr2O3Trig. 3m (3 2/m) : R3c
4.CB.05GeikieliteMgTiO3Trig. 3 : R3
4.CB.05IlmeniteFe2+TiO3Trig. 3 : R3
4.CB.05KarelianiteV3+2O3Trig. 3m (3 2/m) : R3c
4.CB.05MelanostibiteMn2+2Fe3+Sb5+O6Trig. 3 : R3
4.CB.05PyrophaniteMn2+TiO3Trig. 3 : R3
4.CB.05Akimotoite(Mg,Fe2+)SiO3Trig. 3 : R3
4.CB.05AuroantimonateAuSbO3
4.CB.05UM1998-11-O-AuHSbAu+2Sb3+O2(OH)
4.CB.05TistariteTi3+2O3Trig. 3m (3 2/m) : R3c
4.CB.05Unnamed (Fe-Cr Oxide)FeCrO3Trig. 3 : R3
4.CB.05Hemleyite(Fe2+0.48Mg0.37Ca0.04Na0.04Mn2+0.03Al0.03Cr3+0.01)sum=1.00Si1.00O3Trig. 3 : R3
4.CB.10AvicenniteTl2O3Iso. m3 (2/m 3) : Ia3
4.CB.10Bixbyite-(Mn)Mn3+2O3Iso. m3 (2/m 3) : Ia3
4.CB.10Bixbyite-(Fe)(Fe,Mn)2O3Iso.
4.CB.15Armalcolite(Mg,Fe2+)Ti2O5Orth. mmm (2/m 2/m 2/m)
4.CB.15SassiteTi3+2Ti4+O5Orth. mmm (2/m 2/m 2/m) : Cmcm
4.CB.15PseudobrookiteFe2TiO5Orth. mmm (2/m 2/m 2/m)
4.CB.15FerropseudobrookiteFe2+Ti2O5Orth. mmm (2/m 2/m 2/m) : Cmcm
4.CB.15GriffiniteAl2TiO5Orth. mmm (2/m 2/m 2/m) : Cmcm
4.CB.15Pseudobrookite Group
4.CB.20Zincohögbomite-2N2S[(Zn,Al,Fe2+)3(Al,Fe3+,Ti)8O15(OH)]2Hex. 6mm : P63mc
4.CB.20Zincohögbomite-2N6S[(Zn,Mg)7(Al,Fe3+,Ti)16O31(OH)]2Hex. 6mm : P63mc
4.CB.20Magnesiohögbomite-6N6S[(Mg,Fe2+)3(Al,Ti,Fe3+)8O15(OH)]6Trig. 3m (3 2/m) : R3m
4.CB.20Magnesiohögbomite-2N3S[(Mg,Fe2+,Zn)4(Al,Ti,Fe3+)10O19(OH)]2Trig. 3m (3 2/m) : P3 1m
4.CB.20Magnesiohögbomite-2N2S[(Mg,Fe2+)3[Al7(Ti,Fe3+)]O15(OH)]2Hex. 6mm : P63mc
4.CB.20Ferrohögbomite-6N12S[(Fe2+,Mg,Zn)5(Al,Ti,Fe3+)12O23(OH)]6Trig. 3m (3 2/m) : R3m
4.CB.20Magnesiohögbomite-2N4S(Mg8.43Fe2+1.57)sum=10Al22Ti4+2O46(OH)2Hex. 6mm : P63mc
4.CB.20Magnesiobeltrandoite-2N3S(Mg6Al2)(Al18Fe3+2)O38(OH)2 Trig. 3m : P3m1
4.CB.20Zincovelesite-6N6SZn3(Fe3+,Mn3+,Al,Ti)8O15(OH)Trig. 3m (3 2/m) : P3m1
4.CB.25PseudorutileFe2Ti3O9Hex. 6 2 2 : P63 2 2
4.CB.25KleberiteFeTi6O11(OH)5Mon. 2/m : P21/b
4.CB.30BerdesinskiiteV3+2TiO5Mon.
4.CB.30OxyvaniteV3+2V4+O5Mon. 2/m : B2/b
4.CB.30KaitianiteTi3+2Ti4+O5Mon. 2/m : B2/b
4.CB.35Olkhonskite(Cr,V)2Ti3O9Mon.
4.CB.35SchreyeriteV3+2Ti3O9Mon. 2/m : B2/b
4.CB.35MachiiteAl2Ti3O9Mon. 2/m : B2/b
4.CB.35Vestaite(Ti4+Fe2+)Ti4+3O9Mon. 2/m : B2/b
4.CB.40KamiokiteFe2Mo3O8Hex. 6mm : P63mc
4.CB.40NolaniteV3+8Fe3+2O14(OH)2Hex. 6mm : P63mc
4.CB.40RinmaniteZn2Sb2Mg2Fe4O14(OH)2Hex. 6 : P63
4.CB.40IseiteMn2Mo3O8Hex. 6mm : P63mc
4.CB.40MajindeiteMg2Mo3O8Hex. 6mm : P63mc
4.CB.40Rinmanite-(Zn)Zn2Sb2(Fe3+4Zn2)O14(OH)2Hex. 6mm : P63mc
4.CB.45ClaudetiteAs2O3Mon. 2/m
4.CB.45StibioclaudetiteAsSbO3Mon. 2/m : P21/m
4.CB.50ArsenoliteAs2O3Iso. m3m (4/m 3 2/m) : Fd3m
4.CB.50SenarmontiteSb2O3Iso. m3m (4/m 3 2/m) : Fd3m
4.CB.55ValentiniteSb2O3Orth. mmm (2/m 2/m 2/m) : Pccn
4.CB.60BismiteBi2O3Mon. 2/m : P21/b
4.CB.65SphaerobismoiteBi2O3Tet.
4.CB.70SilléniteBi12SiO20Iso. 2 3 : I2 3
4.CB.75KyzylkumiteV3+Ti2O5(OH)Mon. 2/m : P21/b
4.CB.80TietaiyangiteFe3+4Fe2+TiO9Hex.
4.CB.85LiuiteFeTiO3Orth. mmm (2/m 2/m 2/m) : Pnma
4.CB.90LuogufengiteFe2O3Orth. mm2 : Pna21
4.CB.95WangdaodeiteFeTiO3Trig. 3m : R3c

Fluorescence of HematiteHide

Other InformationHide

Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.
Industrial Uses:
A major ore of iron.

Hematite in petrologyHide

Internet Links for HematiteHide

References for HematiteHide

Reference List:

Significant localities for HematiteHide

Showing 27 significant localities out of 17,949 recorded on mindat.org.

This map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.

Locality ListHide

- This locality has map coordinates listed. - This locality has estimated coordinates. ⓘ - Click for references and further information on this occurrence. ? - Indicates mineral may be doubtful at this locality. - Good crystals or important locality for species. - World class for species or very significant. (TL) - Type Locality for a valid mineral species. (FRL) - First Recorded Locality for everything else (eg varieties). Struck out - Mineral was erroneously reported from this locality. Faded * - Never found at this locality but inferred to have existed at some point in the past (e.g. from pseudomorphs).

All localities listed without proper references should be considered as questionable.
Argentina
 
  • Tucumán Province
    • Tafí del Valle Department
      • Tafí del Valle
[var: Martite] Raúl Jorge Tauber Larry´s collection.
Austria
 
  • Salzburg
    • St. Johann im Pongau District
      • Hüttschlag
Strasser (1989)
Chile
 
  • Coquimbo
    • Limarí Province
      • Monte Patria
[var: Specularite] Maskaev et al. (2007)
France
 
  • Auvergne-Rhône-Alpes
    • Puy-de-Dôme
      • Riom
        • Saint-Ours-les-Roches
Mboungou-Kongo (2002)
  • Grand Est
    • Haut-Rhin
      • Colmar-Ribeauvillé
        • Sainte-Marie-aux-Mines
Wittern et al. (Cologne)
  • Provence-Alpes-Côte d'Azur
    • Alpes-de-Haute-Provence
      • Forcalquier
        • Saint-Maime
Favreau G. et al. (2004)
Ireland
 
  • Munster
    • Cork County
      • Mizen Peninsula
        • Ballydehob
          • Audley Mines
[var: Specularite] Barry Flannery (Personal Collection)
Italy
 
  • Piedmont
    • Cuneo Province
      • Bellino
        • Varaita di Rui Valley
Piccoli (2002) +1 other reference
    • Metropolitan City of Turin
      • Sauze di Cesana
[var: Iron Rose] Giacomino et al. (1986) +1 other reference
      • Usseaux
[var: Iron Rose] Giacomino et al. (1986) +1 other reference
  • Tuscany
    • Livorno Province
      • Rio
        • Rio Marina
          • Rio Mine
E. Grill (1911)
Orlandi +2 other references
    • Lucca Province
      • Minucciano
        • Gorfigliano
Orlandi P. et al. (LU)
      • Pietrasanta
Dini A. et al. (1997)
      • Vagli Sotto
Biagioni C. (Alpi Apuane, Lucca)
Morocco
 
  • Drâa-Tafilalet Region
    • Zagora Province
      • Agdz Cercle
        • Tansifte Caïdat
          • Ightem
Favreau et al. (2006)
Norway
 
  • Telemark
    • Kragerø
      • Kragerø Archipelago
        • Langøy
          • Langøy Iron Mines
Vogt (1892) +1 other reference
Spain
 
  • Andalusia
    • Málaga
      • Antequera
Romero Silva JC (2003) +2 other references
  • Aragon
    • Zaragoza
      • Tierga
Calvo (2008)
  • Asturias
Fuertes Acevedo (1884) +1 other reference
      • El LLagú
        • Castro Cegallú-El Bravo
Calvo (2009)
Switzerland
 
  • Grisons
    • Surselva Region
      • Tujetsch
        • Val Curnera
Kipfer (1974) +1 other reference
UK
 
  • England
    • Cumbria
      • Eden
        • Shap Rural
USA
 
  • Arizona
    • La Paz County
      • Buckskin Mountains
        • Santa Maria Mining District (Planet Mining District; Swansea Mining District; Bill Williams Mining District)
Anthony et al. (1995)
    • Maricopa County
self-collected by C. Lemanski
    • Navajo County
      • Apache Iron Mining District
- (2005)
  • Connecticut
    • Hartford County
      • East Granby
P. Cristofono collection
    • New Haven County
      • East Haven
Powell (1987)
  • Montana
    • Jefferson County
      • Cataract Mining District (Comet Mining District; Basin Mining District)
Chris Van Laer Collection
  • Rhode Island
    • Providence County
      • North Smithfield
Michael W. Kieron collection
 
Mineral and/or Locality  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2024, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: April 24, 2024 12:22:39
Go to top of page