Help mindat.org|Log In|Register|
Home PageMindat NewsThe Mindat ManualHistory of MindatCopyright StatusManagement TeamContact UsAdvertise on Mindat
Donate to MindatSponsor a PageSponsored PagesTop Available PagesMindat AdvertisersAdvertise on MindatThe Mindat Store
Minerals by PropertiesMinerals by ChemistryRandom MineralSearch by minIDLocalities Near MeSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
StatisticsThe ElementsMember ListBooks & MagazinesMineral Shows & EventsThe Mindat DirectoryHow to Link to MindatDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery

Clinopyroxene Subgroup

This page is currently not sponsored. Click here to sponsor this page.
Member of:
A subgroup name for monoclinic Pyroxene Group minerals.
Compare Orthopyroxene Subgroup.

The most widespread members include aegirine, augite and diopside.


Classification of Clinopyroxene Subgroup

Clinopyroxene Subgroup in petrology

An essential component of (items highlighted in red)
Common component of (items highlighted in red)

Relationship of Clinopyroxene Subgroup to other Species

Member of:
Other Members of Group:
Orthopyroxene SubgroupA subgroup name for orthorhombic Pyroxene Group minerals.
Group Members:
Aegirine NaFe3+Si2O6
Aegirine-augite (Na,Ca)(Fe3+,Fe2+,Mg,Al)Si2O6
Augite (Ca,Na)(Mg,Fe2+,Al,Fe3+,Ti)[(Si,Al)2O6]
Clinoenstatite MgSiO3
Clinoferrosilite Fe2+SiO3
Diopside CaMgSi2O6
Esseneite CaFe3+[AlSiO6]
Hedenbergite CaFe2+Si2O6
Jadeite Na(Al,Fe3+)Si2O6
Jervisite (Na,Ca,Fe2+)(Sc,Mg,Fe2+)Si2O6
Johannsenite CaMn2+Si2O6
Kanoite Mn2+(Mg,Mn2+)Si2O6
Kosmochlor NaCrSi2O6
Kushiroite CaAl[AlSiO6]
Namansilite NaMn3+Si2O6
Natalyite NaV3+Si2O6
Omphacite (Ca,Na)(Mg,Al)Si2O6
Petedunnite Ca(Zn,Mn2+,Mg,Fe2+)Si2O6
Pigeonite (Mg,Fe2+,Ca)(Mg,Fe2+)Si2O6
Spodumene LiAlSi2O6

Other Names for Clinopyroxene Subgroup

Name in Other Languages:
Simplified Chinese:单斜辉石
Spanish:Polyaugita

Other Information

Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.

References for Clinopyroxene Subgroup

Reference List:
Hess, H.H. (1949), Chemical composition and optical properties of common clinopyroxenes American Mineralogist: 34: 621-666.

Clark, J.R., D.E. Appleman, and J.J. Papike (1969) Crystal-chemical characterization of clinopyroxenes based on eight new structure refinements. MSA Special Paper 2: 31-50.

Hollister, L.S. and Gancarz, A. (1971) Compositional sector-zoning in clinopyroxene from the Narce area, Italy. American Mineralogist: 56: 959-979.

Fleet, M.E. (1975c) Growth habits of clinopyroxene. Canadian Mineralogist: 13: 336-341.

Newton, R.C., Charlu, T.V., and Kleppa, O.J. (1977) Thermochemistry of high pressure garnets and clinopyroxenes in the system CaO-MgO-Al2O3-SiO2. Geochimica et Cosmochimica Acta: 41: 369-377.

McCallister, R.H. (1978), The coarsening kinetics associated with exsolution in an iron-free clinopyroxene: Contributions to Mineralogy and Petrology: 65: 327-331.

Nord, G.L., & R.H. McCallister (1979), Kinetics and mechanisms of decomposition in Wo25En31Fs44 clinopyroxene: Geological Society of America, Abstracts with program: 11: 488.

Grove, T.L. (1982), Use of exsolution lamellae in lunar clinopyroxenes as cooling rate speedometers: an experimental calibration: American Mineralogist: 67: 251-268.

Morimoto, N. (1988): Nomenclature of Pyroxenes. Am. Mineral. 73, 1123-1133.

Harlow, G.E. and Veblen, D.R. (1991) Potassium in clinopyroxene inclusions from diamonds. Science: 251: 652-655.

Edgar, A.D. and Vukadinovic, D. (1993) Potassium-rich clinopyroxene in the mantle: an experimental investigation of K-rich lamproite up to 60 kbar. Geochimica et Cosmochimica Acta: 57: 563-5072.

Webb, S.L. and Jackson, I. (1993) The pressure dependence of the elastic moduli of single-crystal orthopyroxene (Mg0.8Fe0.2)SiO3. European Journal of Mineralogy: 5: 1111-1119.

Weinbruch, S. & W.F. Müller (1995), Constraints on nthe cooling rates of chondrules from the microstructure of clinopyroxene and plagioclase: Geochimica et Cosmochimica Acta: 59: 3221-3230.

Harlow, G.E. (1997) K in clinopyroxene at high pressure and temperature: an experimental study. American Mineralogist: 82: 259-269.

Hugh-Jones, D.A. (1997) Thermal expansion of MSiO3 and FeSiO3 ortho- and clinopyroxenes. American Mineralogist: 82: 689-696.

Zhang, L., Ahsbahs, H., Hafner, S.S., and Kutoglu, A. (1997) Single-crystal compression and crystal structure of clinopyroxene up to 10 GPa. American Mineralogist: 82: 245-258.

Arlt, T. and Angel, R. (2000) Displacive phase transitions in C-centered clinopyroxenes: spodumene, LiScSi2O6, and ZnSiO3. Physics and Chemistry of Minerals: 27: 719-731.

Arlt, T., Kunz, M., Stolz, J., Armbruster, T., and Angel, R. (2000) P-T-X data on P2 1/c-clinopyroxenes and their displacive phase transitions Contributions to Mineralogy and Petrology: 138: 35-45.

Boffa Ballaran, T., Carpenter, M.A., and Ross, N.L. (2001) Infrared powder-absorption spectroscopy of Ca-free P21/c clinopyroxenes. Mineralogical Magazine: 65: 339-350.

Chudinovskikh, L.T., Zharikov, V.A., Ishbulatov, R.A., and Matveev, Yu.A. (2001) On the mechanism of incorporation of ultra-high amounts of potassium into clinopyroxene at high pressure. Doklady Rossikoi Akademii Nauk. Earth Sciences: 380: 1-4.

Weinbruch, S., W.F. Müller & R.H. Hewins (2001), A transmission electron microscope study of exsolution and coarsening in iron-bearing clinopyroxene fro m synthetic analogues of chondrules: Meteoritics and Planetary Science: 36: 1237-1248.

Bindi, L., Safonov, O.G., Litvin, Y.A., Perchuk, L.L., and menchetti, S. (2002) Ultrahigh potassium content in the clinopyroxene structure: an X-ray single-crystal study. European Journal of Mineralogy: 14: 929-934.

Perchuk, L.L., Safonov, O.G., Yapaskurt, V.O., and Barton, J.M., Jr. (2002) Crystal-melt equilibria involving potassium-bearing clinopyroxene as indicators on mantle-derived ultrahigh-potassic liquids: an analytical review. Lithos: 60(3-4): 89-111.

Tribaudino, M. and Nestola, F. (2002) Average and local structure in P2 1/c clinopyroxenes along the join diopside-enstatite (CaMgSi2O6). European Journal of Mineralogy: 14: 549-555.

Bindi, L. Safonov, O.G., Yapasurt, V., Perchuk, L.L., and Menchetti, S. (2003) Ultrapotassic clinopyroxene from the Kumdy-Kol microdiamond mine, Kokchetav Complex, Northern Kazakhstan: occurrence, composition and crystal-chemical characterization. American Mineralogist: 88: 464-468.

Weinbruch, S., S. Styrsa, & W.F. Müller (2003), Exsolution and coarsening in iron-free clinopyroxene during isothermal annealing: Geochimica et Cosmochimica Acta: 67: 5071-5082.

Kung, J., Li, B.S., Uchida, T., Wang, Y.B., Neuville, D., and Liebermann, R.C. (2004) In situ measurements of sound velocities and densities across the orthopyroxene - high-pressure clinopyroxene transition in MgSiO3 at high-pressure. Physics of the Earth and Planetary Interiors: 147: 27-44.

Yang, H. and Konzett, J. (2005) Crystal chemistry of a high-pressure C2/c clinopyroxene with six-coordinated silicon. American Mineralogist: 90: 1223-1226.

Seto, Y., Ohi, S., Shimobayashi, N., Kitamura, M., Miyake, A., Hiroi, Y., and Grantham, G.H. (2006) Clinopyroxene exsolution in wollastonite from Namaqualand granulite, South Africa. American Mineralogist: 91: 446-450.

Nespolo, M. & Aroyo, M.I. (2016): The modular structure of pyroxenes. European Journal of Mineralogy, 28, 189-203.

Internet Links for Clinopyroxene Subgroup

mindat.org URL:
http://www.mindat.org/min-7630.html
Please feel free to link to this page.

Localities for Clinopyroxene Subgroup

map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.