SUPPORT US. Covid-19 has significantly affected our fundraising. Please help!
Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsBooks & Magazines
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryMineral Photography

The Most Common Minerals on the Earth

Last Updated: 13th Dec 2017

By Jolyon Ralph

There are currently nearly 5000 minerals known to science, but only a few dozen are common enough to be found widespread throughout the Earth's crust. This article will explain a little bit about some of the most common minerals on the Earth and where the come from.

Inside the Earth

When we talk about the minerals found on the Earth we are talking about those that are found in the Earth's crust, the only part of the Earth really open for us to explore. The crust is a thin layer (up to 100km thick) under which lies the mantle and the upper (liquid) and lower (solid) core.

The structure of the Earth

The Elements

All minerals are made up of a mixture of the 90 naturally occurring elements, and it comes as no surprise that the most common minerals are those that contain the most abundant elements in the Earth's crust.

Table 1. Abundance of elements in the crust

ElementSymbolAbundance (%)

The Minerals

Let's look at some of the most abundant minerals on Earth. Note that the photographs we show are often of exceptionally good crystals and not the form that average specimens of the minerals would appear to be - most rock-forming minerals are simply interlocking grains of a few mm maximum size, these photos show the potential of what these minerals can look like in the rare cases where conditions allow them to grow bigger and more perfect crystals.

The most common mineral in the crust is feldspar according to most references, with up to 52% of the crust being made up of feldspar. But feldspar is actually a group name for several related minerals - so we'll look a little at a couple of examples:

Clay minerals make up 5% (mostly in as ultra-fine particles in sedimentary rocks). After this we have 3% for every other silicate mineral, and only 8% for non-silicates (including carbonates such as calcite and dolomite, oxides such as magnetite and sulfides such as pyrite and pyrrhotite.

Below the crust

The mantle is around 2,900km thick, or about 46% of the Earth's radius, but represents 87% of the total volume of the Earth.

Although the mantle is only 5km below the surface at the crust's thinnest point the challenges in drilling through the crust to reach the mantle are immense (not least because the crust is only this thin in the deepest parts of the ocean.)

But we can deduce a lot about the minerals that make up the mantle from examining fragments of these mantle rocks that are brought up from very deep by volcanoes and from the careful study of seismic data which allows us to understand some of the structure of rocks buried beneath the crust. Computer models can also predict the temperature, pressure and chemistry at various depths in the Earth and from this we can deduce the types of minerals likely to be present.

Here are some of the other major minerals that are thought to make up the mantle:

Crystal System: Orthorhombic



But the most common mineral in the earth as a whole is a high-pressure form of olivine called bridgmanite - formed with a distinct structure and not found at all in the Earth's crust. It's formed below 660km deep in the mantle so is found too deep to be transported back up to the surface in volcanic activity. However, samples of this mineral have been found in meteorites.

Click here to read more about Bridgmanite

The Core

We know less about the core than any other part of the Earth not just because it is so remote but because the immense temperature/pressure found there are almost impossible to reproduce in laboratory experiments. We do know that the core is made up primarily of iron and nickel but also containing heavy elements such as gold and platinum in much greater concentrations than the crust. The outer core is liquid, but the inner core is solid. We can't ever take samples of the iron-nickel alloy from the inner core but we do believe the composition to be quite similar to that found in some metallic meteorites.

Crystal System: Isometric
Hardness:5 - 5½



Taenite is the mineral name given to a mixture (alloy) of iron and nickel found in meteorites and some terrestrial rocks. It is quite likely that the core consists of material at a similar composition, but because of the incredible pressure and temperature it is likely to be in a different crystallographic form than taenite. Some scientists have proposed that because of the immense pressure the core may even be a single huge crystal of iron-nickel.

Click here to read more about Taenite


Klein, C., Hurlbut, C. S. (1993): Manual of Mineralogy, 21st Edition. John Wiley & Sons.

Tschauner, O. et al. (2014): Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite. Science, 346, 1100-1102. doi: 10.1126/science.1259369.

Stixrude, L. and Cohen, R.E. (1995): Constraints on the crystalline structure of the inner core: Mechanical instability of BCC iron at high pressure. Geophysical Research Letters, 22, 125-128.

Article has been viewed at least 84896 times.
Mineral and/or Locality is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization. Public Relations by Blytheweigh.
Copyright © and the Hudson Institute of Mineralogy 1993-2020, except where stated. Most political location boundaries are © OpenStreetMap contributors. relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: August 7, 2020 04:10:43
Go to top of page