Help mindat.org|Log In|Register|
Home PageMindat NewsThe Mindat ManualHistory of MindatCopyright StatusManagement TeamContact UsAdvertise on Mindat
Donate to MindatSponsor a PageSponsored PagesTop Available PagesMindat AdvertisersAdvertise on Mindat
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralSearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
StatisticsThe ElementsMember ListBooks & MagazinesMineral Shows & EventsThe Mindat DirectoryHow to Link to MindatDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery
bannerbannerbannerbannerbannerbanner

IMA 2010-063 = pavlovskyite

Posted by Marco E. Ciriotti  
avatar
Marco E. Ciriotti March 27, 2012 06:05AM
Reference:
▪ Galuskin, E.V., Gfeller, F., Savelyeva, V.B., Armbruster, T., Lazic, B., Galuskina, I.O., Többens, D.M., Zadov, A.E., Dzierżanowski, P., Pertsev, N.N., M. Gazeev, V.M. (2012): Pavlovskyite Ca8(SiO4)2(Si3O10) - a new mineral of altered silicate-carbonate xenoliths from the two Russian type localities: Birkhin massif, Baikal Lake area and Upper Chegem caldera, North Caucasus. American Mineralogist, 97, 503-512.

Abstract:
The new mineral pavlovskyite Ca8(SiO4)2(Si3O10) forms rims together with dellaite Ca6(Si2O7)(SiO4)(OH)2 around galuskinite Ca7(SiO4)3CO3 veins cutting calcio-olivine skarns in the Birkhin gabbro massif. In addition, skeletal pavlovskyite occurs in cuspidine zones of altered carbonate xenoliths in the ignimbrites of the Upper Chegem caldera (North Caucasus). The synthetic analog of pavlovskyite has been synthesized before and is known from cement-like materials. Isotypic to pavlovskyite is the synthetic germanate analog Ca8(GeO4)2(Ge3O10). The crystal structure of pavlovskyite, space group Pbcn, a = 5.0851(1), b = 11.4165(3), c = 28.6408(8) Å, V = 1662.71(7) Å3, Z = 4, has been refined from X-ray single-crystal data to R1 = 3.87%. The new colorless mineral has a Mohs hardness of 6–6.5, biaxial (−), α = 1.656(2), β = 1.658(2), γ = 1.660(2) (589 nm), 2V (meas) = 80(5)°, 2V (calc) = 89.9°, medium dispersion: r > v, optical orientation: X = b, Y = c, Z = a.
For comparison with pavlovskyite, the crystal structure of kilchoanite Ca6(SiO4)(Si3O10) from the Birkhin massif I2cm, a = 11.4525(2), b= 5.0867(1), c = 21.996(3) Å, V = 1281.40(4) Å3, Z = 4> has been refined from single-crystal X-ray data to R1 = 2.00%.
Pavlovskyite represents a 1:1 member of a polysomatic series with calcio-olivine γ-Ca2SiO4 and kilchoanite Ca6(SiO4)(Si3O10) as end-member modules. The structure is characterized by strongly folded trisilicate units (Si3O10) interwoven with a framework of CaO6 and CaO8 polyhedra. Olivine-like slices with orthosilicate groups are interstratified with the characteristic trisilicate module of Ca4(Si3O10) composition. Although the optical properties of pavlovskyite and kilchoanite are similar, both minerals can be distinguished by chemical analyses (different Ca/Si ratio), X-ray diffraction, and Raman spectroscopy. The new mineral is named after V.E. Pavlovsky (1901–1982), an outstanding geologist in the area of Eastern Siberia, in particular of the Baikal region.
Sorry, only registered users may post in this forum.

Click here to login



bannerbannerbannerbannerbannerbanner
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2017, except where stated. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: September 25, 2017 01:54:17
Go to top of page