Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Mineralogical ClassificationCrystal structure determination of honeaite

20th May 2017 09:29 UTCMarco E. Ciriotti Manager

Reference:

▪ Welch, M.D., Still, J.W., Rice, C.M., Stanley, C.J. (2017): A new telluride topology: the crystal structure of honeaite Au3TlTe2. Mineralogical Magazine, 81, 611–618.


Abstract:

The crystal structure of the first thallium-bearing gold telluride, honeaite Au3TlTe2, is reported and its topological novelty discussed. Honeaite is orthorhombic, space group Pbcm and unit-cell parameters a = 8.9671(4) Å, b = 8.8758(4) Å, c = 7.8419(5) Å, V = 624.14(6) Å3 (Z = 4). Its structure has been refined to R1 = 0.033, wR2 = 0.053, GoF = 1.087. The structure is based upon a corrugated double-sheet comprising two sub-sheets, each composed of six-membered rings of corner-linked TeAu3 pyramids in which the Te lone-pair is stereoactive. Rows of thallium atoms lie in the grooves between sheets and provide the only inter-sheet connectivity via Tl-Au bonds. There is extensive Au-Au bonding linking the two sub-sheets of the double-sheet. The structure is distinct from those of the 1:2 (Au,Ag)-tellurides calaverite AuTe2, sylvanite AuAgTe4, and krennerite Au3AgTe8, which are based upon sheet structures with no connecting inter-sheet atoms. It also differs fundamentally from the structures of synthetic phases Ag3TlTe2 and Ag18Tl4Te11, both of which have an analogous stoichiometry. In contrast to the pyramidal TeAu3 group of honeaite and krennerite, Ag does not form the corresponding TeAg3 group in its tellurides.
 
Mineral and/or Locality  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2024, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: April 24, 2024 02:05:04
Go to top of page