SUPPORT US. Covid-19 has significantly affected our fundraising. Please help!
Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsBooks & Magazines
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryMineral Photography

Aguablanca Mine (Agua Blanca Mine), Monesterio, Badajoz, Extremadura, Spaini
Regional Level Types
Aguablanca Mine (Agua Blanca Mine)Mine
MonesterioMunicipality
BadajozProvince
ExtremaduraAutonomous Community
SpainCountry

This page is currently not sponsored. Click here to sponsor this page.
Key
Latitude & Longitude (WGS84):
37° 57' 33'' North , 6° 11' 11'' West
Latitude & Longitude (decimal):
Locality type:
Nearest Settlements:
PlacePopulationDistance
Monesterio4,378 (2012)15.5km
Puebla del Maestre799 (2012)16.5km
Calera de León1,051 (2012)20.2km
Montemolín1,578 (2012)21.2km
Cabeza la Vaca1,553 (2012)24.4km


The Aguablanca nickel mine is Rio Narcea's first nickel sulphide mine in Western Europe, producing nickel-copper-PGM concentrate.
The deposit is hosted by a subvertical magmatic breccia.

Main ore minerals are pyrrhotite, pentlandite and chalcopyrite.

Select Mineral List Type

Standard Detailed Gallery Strunz Dana Chemical Elements

Mineral List


51 valid minerals.

Rock Types Recorded

Note: data is currently VERY limited. Please bear with us while we work towards adding this information!

Select Rock List Type

Alphabetical List Tree Diagram

Detailed Mineral List:

Actinolite
Formula: ◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22OH2
Reference: Tornos, F., Galindo, C., Casquet, C., Pevida, L.R., Martínez, C., Martínez, E., Velasco, F., and Iriondo, A. (2006): Mineralium Deposita 41, 737-769.; Suárez, S., Nieto, F., Velasco, F., & Martín, F. J. (2011). Serpentine and chlorite as effective Ni-Cu sinks during weathering of the Aguablanca sulphide deposit (SW Spain). TEM evidence for metal-retention mechanisms in sheet silicates. European Journal of Mineralogy, 23(2), 179-196.; R. Piña, F. Gervilla, S.-J. Barnes, L. Ortega, R. Lunar (2012): Distribution of platinum-group and chalcophile elements in the Aguablanca Ni–Cu sulfide deposit (SW Spain): Evidence from a LA-ICP-MS study. Chemical Geology 302-303, 61-75.; Ortega, L., Lunar, r., García-Palomero, F., Moreno, T., Martín-Estévez, J.R., Prichard, H.M., Fisher, P.C. (2004): The Aguablanca Ni-Cu-PGE deposit, Southwestern Iberia: magmatic ore-forming processes and retrograde evolution. Can. Mineral.: 42(2): 325-350
Albite
Formula: Na(AlSi3O8)
Reference: Ortega, L., Lunar, r., García-Palomero, F., Moreno, T., Martín-Estévez, J.R., Prichard, H.M., Fisher, P.C. (2004): The Aguablanca Ni-Cu-PGE deposit, Southwestern Iberia: magmatic ore-forming processes and retrograde evolution. Can. Mineral.: 42(2): 325-350
'Albite-Anorthite Series'
Reference: Tornos, F., Galindo, C., Casquet, C., Pevida, L.R., Martínez, C., Martínez, E., Velasco, F., and Iriondo, A. (2006): Mineralium Deposita 41, 737-769.; Suárez, S., Nieto, F., Velasco, F., & Martín, F. J. (2011). Serpentine and chlorite as effective Ni-Cu sinks during weathering of the Aguablanca sulphide deposit (SW Spain). TEM evidence for metal-retention mechanisms in sheet silicates. European Journal of Mineralogy, 23(2), 179-196.; R. Piña, F. Gervilla, S.-J. Barnes, L. Ortega, R. Lunar (2012): Distribution of platinum-group and chalcophile elements in the Aguablanca Ni–Cu sulfide deposit (SW Spain): Evidence from a LA-ICP-MS study. Chemical Geology 302-303, 61-75.
Andradite
Formula: Ca3Fe3+2(SiO4)3
Reference: Jordi Fabre
Argentopentlandite ?
Formula: Ag(Fe,Ni)8S8
Reference: R. Piña, F. Gervilla, L. Ortega, R. Lunar (2008): Mineralogy and geochemistry of platinum-group elements in the Aguablanca Ni-Cu deposit (SW Spain). Mineralogy and Petrology 92, 259-282.
Augite
Formula: (CaxMgyFez)(Mgy1Fez1)Si2O6
Reference: Tornos, F., Galindo, C., Casquet, C., Pevida, L.R., Martínez, C., Martínez, E., Velasco, F., and Iriondo, A. (2006): Mineralium Deposita 41, 737-769.; Suárez, S., Nieto, F., Velasco, F., & Martín, F. J. (2011). Serpentine and chlorite as effective Ni-Cu sinks during weathering of the Aguablanca sulphide deposit (SW Spain). TEM evidence for metal-retention mechanisms in sheet silicates. European Journal of Mineralogy, 23(2), 179-196.
'Biotite'
Formula: K(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3[AlSi3O10(OH)2
Reference: Tornos, F., Galindo, C., Casquet, C., Pevida, L.R., Martínez, C., Martínez, E., Velasco, F., and Iriondo, A. (2006): Mineralium Deposita 41, 737-769.
'Bravoite'
Formula: (Fe,Ni)S2
Reference: Tornos, F., Galindo, C., Casquet, C., Pevida, L.R., Martínez, C., Martínez, E., Velasco, F., and Iriondo, A. (2006): Mineralium Deposita 41, 737-769.
Calcite
Formula: CaCO3
Reference: Tornos, F., Galindo, C., Casquet, C., Pevida, L.R., Martínez, C., Martínez, E., Velasco, F., and Iriondo, A. (2006): Mineralium Deposita 41, 737-769.; Suárez, S., Nieto, F., Velasco, F., & Martín, F. J. (2011). Serpentine and chlorite as effective Ni-Cu sinks during weathering of the Aguablanca sulphide deposit (SW Spain). TEM evidence for metal-retention mechanisms in sheet silicates. European Journal of Mineralogy, 23(2), 179-196.
Chalcocite
Formula: Cu2S
Reference: Tornos, F., Galindo, C., Casquet, C., Pevida, L.R., Martínez, C., Martínez, E., Velasco, F., and Iriondo, A. (2006): Mineralium Deposita 41, 737-769.
Chalcopyrite
Formula: CuFeS2
Reference: Tornos, F., Galindo, C., Casquet, C., Pevida, L.R., Martínez, C., Martínez, E., Velasco, F., and Iriondo, A. (2006): Mineralium Deposita 41, 737-769.; R. Piña, F. Gervilla, L. Ortega, R. Lunar (2008): Mineralogy and geochemistry of platinum-group elements in the Aguablanca Ni-Cu deposit (SW Spain). Mineralogy and Petrology 92, 259-282.; Suárez, S., Nieto, F., Velasco, F., & Martín, F. J. (2011). Serpentine and chlorite as effective Ni-Cu sinks during weathering of the Aguablanca sulphide deposit (SW Spain). TEM evidence for metal-retention mechanisms in sheet silicates. European Journal of Mineralogy, 23(2), 179-196.; R. Piña, F. Gervilla, S.-J. Barnes, L. Ortega, R. Lunar (2012): Distribution of platinum-group and chalcophile elements in the Aguablanca Ni–Cu sulfide deposit (SW Spain): Evidence from a LA-ICP-MS study. Chemical Geology 302-303, 61-75.; Ortega, L., Lunar, r., García-Palomero, F., Moreno, T., Martín-Estévez, J.R., Prichard, H.M., Fisher, P.C. (2004): The Aguablanca Ni-Cu-PGE deposit, Southwestern Iberia: magmatic ore-forming processes and retrograde evolution. Can. Mineral.: 42(2): 325-350
'Chlorite Group'
Reference: Tornos, F., Galindo, C., Casquet, C., Pevida, L.R., Martínez, C., Martínez, E., Velasco, F., and Iriondo, A. (2006): Mineralium Deposita 41, 737-769.; Suárez, S., Nieto, F., Velasco, F., & Martín, F. J. (2011). Serpentine and chlorite as effective Ni-Cu sinks during weathering of the Aguablanca sulphide deposit (SW Spain). TEM evidence for metal-retention mechanisms in sheet silicates. European Journal of Mineralogy, 23(2), 179-196.; R. Piña, F. Gervilla, S.-J. Barnes, L. Ortega, R. Lunar (2012): Distribution of platinum-group and chalcophile elements in the Aguablanca Ni–Cu sulfide deposit (SW Spain): Evidence from a LA-ICP-MS study. Chemical Geology 302-303, 61-75.; Ortega, L., Lunar, r., García-Palomero, F., Moreno, T., Martín-Estévez, J.R., Prichard, H.M., Fisher, P.C. (2004): The Aguablanca Ni-Cu-PGE deposit, Southwestern Iberia: magmatic ore-forming processes and retrograde evolution. Can. Mineral.: 42(2): 325-350
Clinochlore
Formula: Mg5Al(AlSi3O10)(OH)8
Reference: Suárez, S., Nieto, F., Velasco, F., & Martín, F. J. (2011). Serpentine and chlorite as effective Ni-Cu sinks during weathering of the Aguablanca sulphide deposit (SW Spain). TEM evidence for metal-retention mechanisms in sheet silicates. European Journal of Mineralogy, 23(2), 179-196.
'Clinopyroxene Subgroup'
Reference: R. Piña, F. Gervilla, S.-J. Barnes, L. Ortega, R. Lunar (2012): Distribution of platinum-group and chalcophile elements in the Aguablanca Ni–Cu sulfide deposit (SW Spain): Evidence from a LA-ICP-MS study. Chemical Geology 302-303, 61-75.
Clinozoisite
Formula: {Ca2}{Al3}(Si2O7)(SiO4)O(OH)
Reference: Tornos, F., Galindo, C., Casquet, C., Pevida, L.R., Martínez, C., Martínez, E., Velasco, F., and Iriondo, A. (2006): Mineralium Deposita 41, 737-769.
Cobaltite
Formula: CoAsS
Reference: Tornos, F., Galindo, C., Casquet, C., Pevida, L.R., Martínez, C., Martínez, E., Velasco, F., and Iriondo, A. (2006): Mineralium Deposita 41, 737-769.
Copper
Formula: Cu
Reference: Suárez, S., Nieto, F., Velasco, F., & Martín, F. J. (2011). Serpentine and chlorite as effective Ni-Cu sinks during weathering of the Aguablanca sulphide deposit (SW Spain). TEM evidence for metal-retention mechanisms in sheet silicates. European Journal of Mineralogy, 23(2), 179-196.
Corrensite
Formula: (Mg,Fe)9((Si,Al)8O20)(OH)10 · nH2O
Reference: Suárez, S., Nieto, F., Velasco, F., & Martín, F. J. (2011). Serpentine and chlorite as effective Ni-Cu sinks during weathering of the Aguablanca sulphide deposit (SW Spain). TEM evidence for metal-retention mechanisms in sheet silicates. European Journal of Mineralogy, 23(2), 179-196.
Covellite
Formula: CuS
Reference: Tornos, F., Galindo, C., Casquet, C., Pevida, L.R., Martínez, C., Martínez, E., Velasco, F., and Iriondo, A. (2006): Mineralium Deposita 41, 737-769.
Cubanite
Formula: CuFe2S3
Reference: Tornos, F., Galindo, C., Casquet, C., Pevida, L.R., Martínez, C., Martínez, E., Velasco, F., and Iriondo, A. (2006): Mineralium Deposita 41, 737-769.
Cuprite
Formula: Cu2O
Reference: Suárez, S. et al. (2010): Mineralium Deposita 45, 331-350.
Diopside
Formula: CaMgSi2O6
Reference: Tornos, F., Galindo, C., Casquet, C., Pevida, L.R., Martínez, C., Martínez, E., Velasco, F., and Iriondo, A. (2006): Mineralium Deposita 41, 737-769.; Suárez, S., Nieto, F., Velasco, F., & Martín, F. J. (2011). Serpentine and chlorite as effective Ni-Cu sinks during weathering of the Aguablanca sulphide deposit (SW Spain). TEM evidence for metal-retention mechanisms in sheet silicates. European Journal of Mineralogy, 23(2), 179-196.
Enstatite
Formula: Mg2Si2O6
Reference: Suárez, S., Nieto, F., Velasco, F., & Martín, F. J. (2011). Serpentine and chlorite as effective Ni-Cu sinks during weathering of the Aguablanca sulphide deposit (SW Spain). TEM evidence for metal-retention mechanisms in sheet silicates. European Journal of Mineralogy, 23(2), 179-196.
Epidote
Formula: {Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Reference: Jordi Fabre; Suárez, S., Nieto, F., Velasco, F., & Martín, F. J. (2011). Serpentine and chlorite as effective Ni-Cu sinks during weathering of the Aguablanca sulphide deposit (SW Spain). TEM evidence for metal-retention mechanisms in sheet silicates. European Journal of Mineralogy, 23(2), 179-196.; R. Piña, F. Gervilla, S.-J. Barnes, L. Ortega, R. Lunar (2012): Distribution of platinum-group and chalcophile elements in the Aguablanca Ni–Cu sulfide deposit (SW Spain): Evidence from a LA-ICP-MS study. Chemical Geology 302-303, 61-75.; Ortega, L., Lunar, r., García-Palomero, F., Moreno, T., Martín-Estévez, J.R., Prichard, H.M., Fisher, P.C. (2004): The Aguablanca Ni-Cu-PGE deposit, Southwestern Iberia: magmatic ore-forming processes and retrograde evolution. Can. Mineral.: 42(2): 325-350
'Fayalite-Forsterite Series'
Reference: Tornos, F., Galindo, C., Casquet, C., Pevida, L.R., Martínez, C., Martínez, E., Velasco, F., and Iriondo, A. (2006): Mineralium Deposita 41, 737-769.
Fluorapatite
Formula: Ca5(PO4)3F
Reference: Calvo, M. (2015). Minerales y Minas de España. Vol VII. Fosfatos, Arseniatos y Vanadatos. Escuela Técnica Superior de Ingenieros de Minas de Madrid. Fundación Gómez Pardo. 479 págs.
Goethite
Formula: α-Fe3+O(OH)
Reference: Tornos, F., Galindo, C., Casquet, C., Pevida, L.R., Martínez, C., Martínez, E., Velasco, F., and Iriondo, A. (2006): Mineralium Deposita 41, 737-769.; Suárez, S., Nieto, F., Velasco, F., & Martín, F. J. (2011). Serpentine and chlorite as effective Ni-Cu sinks during weathering of the Aguablanca sulphide deposit (SW Spain). TEM evidence for metal-retention mechanisms in sheet silicates. European Journal of Mineralogy, 23(2), 179-196.
Gold
Formula: Au
Reference: Ordóñez-Casado, B., Martin-Izard, A., and García-Nieto, J. (2008): Ore Geology Reviews 34, 343-353.; Suárez, S. et al. (2010): Mineralium Deposita 45, 331-350. ; R. Piña, F. Gervilla, S.-J. Barnes, L. Ortega, R. Lunar (2012): Distribution of platinum-group and chalcophile elements in the Aguablanca Ni–Cu sulfide deposit (SW Spain): Evidence from a LA-ICP-MS study. Chemical Geology 302-303, 61-75.
Graphite
Formula: C
Reference: Tornos, F., Galindo, C., Casquet, C., Pevida, L.R., Martínez, C., Martínez, E., Velasco, F., and Iriondo, A. (2006): Mineralium Deposita 41, 737-769.
Hedenbergite
Formula: CaFe2+Si2O6
Reference: Tornos, F., Galindo, C., Casquet, C., Pevida, L.R., Martínez, C., Martínez, E., Velasco, F., and Iriondo, A. (2006): Mineralium Deposita 41, 737-769.
Hematite
Formula: Fe2O3
Reference: Tornos, F., Galindo, C., Casquet, C., Pevida, L.R., Martínez, C., Martínez, E., Velasco, F., and Iriondo, A. (2006): Mineralium Deposita 41, 737-769.
Ilmenite
Formula: Fe2+TiO3
Reference: Tornos, F., Galindo, C., Casquet, C., Pevida, L.R., Martínez, C., Martínez, E., Velasco, F., and Iriondo, A. (2006): Mineralium Deposita 41, 737-769.
Lizardite
Formula: Mg3(Si2O5)(OH)4
Reference: Suárez, S., Nieto, F., Velasco, F., & Martín, F. J. (2011). Serpentine and chlorite as effective Ni-Cu sinks during weathering of the Aguablanca sulphide deposit (SW Spain). TEM evidence for metal-retention mechanisms in sheet silicates. European Journal of Mineralogy, 23(2), 179-196.
Mackinawite
Formula: (Fe,Ni)9S8
Reference: Tornos, F., Galindo, C., Casquet, C., Pevida, L.R., Martínez, C., Martínez, E., Velasco, F., and Iriondo, A. (2006): Mineralium Deposita 41, 737-769.
Magnesio-hornblende
Formula: ◻Ca2(Mg4Al)(Si7Al)O22(OH)2
Reference: Tornos, F., Galindo, C., Casquet, C., Pevida, L.R., Martínez, C., Martínez, E., Velasco, F., and Iriondo, A. (2006): Mineralium Deposita 41, 737-769.; Suárez, S., Nieto, F., Velasco, F., & Martín, F. J. (2011). Serpentine and chlorite as effective Ni-Cu sinks during weathering of the Aguablanca sulphide deposit (SW Spain). TEM evidence for metal-retention mechanisms in sheet silicates. European Journal of Mineralogy, 23(2), 179-196.
Magnetite
Formula: Fe2+Fe3+2O4
Reference: Tornos, F., Galindo, C., Casquet, C., Pevida, L.R., Martínez, C., Martínez, E., Velasco, F., and Iriondo, A. (2006): Mineralium Deposita 41, 737-769.; Suárez, S., Nieto, F., Velasco, F., & Martín, F. J. (2011). Serpentine and chlorite as effective Ni-Cu sinks during weathering of the Aguablanca sulphide deposit (SW Spain). TEM evidence for metal-retention mechanisms in sheet silicates. European Journal of Mineralogy, 23(2), 179-196.
Magnetite var. Titaniferous Magnetite
Formula: Fe2+(Fe3+,Ti)2O4
Reference: Tornos, F., Galindo, C., Casquet, C., Pevida, L.R., Martínez, C., Martínez, E., Velasco, F., and Iriondo, A. (2006): Mineralium Deposita 41, 737-769.
Marcasite
Formula: FeS2
Reference: Tornos, F., Galindo, C., Casquet, C., Pevida, L.R., Martínez, C., Martínez, E., Velasco, F., and Iriondo, A. (2006): Mineralium Deposita 41, 737-769.
Meionite
Formula: Ca4Al6Si6O24CO3
Reference: Tornos, F., Galindo, C., Casquet, C., Pevida, L.R., Martínez, C., Martínez, E., Velasco, F., and Iriondo, A. (2006): Mineralium Deposita 41, 737-769.
Melonite
Formula: NiTe2
Reference: R. Piña, F. Gervilla, L. Ortega, R. Lunar (2008): Mineralogy and geochemistry of platinum-group elements in the Aguablanca Ni-Cu deposit (SW Spain). Mineralogy and Petrology 92, 259-282.
Melonite var. Palladian Melonite
Formula: (Ni,Pd)Te2
Reference: R. Piña, F. Gervilla, S.-J. Barnes, L. Ortega, R. Lunar (2012): Distribution of platinum-group and chalcophile elements in the Aguablanca Ni–Cu sulfide deposit (SW Spain): Evidence from a LA-ICP-MS study. Chemical Geology 302-303, 61-75.; Ortega, L., Lunar, r., García-Palomero, F., Moreno, T., Martín-Estévez, J.R., Prichard, H.M., Fisher, P.C. (2004): The Aguablanca Ni-Cu-PGE deposit, Southwestern Iberia: magmatic ore-forming processes and retrograde evolution. Can. Mineral.: 42(2): 325-350
Merenskyite
Formula: PdTe2
Reference: Suárez, S. et al. (2010): Mineralium Deposita 45, 331-350. ; R. Piña, F. Gervilla, L. Ortega, R. Lunar (2008): Mineralogy and geochemistry of platinum-group elements in the Aguablanca Ni-Cu deposit (SW Spain). Mineralogy and Petrology 92, 259-282.; R. Piña, F. Gervilla, S.-J. Barnes, L. Ortega, R. Lunar (2012): Distribution of platinum-group and chalcophile elements in the Aguablanca Ni–Cu sulfide deposit (SW Spain): Evidence from a LA-ICP-MS study. Chemical Geology 302-303, 61-75.; Ortega, L., Lunar, r., García-Palomero, F., Moreno, T., Martín-Estévez, J.R., Prichard, H.M., Fisher, P.C. (2004): The Aguablanca Ni-Cu-PGE deposit, Southwestern Iberia: magmatic ore-forming processes and retrograde evolution. Can. Mineral.: 42(2): 325-350
Michenerite
Formula: PdBiTe
Reference: Suárez, S. et al. (2010): Mineralium Deposita 45, 331-350. ; R. Piña, F. Gervilla, L. Ortega, R. Lunar (2008): Mineralogy and geochemistry of platinum-group elements in the Aguablanca Ni-Cu deposit (SW Spain). Mineralogy and Petrology 92, 259-282.; R. Piña, F. Gervilla, S.-J. Barnes, L. Ortega, R. Lunar (2012): Distribution of platinum-group and chalcophile elements in the Aguablanca Ni–Cu sulfide deposit (SW Spain): Evidence from a LA-ICP-MS study. Chemical Geology 302-303, 61-75.; Ortega, L., Lunar, r., García-Palomero, F., Moreno, T., Martín-Estévez, J.R., Prichard, H.M., Fisher, P.C. (2004): The Aguablanca Ni-Cu-PGE deposit, Southwestern Iberia: magmatic ore-forming processes and retrograde evolution. Can. Mineral.: 42(2): 325-350
Moncheite
Formula: (Pt,Pd)(Te,Bi)2
Reference: Suárez, S. et al. (2010): Mineralium Deposita 45, 331-350. ; R. Piña, F. Gervilla, L. Ortega, R. Lunar (2008): Mineralogy and geochemistry of platinum-group elements in the Aguablanca Ni-Cu deposit (SW Spain). Mineralogy and Petrology 92, 259-282.; R. Piña, F. Gervilla, S.-J. Barnes, L. Ortega, R. Lunar (2012): Distribution of platinum-group and chalcophile elements in the Aguablanca Ni–Cu sulfide deposit (SW Spain): Evidence from a LA-ICP-MS study. Chemical Geology 302-303, 61-75.; Ortega, L., Lunar, r., García-Palomero, F., Moreno, T., Martín-Estévez, J.R., Prichard, H.M., Fisher, P.C. (2004): The Aguablanca Ni-Cu-PGE deposit, Southwestern Iberia: magmatic ore-forming processes and retrograde evolution. Can. Mineral.: 42(2): 325-350
Muscovite
Formula: KAl2(AlSi3O10)(OH)2
Reference: Tornos, F., Galindo, C., Casquet, C., Pevida, L.R., Martínez, C., Martínez, E., Velasco, F., and Iriondo, A. (2006): Mineralium Deposita 41, 737-769.
Muscovite var. Phengite
Formula: KAl1.5(Mg,Fe)0.5(Al0.5Si3.5O10)(OH)2
Reference: Tornos, F., Galindo, C., Casquet, C., Pevida, L.R., Martínez, C., Martínez, E., Velasco, F., and Iriondo, A. (2006): Mineralium Deposita 41, 737-769.; Suárez, S., Nieto, F., Velasco, F., & Martín, F. J. (2011). Serpentine and chlorite as effective Ni-Cu sinks during weathering of the Aguablanca sulphide deposit (SW Spain). TEM evidence for metal-retention mechanisms in sheet silicates. European Journal of Mineralogy, 23(2), 179-196.
Muscovite var. Sericite
Formula: KAl2(AlSi3O10)(OH)2
Reference: Tornos, F., Galindo, C., Casquet, C., Pevida, L.R., Martínez, C., Martínez, E., Velasco, F., and Iriondo, A. (2006): Mineralium Deposita 41, 737-769.; R. Piña, F. Gervilla, S.-J. Barnes, L. Ortega, R. Lunar (2012): Distribution of platinum-group and chalcophile elements in the Aguablanca Ni–Cu sulfide deposit (SW Spain): Evidence from a LA-ICP-MS study. Chemical Geology 302-303, 61-75.
Pentlandite
Formula: (FexNiy)Σ9S8
Reference: Tornos, F., Galindo, C., Casquet, C., Pevida, L.R., Martínez, C., Martínez, E., Velasco, F., and Iriondo, A. (2006): Mineralium Deposita 41, 737-769.; R. Piña, F. Gervilla, L. Ortega, R. Lunar (2008): Mineralogy and geochemistry of platinum-group elements in the Aguablanca Ni-Cu deposit (SW Spain). Mineralogy and Petrology 92, 259-282.; Suárez, S., Nieto, F., Velasco, F., & Martín, F. J. (2011). Serpentine and chlorite as effective Ni-Cu sinks during weathering of the Aguablanca sulphide deposit (SW Spain). TEM evidence for metal-retention mechanisms in sheet silicates. European Journal of Mineralogy, 23(2), 179-196.; Ortega, L., Lunar, r., García-Palomero, F., Moreno, T., Martín-Estévez, J.R., Prichard, H.M., Fisher, P.C. (2004): The Aguablanca Ni-Cu-PGE deposit, Southwestern Iberia: magmatic ore-forming processes and retrograde evolution. Can. Mineral.: 42(2): 325-350
Phlogopite
Formula: KMg3(AlSi3O10)(OH)2
Reference: Tornos, F., Galindo, C., Casquet, C., Pevida, L.R., Martínez, C., Martínez, E., Velasco, F., and Iriondo, A. (2006): Mineralium Deposita 41, 737-769.; Suárez, S., Nieto, F., Velasco, F., & Martín, F. J. (2011). Serpentine and chlorite as effective Ni-Cu sinks during weathering of the Aguablanca sulphide deposit (SW Spain). TEM evidence for metal-retention mechanisms in sheet silicates. European Journal of Mineralogy, 23(2), 179-196.
Pyrite
Formula: FeS2
Reference: Tornos, F., Galindo, C., Casquet, C., Pevida, L.R., Martínez, C., Martínez, E., Velasco, F., and Iriondo, A. (2006): Mineralium Deposita 41, 737-769.; Suárez, S., Nieto, F., Velasco, F., & Martín, F. J. (2011). Serpentine and chlorite as effective Ni-Cu sinks during weathering of the Aguablanca sulphide deposit (SW Spain). TEM evidence for metal-retention mechanisms in sheet silicates. European Journal of Mineralogy, 23(2), 179-196.; Ortega, L., Lunar, r., García-Palomero, F., Moreno, T., Martín-Estévez, J.R., Prichard, H.M., Fisher, P.C. (2004): The Aguablanca Ni-Cu-PGE deposit, Southwestern Iberia: magmatic ore-forming processes and retrograde evolution. Can. Mineral.: 42(2): 325-350
Pyrophyllite
Formula: Al2Si4O10(OH)2
Reference: Suárez, S., Nieto, F., Velasco, F., & Martín, F. J. (2011). Serpentine and chlorite as effective Ni-Cu sinks during weathering of the Aguablanca sulphide deposit (SW Spain). TEM evidence for metal-retention mechanisms in sheet silicates. European Journal of Mineralogy, 23(2), 179-196.
Pyrrhotite
Formula: Fe1-xS
Reference: Tornos, F., Galindo, C., Casquet, C., Pevida, L.R., Martínez, C., Martínez, E., Velasco, F., and Iriondo, A. (2006): Mineralium Deposita 41, 737-769.; R. Piña, F. Gervilla, L. Ortega, R. Lunar (2008): Mineralogy and geochemistry of platinum-group elements in the Aguablanca Ni-Cu deposit (SW Spain). Mineralogy and Petrology 92, 259-282.; Suárez, S., Nieto, F., Velasco, F., & Martín, F. J. (2011). Serpentine and chlorite as effective Ni-Cu sinks during weathering of the Aguablanca sulphide deposit (SW Spain). TEM evidence for metal-retention mechanisms in sheet silicates. European Journal of Mineralogy, 23(2), 179-196.; Ortega, L., Lunar, r., García-Palomero, F., Moreno, T., Martín-Estévez, J.R., Prichard, H.M., Fisher, P.C. (2004): The Aguablanca Ni-Cu-PGE deposit, Southwestern Iberia: magmatic ore-forming processes and retrograde evolution. Can. Mineral.: 42(2): 325-350
Quartz
Formula: SiO2
Reference: Calvo, M. (2016). Minerales y Minas de España. Vol VIII. Cuarzo y otros minerales de la sílice. Escuela Técnica Superior de Ingenieros de Minas de Madrid. Fundación Gómez Pardo. 399 págs.
'Serpentine Subgroup'
Formula: D3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn
Reference: Tornos, F., Galindo, C., Casquet, C., Pevida, L.R., Martínez, C., Martínez, E., Velasco, F., and Iriondo, A. (2006): Mineralium Deposita 41, 737-769.; Ortega, L., Lunar, r., García-Palomero, F., Moreno, T., Martín-Estévez, J.R., Prichard, H.M., Fisher, P.C. (2004): The Aguablanca Ni-Cu-PGE deposit, Southwestern Iberia: magmatic ore-forming processes and retrograde evolution. Can. Mineral.: 42(2): 325-350
'Serpentine Subgroup var. Bastite'
Formula: D3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
Reference: R. Piña, F. Gervilla, S.-J. Barnes, L. Ortega, R. Lunar (2012): Distribution of platinum-group and chalcophile elements in the Aguablanca Ni–Cu sulfide deposit (SW Spain): Evidence from a LA-ICP-MS study. Chemical Geology 302-303, 61-75.
Silver
Formula: Ag
Reference: Suárez, S. et al. (2010): Mineralium Deposita 45, 331-350.
'Smectite Group'
Formula: A0.3D2-3[T4O10]Z2 · nH2O
Reference: Suárez, S., Nieto, F., Velasco, F., & Martín, F. J. (2011). Serpentine and chlorite as effective Ni-Cu sinks during weathering of the Aguablanca sulphide deposit (SW Spain). TEM evidence for metal-retention mechanisms in sheet silicates. European Journal of Mineralogy, 23(2), 179-196.
Sperrylite
Formula: PtAs2
Reference: Suárez, S. et al. (2010): Mineralium Deposita 45, 331-350. ; R. Piña, F. Gervilla, L. Ortega, R. Lunar (2008): Mineralogy and geochemistry of platinum-group elements in the Aguablanca Ni-Cu deposit (SW Spain). Mineralogy and Petrology 92, 259-282.; R. Piña, F. Gervilla, S.-J. Barnes, L. Ortega, R. Lunar (2012): Distribution of platinum-group and chalcophile elements in the Aguablanca Ni–Cu sulfide deposit (SW Spain): Evidence from a LA-ICP-MS study. Chemical Geology 302-303, 61-75.; Ortega, L., Lunar, r., García-Palomero, F., Moreno, T., Martín-Estévez, J.R., Prichard, H.M., Fisher, P.C. (2004): The Aguablanca Ni-Cu-PGE deposit, Southwestern Iberia: magmatic ore-forming processes and retrograde evolution. Can. Mineral.: 42(2): 325-350
Sphalerite
Formula: ZnS
Reference: Tornos, F., Galindo, C., Casquet, C., Pevida, L.R., Martínez, C., Martínez, E., Velasco, F., and Iriondo, A. (2006): Mineralium Deposita 41, 737-769.
Talc
Formula: Mg3Si4O10(OH)2
Reference: Tornos, F., Galindo, C., Casquet, C., Pevida, L.R., Martínez, C., Martínez, E., Velasco, F., and Iriondo, A. (2006): Mineralium Deposita 41, 737-769.; Suárez, S., Nieto, F., Velasco, F., & Martín, F. J. (2011). Serpentine and chlorite as effective Ni-Cu sinks during weathering of the Aguablanca sulphide deposit (SW Spain). TEM evidence for metal-retention mechanisms in sheet silicates. European Journal of Mineralogy, 23(2), 179-196.; R. Piña, F. Gervilla, S.-J. Barnes, L. Ortega, R. Lunar (2012): Distribution of platinum-group and chalcophile elements in the Aguablanca Ni–Cu sulfide deposit (SW Spain): Evidence from a LA-ICP-MS study. Chemical Geology 302-303, 61-75.; Ortega, L., Lunar, r., García-Palomero, F., Moreno, T., Martín-Estévez, J.R., Prichard, H.M., Fisher, P.C. (2004): The Aguablanca Ni-Cu-PGE deposit, Southwestern Iberia: magmatic ore-forming processes and retrograde evolution. Can. Mineral.: 42(2): 325-350
Tremolite
Formula: ◻{Ca2}{Mg5}(Si8O22)(OH)2
Reference: Tornos, F., Galindo, C., Casquet, C., Pevida, L.R., Martínez, C., Martínez, E., Velasco, F., and Iriondo, A. (2006): Mineralium Deposita 41, 737-769.; Suárez, S., Nieto, F., Velasco, F., & Martín, F. J. (2011). Serpentine and chlorite as effective Ni-Cu sinks during weathering of the Aguablanca sulphide deposit (SW Spain). TEM evidence for metal-retention mechanisms in sheet silicates. European Journal of Mineralogy, 23(2), 179-196.
'UM2004-22-O:CuFePdPt'
Formula: ~(Pd,Pt)3CuFe4O11
Reference: Ortega, L., Lunar, r., García-Palomero, F., Moreno, T., Martín-Estévez, J.R., Prichard, H.M., Fisher, P.C. (2004): The Aguablanca Ni-Cu-PGE deposit, Southwestern Iberia: magmatic ore-forming processes and retrograde evolution. Can. Mineral.: 42(2): 325-350
'UM2004-23-O:CuFePdPt'
Reference: Ortega, L., Lunar, r., García-Palomero, F., Moreno, T., Martín-Estévez, J.R., Prichard, H.M., Fisher, P.C. (2004): The Aguablanca Ni-Cu-PGE deposit, Southwestern Iberia: magmatic ore-forming processes and retrograde evolution. Can. Mineral.: 42(2): 325-350
'UM2004-24-O:CuPd'
Formula: ~PdCu2O3
Reference: Ortega, L., Lunar, r., García-Palomero, F., Moreno, T., Martín-Estévez, J.R., Prichard, H.M., Fisher, P.C. (2004): The Aguablanca Ni-Cu-PGE deposit, Southwestern Iberia: magmatic ore-forming processes and retrograde evolution. Can. Mineral.: 42(2): 325-350
'UM2004-25-O:FeHPt'
Formula: ~PtFe3O5(OH) · 7H2O
Reference: Ortega, L., Lunar, r., García-Palomero, F., Moreno, T., Martín-Estévez, J.R., Prichard, H.M., Fisher, P.C. (2004): The Aguablanca Ni-Cu-PGE deposit, Southwestern Iberia: magmatic ore-forming processes and retrograde evolution. Can. Mineral.: 42(2): 325-350
'UM2004-29-OH:FePt'
Formula: ~PtFe4O(OH)12
Reference: Ortega, L., Lunar, r., García-Palomero, F., Moreno, T., Martín-Estévez, J.R., Prichard, H.M., Fisher, P.C. (2004): The Aguablanca Ni-Cu-PGE deposit, Southwestern Iberia: magmatic ore-forming processes and retrograde evolution. Can. Mineral.: 42(2): 325-350
Vermiculite
Formula: Mg0.7(Mg,Fe,Al)6(Si,Al)8O20(OH)4 · 8H2O
Reference: Suárez, S., Nieto, F., Velasco, F., & Martín, F. J. (2011). Serpentine and chlorite as effective Ni-Cu sinks during weathering of the Aguablanca sulphide deposit (SW Spain). TEM evidence for metal-retention mechanisms in sheet silicates. European Journal of Mineralogy, 23(2), 179-196.
Violarite
Formula: Fe2+Ni3+2S4
Reference: Tornos, F., Galindo, C., Casquet, C., Pevida, L.R., Martínez, C., Martínez, E., Velasco, F., and Iriondo, A. (2006): Mineralium Deposita 41, 737-769.
Zoisite
Formula: Ca2Al3[Si2O7][SiO4]O(OH)
Reference: R. Piña, F. Gervilla, S.-J. Barnes, L. Ortega, R. Lunar (2012): Distribution of platinum-group and chalcophile elements in the Aguablanca Ni–Cu sulfide deposit (SW Spain): Evidence from a LA-ICP-MS study. Chemical Geology 302-303, 61-75.

Gallery:

List of minerals arranged by Strunz 10th Edition classification

Group 1 - Elements
Copper1.AA.05Cu
Gold1.AA.05Au
Graphite1.CB.05aC
Silver1.AA.05Ag
Group 2 - Sulphides and Sulfosalts
Argentopentlandite ?2.BB.15Ag(Fe,Ni)8S8
Chalcocite2.BA.05Cu2S
Chalcopyrite2.CB.10aCuFeS2
Cobaltite2.EB.25CoAsS
Covellite2.CA.05aCuS
Cubanite2.CB.55aCuFe2S3
Mackinawite2.CC.25(Fe,Ni)9S8
Marcasite2.EB.10aFeS2
Melonite2.EA.20NiTe2
var. Palladian Melonite2.EA.20(Ni,Pd)Te2
Merenskyite2.EA.20PdTe2
Michenerite2.EB.25PdBiTe
Moncheite2.EA.20(Pt,Pd)(Te,Bi)2
Pentlandite2.BB.15(FexNiy)Σ9S8
Pyrite2.EB.05aFeS2
Pyrrhotite2.CC.10Fe1-xS
Sperrylite2.EB.05aPtAs2
Sphalerite2.CB.05aZnS
Violarite2.DA.05Fe2+Ni3+2S4
Group 4 - Oxides and Hydroxides
Cuprite4.AA.10Cu2O
Goethite4.00.α-Fe3+O(OH)
Hematite4.CB.05Fe2O3
Ilmenite4.CB.05Fe2+TiO3
Magnetite4.BB.05Fe2+Fe3+2O4
var. Titaniferous Magnetite4.BB.05Fe2+(Fe3+,Ti)2O4
Quartz4.DA.05SiO2
Group 5 - Nitrates and Carbonates
Calcite5.AB.05CaCO3
Group 8 - Phosphates, Arsenates and Vanadates
Fluorapatite8.BN.05Ca5(PO4)3F
Group 9 - Silicates
Actinolite9.DE.10◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22OH2
Albite9.FA.35Na(AlSi3O8)
Andradite9.AD.25Ca3Fe3+2(SiO4)3
Augite9.DA.15(CaxMgyFez)(Mgy1Fez1)Si2O6
Clinochlore9.EC.55Mg5Al(AlSi3O10)(OH)8
Clinozoisite9.BG.05a{Ca2}{Al3}(Si2O7)(SiO4)O(OH)
Corrensite9.EC.60(Mg,Fe)9((Si,Al)8O20)(OH)10 · nH2O
Diopside9.DA.15CaMgSi2O6
Enstatite9.DA.05Mg2Si2O6
Epidote9.BG.05a{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Hedenbergite9.DA.15CaFe2+Si2O6
Lizardite9.ED.15Mg3(Si2O5)(OH)4
Magnesio-hornblende9.DE.10◻Ca2(Mg4Al)(Si7Al)O22(OH)2
Meionite9.FB.15Ca4Al6Si6O24CO3
Muscovite9.EC.15KAl2(AlSi3O10)(OH)2
var. Phengite9.EC.15KAl1.5(Mg,Fe)0.5(Al0.5Si3.5O10)(OH)2
var. Sericite9.EC.15KAl2(AlSi3O10)(OH)2
Phlogopite9.EC.20KMg3(AlSi3O10)(OH)2
Pyrophyllite9.EC.10Al2Si4O10(OH)2
Talc9.EC.05Mg3Si4O10(OH)2
Tremolite9.DE.10◻{Ca2}{Mg5}(Si8O22)(OH)2
Vermiculite9.EC.50Mg0.7(Mg,Fe,Al)6(Si,Al)8O20(OH)4 · 8H2O
Zoisite9.BG.10Ca2Al3[Si2O7][SiO4]O(OH)
Unclassified Minerals, Rocks, etc.
'Albite-Anorthite Series'-
'Biotite'-K(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3[AlSi3O10(OH)2
'Bravoite'-(Fe,Ni)S2
'Chlorite Group'-
'Clinopyroxene Subgroup'-
'Fayalite-Forsterite Series'-
'Serpentine Subgroup'-D3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn
'var. Bastite'-D3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
'Smectite Group'-A0.3D2-3[T4O10]Z2 · nH2O
'UM2004-22-O:CuFePdPt'-~(Pd,Pt)3CuFe4O11
'UM2004-23-O:CuFePdPt'-
'UM2004-24-O:CuPd'-~PdCu2O3
'UM2004-25-O:FeHPt'-~PtFe3O5(OH) · 7H2O
'UM2004-29-OH:FePt'-~PtFe4O(OH)12

List of minerals arranged by Dana 8th Edition classification

Group 1 - NATIVE ELEMENTS AND ALLOYS
Metals, other than the Platinum Group
Copper1.1.1.3Cu
Gold1.1.1.1Au
Silver1.1.1.2Ag
Semi-metals and non-metals
Graphite1.3.6.2C
Group 2 - SULFIDES
AmBnXp, with (m+n):p = 2:1
Chalcocite2.4.7.1Cu2S
AmBnXp, with (m+n):p = 9:8
Argentopentlandite ?2.7.1.2Ag(Fe,Ni)8S8
Mackinawite2.7.2.1(Fe,Ni)9S8
Pentlandite2.7.1.1(FexNiy)Σ9S8
AmXp, with m:p = 1:1
Covellite2.8.12.1CuS
Pyrrhotite2.8.10.1Fe1-xS
Sphalerite2.8.2.1ZnS
AmBnXp, with (m+n):p = 1:1
Chalcopyrite2.9.1.1CuFeS2
Cubanite2.9.13.1CuFe2S3
AmBnXp, with (m+n):p = 3:4
Violarite2.10.1.8Fe2+Ni3+2S4
AmBnXp, with (m+n):p = 1:2
Cobaltite2.12.3.1CoAsS
Marcasite2.12.2.1FeS2
Melonite2.12.14.1NiTe2
Merenskyite2.12.14.4PdTe2
Michenerite2.12.3.11PdBiTe
Moncheite2.12.14.3(Pt,Pd)(Te,Bi)2
Pyrite2.12.1.1FeS2
Sperrylite2.12.1.13PtAs2
Group 4 - SIMPLE OXIDES
A2X
Cuprite4.1.1.1Cu2O
A2X3
Hematite4.3.1.2Fe2O3
Ilmenite4.3.5.1Fe2+TiO3
Group 6 - HYDROXIDES AND OXIDES CONTAINING HYDROXYL
XO(OH)
Goethite6.1.1.2α-Fe3+O(OH)
Group 7 - MULTIPLE OXIDES
AB2X4
Magnetite7.2.2.3Fe2+Fe3+2O4
Group 14 - ANHYDROUS NORMAL CARBONATES
A(XO3)
Calcite14.1.1.1CaCO3
Group 41 - ANHYDROUS PHOSPHATES, ETC.CONTAINING HYDROXYL OR HALOGEN
A5(XO4)3Zq
Fluorapatite41.8.1.1Ca5(PO4)3F
Group 51 - NESOSILICATES Insular SiO4 Groups Only
Insular SiO4 Groups Only with cations in [6] and >[6] coordination
Andradite51.4.3b.1Ca3Fe3+2(SiO4)3
Group 58 - SOROSILICATES Insular, Mixed, Single, and Larger Tetrahedral Groups
Insular, Mixed, Single, and Larger Tetrahedral Groups with cations in [6] and higher coordination; single and double groups (n = 1, 2)
Clinozoisite58.2.1a.4{Ca2}{Al3}(Si2O7)(SiO4)O(OH)
Epidote58.2.1a.7{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Zoisite58.2.1b.1Ca2Al3[Si2O7][SiO4]O(OH)
Group 65 - INOSILICATES Single-Width,Unbranched Chains,(W=1)
Single-Width Unbranched Chains, W=1 with chains P=2
Augite65.1.3a.3(CaxMgyFez)(Mgy1Fez1)Si2O6
Diopside65.1.3a.1CaMgSi2O6
Enstatite65.1.2.1Mg2Si2O6
Hedenbergite65.1.3a.2CaFe2+Si2O6
Group 66 - INOSILICATES Double-Width,Unbranched Chains,(W=2)
Amphiboles - Mg-Fe-Mn-Li subgroup
Tremolite66.1.3a.1◻{Ca2}{Mg5}(Si8O22)(OH)2
Group 71 - PHYLLOSILICATES Sheets of Six-Membered Rings
Sheets of 6-membered rings with 1:1 layers
Lizardite71.1.2b.2Mg3(Si2O5)(OH)4
Sheets of 6-membered rings with 2:1 layers
Muscovite71.2.2a.1KAl2(AlSi3O10)(OH)2
Phlogopite71.2.2b.1KMg3(AlSi3O10)(OH)2
Pyrophyllite71.2.1.1Al2Si4O10(OH)2
Talc71.2.1.3Mg3Si4O10(OH)2
Vermiculite71.2.2d.3Mg0.7(Mg,Fe,Al)6(Si,Al)8O20(OH)4 · 8H2O
Sheets of 6-membered rings interlayered 1:1, 2:1, and octahedra
Clinochlore71.4.1.4Mg5Al(AlSi3O10)(OH)8
Corrensite71.4.2.5(Mg,Fe)9((Si,Al)8O20)(OH)10 · nH2O
Group 75 - TECTOSILICATES Si Tetrahedral Frameworks
Si Tetrahedral Frameworks - SiO2 with [4] coordinated Si
Quartz75.1.3.1SiO2
Group 76 - TECTOSILICATES Al-Si Framework
Al-Si Framework with Al-Si frameworks
Albite76.1.3.1Na(AlSi3O8)
Unclassified Minerals, Mixtures, etc.
Actinolite-◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22OH2
'Albite-Anorthite Series'-
'Biotite'-K(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3[AlSi3O10(OH)2
'Bravoite'-(Fe,Ni)S2
'Chlorite Group'-
'Clinopyroxene Subgroup'-
'Fayalite-Forsterite Series'-
Magnesio-hornblende-◻Ca2(Mg4Al)(Si7Al)O22(OH)2
Magnetite
var. Titaniferous Magnetite
-Fe2+(Fe3+,Ti)2O4
Meionite-Ca4Al6Si6O24CO3
Melonite
var. Palladian Melonite
-(Ni,Pd)Te2
Muscovite
var. Phengite
-KAl1.5(Mg,Fe)0.5(Al0.5Si3.5O10)(OH)2
var. Sericite-KAl2(AlSi3O10)(OH)2
'Serpentine Subgroup'-D3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn
'var. Bastite'-D3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
'Smectite Group'-A0.3D2-3[T4O10]Z2 · nH2O
'UM2004-22-O:CuFePdPt'-~(Pd,Pt)3CuFe4O11
'UM2004-23-O:CuFePdPt'-
'UM2004-24-O:CuPd'-~PdCu2O3
'UM2004-25-O:FeHPt'-~PtFe3O5(OH) · 7H2O
'UM2004-29-OH:FePt'-~PtFe4O(OH)12

List of minerals for each chemical element

HHydrogen
H PhlogopiteKMg3(AlSi3O10)(OH)2
H Magnesio-hornblende◻Ca2(Mg4Al)(Si7Al)O22(OH)2
H Serpentine SubgroupD3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn
H Actinolite◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22OH2
H Muscovite var. SericiteKAl2(AlSi3O10)(OH)2
H BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3[AlSi3O10(OH)2
H Clinozoisite{Ca2}{Al3}(Si2O7)(SiO4)O(OH)
H Muscovite var. PhengiteKAl1.5(Mg,Fe)0.5(Al0.5Si3.5O10)(OH)2
H TalcMg3Si4O10(OH)2
H Tremolite◻{Ca2}{Mg5}(Si8O22)(OH)2
H Goethiteα-Fe3+O(OH)
H Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
H VermiculiteMg0.7(Mg,Fe,Al)6(Si,Al)8O20(OH)4 · 8H2O
H ClinochloreMg5Al(AlSi3O10)(OH)8
H Corrensite(Mg,Fe)9((Si,Al)8O20)(OH)10 · nH2O
H LizarditeMg3(Si2O5)(OH)4
H Smectite GroupA0.3D2-3[T4O10]Z2 · nH2O
H PyrophylliteAl2Si4O10(OH)2
H MuscoviteKAl2(AlSi3O10)(OH)2
H Serpentine Subgroup var. BastiteD3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
H ZoisiteCa2Al3[Si2O7][SiO4]O(OH)
H UM2004-29-OH:FePt~PtFe4O(OH)12
H UM2004-25-O:FeHPt~PtFe3O5(OH) · 7H2O
CCarbon
C MeioniteCa4Al6Si6O24CO3
C GraphiteC
C CalciteCaCO3
OOxygen
O MeioniteCa4Al6Si6O24CO3
O HedenbergiteCaFe2+Si2O6
O PhlogopiteKMg3(AlSi3O10)(OH)2
O Magnesio-hornblende◻Ca2(Mg4Al)(Si7Al)O22(OH)2
O Serpentine SubgroupD3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn
O MagnetiteFe2+Fe23+O4
O DiopsideCaMgSi2O6
O Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
O IlmeniteFe2+TiO3
O Magnetite var. Titaniferous MagnetiteFe2+(Fe3+,Ti)2O4
O Actinolite◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22OH2
O Muscovite var. SericiteKAl2(AlSi3O10)(OH)2
O CalciteCaCO3
O BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3[AlSi3O10(OH)2
O Clinozoisite{Ca2}{Al3}(Si2O7)(SiO4)O(OH)
O QuartzSiO2
O Muscovite var. PhengiteKAl1.5(Mg,Fe)0.5(Al0.5Si3.5O10)(OH)2
O TalcMg3Si4O10(OH)2
O Tremolite◻{Ca2}{Mg5}(Si8O22)(OH)2
O Goethiteα-Fe3+O(OH)
O HematiteFe2O3
O CupriteCu2O
O Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
O AndraditeCa3Fe23+(SiO4)3
O VermiculiteMg0.7(Mg,Fe,Al)6(Si,Al)8O20(OH)4 · 8H2O
O ClinochloreMg5Al(AlSi3O10)(OH)8
O Corrensite(Mg,Fe)9((Si,Al)8O20)(OH)10 · nH2O
O LizarditeMg3(Si2O5)(OH)4
O Smectite GroupA0.3D2-3[T4O10]Z2 · nH2O
O EnstatiteMg2Si2O6
O PyrophylliteAl2Si4O10(OH)2
O FluorapatiteCa5(PO4)3F
O MuscoviteKAl2(AlSi3O10)(OH)2
O Serpentine Subgroup var. BastiteD3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
O ZoisiteCa2Al3[Si2O7][SiO4]O(OH)
O UM2004-29-OH:FePt~PtFe4O(OH)12
O UM2004-25-O:FeHPt~PtFe3O5(OH) · 7H2O
O UM2004-22-O:CuFePdPt~(Pd,Pt)3CuFe4O11
O UM2004-24-O:CuPd~PdCu2O3
O AlbiteNa(AlSi3O8)
FFluorine
F BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3[AlSi3O10(OH)2
F FluorapatiteCa5(PO4)3F
NaSodium
Na MeioniteCa4Al6Si6O24CO3
Na Corrensite(Mg,Fe)9((Si,Al)8O20)(OH)10 · nH2O
Na AlbiteNa(AlSi3O8)
MgMagnesium
Mg PhlogopiteKMg3(AlSi3O10)(OH)2
Mg Magnesio-hornblende◻Ca2(Mg4Al)(Si7Al)O22(OH)2
Mg Serpentine SubgroupD3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn
Mg DiopsideCaMgSi2O6
Mg Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
Mg Actinolite◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22OH2
Mg BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3[AlSi3O10(OH)2
Mg Muscovite var. PhengiteKAl1.5(Mg,Fe)0.5(Al0.5Si3.5O10)(OH)2
Mg TalcMg3Si4O10(OH)2
Mg Tremolite◻{Ca2}{Mg5}(Si8O22)(OH)2
Mg VermiculiteMg0.7(Mg,Fe,Al)6(Si,Al)8O20(OH)4 · 8H2O
Mg ClinochloreMg5Al(AlSi3O10)(OH)8
Mg Corrensite(Mg,Fe)9((Si,Al)8O20)(OH)10 · nH2O
Mg LizarditeMg3(Si2O5)(OH)4
Mg EnstatiteMg2Si2O6
Mg Serpentine Subgroup var. BastiteD3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
AlAluminium
Al MeioniteCa4Al6Si6O24CO3
Al PhlogopiteKMg3(AlSi3O10)(OH)2
Al Magnesio-hornblende◻Ca2(Mg4Al)(Si7Al)O22(OH)2
Al Serpentine SubgroupD3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn
Al Muscovite var. SericiteKAl2(AlSi3O10)(OH)2
Al BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3[AlSi3O10(OH)2
Al Clinozoisite{Ca2}{Al3}(Si2O7)(SiO4)O(OH)
Al Muscovite var. PhengiteKAl1.5(Mg,Fe)0.5(Al0.5Si3.5O10)(OH)2
Al Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Al VermiculiteMg0.7(Mg,Fe,Al)6(Si,Al)8O20(OH)4 · 8H2O
Al ClinochloreMg5Al(AlSi3O10)(OH)8
Al Corrensite(Mg,Fe)9((Si,Al)8O20)(OH)10 · nH2O
Al PyrophylliteAl2Si4O10(OH)2
Al MuscoviteKAl2(AlSi3O10)(OH)2
Al Serpentine Subgroup var. BastiteD3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
Al ZoisiteCa2Al3[Si2O7][SiO4]O(OH)
Al AlbiteNa(AlSi3O8)
SiSilicon
Si MeioniteCa4Al6Si6O24CO3
Si HedenbergiteCaFe2+Si2O6
Si PhlogopiteKMg3(AlSi3O10)(OH)2
Si Magnesio-hornblende◻Ca2(Mg4Al)(Si7Al)O22(OH)2
Si Serpentine SubgroupD3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn
Si DiopsideCaMgSi2O6
Si Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
Si Actinolite◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22OH2
Si Muscovite var. SericiteKAl2(AlSi3O10)(OH)2
Si BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3[AlSi3O10(OH)2
Si Clinozoisite{Ca2}{Al3}(Si2O7)(SiO4)O(OH)
Si QuartzSiO2
Si Muscovite var. PhengiteKAl1.5(Mg,Fe)0.5(Al0.5Si3.5O10)(OH)2
Si TalcMg3Si4O10(OH)2
Si Tremolite◻{Ca2}{Mg5}(Si8O22)(OH)2
Si Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Si AndraditeCa3Fe23+(SiO4)3
Si VermiculiteMg0.7(Mg,Fe,Al)6(Si,Al)8O20(OH)4 · 8H2O
Si ClinochloreMg5Al(AlSi3O10)(OH)8
Si Corrensite(Mg,Fe)9((Si,Al)8O20)(OH)10 · nH2O
Si LizarditeMg3(Si2O5)(OH)4
Si EnstatiteMg2Si2O6
Si PyrophylliteAl2Si4O10(OH)2
Si MuscoviteKAl2(AlSi3O10)(OH)2
Si Serpentine Subgroup var. BastiteD3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
Si ZoisiteCa2Al3[Si2O7][SiO4]O(OH)
Si AlbiteNa(AlSi3O8)
PPhosphorus
P FluorapatiteCa5(PO4)3F
SSulfur
S MeioniteCa4Al6Si6O24CO3
S PyrrhotiteFe1-xS
S Pentlandite(FexNiy)Σ9S8
S ChalcopyriteCuFeS2
S CubaniteCuFe2S3
S CobaltiteCoAsS
S PyriteFeS2
S SphaleriteZnS
S Bravoite(Fe,Ni)S2
S Mackinawite(Fe,Ni)9S8
S MarcasiteFeS2
S ChalcociteCu2S
S CovelliteCuS
S ViolariteFe2+Ni23+S4
S ArgentopentlanditeAg(Fe,Ni)8S8
ClChlorine
Cl MeioniteCa4Al6Si6O24CO3
KPotassium
K PhlogopiteKMg3(AlSi3O10)(OH)2
K Muscovite var. SericiteKAl2(AlSi3O10)(OH)2
K BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3[AlSi3O10(OH)2
K Muscovite var. PhengiteKAl1.5(Mg,Fe)0.5(Al0.5Si3.5O10)(OH)2
K Corrensite(Mg,Fe)9((Si,Al)8O20)(OH)10 · nH2O
K MuscoviteKAl2(AlSi3O10)(OH)2
CaCalcium
Ca MeioniteCa4Al6Si6O24CO3
Ca HedenbergiteCaFe2+Si2O6
Ca Magnesio-hornblende◻Ca2(Mg4Al)(Si7Al)O22(OH)2
Ca DiopsideCaMgSi2O6
Ca Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
Ca Actinolite◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22OH2
Ca CalciteCaCO3
Ca Clinozoisite{Ca2}{Al3}(Si2O7)(SiO4)O(OH)
Ca Tremolite◻{Ca2}{Mg5}(Si8O22)(OH)2
Ca Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Ca AndraditeCa3Fe23+(SiO4)3
Ca Corrensite(Mg,Fe)9((Si,Al)8O20)(OH)10 · nH2O
Ca FluorapatiteCa5(PO4)3F
Ca ZoisiteCa2Al3[Si2O7][SiO4]O(OH)
TiTitanium
Ti IlmeniteFe2+TiO3
Ti Magnetite var. Titaniferous MagnetiteFe2+(Fe3+,Ti)2O4
Ti BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3[AlSi3O10(OH)2
MnManganese
Mn Serpentine SubgroupD3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn
Mn Serpentine Subgroup var. BastiteD3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
FeIron
Fe HedenbergiteCaFe2+Si2O6
Fe Serpentine SubgroupD3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn
Fe MagnetiteFe2+Fe23+O4
Fe PyrrhotiteFe1-xS
Fe Pentlandite(FexNiy)Σ9S8
Fe ChalcopyriteCuFeS2
Fe Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
Fe CubaniteCuFe2S3
Fe IlmeniteFe2+TiO3
Fe Magnetite var. Titaniferous MagnetiteFe2+(Fe3+,Ti)2O4
Fe Actinolite◻Ca2(Mg4.5-2.5Fe0.5-2.5)Si8O22OH2
Fe BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3[AlSi3O10(OH)2
Fe PyriteFeS2
Fe Bravoite(Fe,Ni)S2
Fe Mackinawite(Fe,Ni)9S8
Fe Muscovite var. PhengiteKAl1.5(Mg,Fe)0.5(Al0.5Si3.5O10)(OH)2
Fe MarcasiteFeS2
Fe Goethiteα-Fe3+O(OH)
Fe HematiteFe2O3
Fe ViolariteFe2+Ni23+S4
Fe Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Fe AndraditeCa3Fe23+(SiO4)3
Fe VermiculiteMg0.7(Mg,Fe,Al)6(Si,Al)8O20(OH)4 · 8H2O
Fe Corrensite(Mg,Fe)9((Si,Al)8O20)(OH)10 · nH2O
Fe Serpentine Subgroup var. BastiteD3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
Fe UM2004-29-OH:FePt~PtFe4O(OH)12
Fe UM2004-25-O:FeHPt~PtFe3O5(OH) · 7H2O
Fe UM2004-22-O:CuFePdPt~(Pd,Pt)3CuFe4O11
Fe ArgentopentlanditeAg(Fe,Ni)8S8
CoCobalt
Co CobaltiteCoAsS
NiNickel
Ni Serpentine SubgroupD3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn
Ni Pentlandite(FexNiy)Σ9S8
Ni Bravoite(Fe,Ni)S2
Ni Mackinawite(Fe,Ni)9S8
Ni ViolariteFe2+Ni23+S4
Ni MeloniteNiTe2
Ni Serpentine Subgroup var. BastiteD3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
Ni Melonite var. Palladian Melonite(Ni,Pd)Te2
Ni ArgentopentlanditeAg(Fe,Ni)8S8
CuCopper
Cu ChalcopyriteCuFeS2
Cu CubaniteCuFe2S3
Cu ChalcociteCu2S
Cu CovelliteCuS
Cu CupriteCu2O
Cu CopperCu
Cu UM2004-22-O:CuFePdPt~(Pd,Pt)3CuFe4O11
Cu UM2004-24-O:CuPd~PdCu2O3
ZnZinc
Zn Serpentine SubgroupD3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn
Zn SphaleriteZnS
Zn Serpentine Subgroup var. BastiteD3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
AsArsenic
As CobaltiteCoAsS
As SperrylitePtAs2
PdPalladium
Pd MicheneritePdBiTe
Pd MerenskyitePdTe2
Pd Moncheite(Pt,Pd)(Te,Bi)2
Pd Melonite var. Palladian Melonite(Ni,Pd)Te2
Pd UM2004-22-O:CuFePdPt~(Pd,Pt)3CuFe4O11
Pd UM2004-24-O:CuPd~PdCu2O3
AgSilver
Ag SilverAg
Ag ArgentopentlanditeAg(Fe,Ni)8S8
TeTellurium
Te MicheneritePdBiTe
Te MerenskyitePdTe2
Te Moncheite(Pt,Pd)(Te,Bi)2
Te MeloniteNiTe2
Te Melonite var. Palladian Melonite(Ni,Pd)Te2
PtPlatinum
Pt SperrylitePtAs2
Pt Moncheite(Pt,Pd)(Te,Bi)2
Pt UM2004-29-OH:FePt~PtFe4O(OH)12
Pt UM2004-25-O:FeHPt~PtFe3O5(OH) · 7H2O
Pt UM2004-22-O:CuFePdPt~(Pd,Pt)3CuFe4O11
AuGold
Au GoldAu
BiBismuth
Bi MicheneritePdBiTe
Bi Moncheite(Pt,Pd)(Te,Bi)2

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
Ortega, L., Lunar, R., Garcia-Palomero, F., Moreno, T., Martín-Estévez, J.R., Prichard, H.M., and Fisher, P.C. (2004): The Aguablanca Ni-Cu-PGE deposit, southwestern Iberia: magmatic ore-forming processes and retrograde evolution. Canadian Mineralogist 42, 325-350.
C. Martínez, F. Tornos, C. Casquet, C. Galindo (2005): 4-1: The Aguablanca Ni–(Cu–PGE) deposit, SW Spain: Ossa Morena Zone: Lat. 37°57′ N, Long. 6°11′ W. Ore geology reviews 27, 164-165.
Tornos, F., Galindo, C., Casquet, C., Pevida, L.R., Martínez, C., Martínez, E., Velasco, F., and Iriondo, A. (2006): The Aguablanca Ni–(Cu) sulfide deposit, SW Spain: geologic and geochemical controls and the relationship with a midcrustal layered mafic complex. Mineralium Deposita 41, 737-769.
R. Piña, F. Gervilla, L. Ortega, R. Lunar (2008): Mineralogy and geochemistry of platinum-group elements in the Aguablanca Ni-Cu deposit (SW Spain). Mineralogy and Petrology 92, 259-282.
Ordóñez-Casado, B., Martin-Izard, A., and García-Nieto, J. (2008): SHRIMP-zircon U–Pb dating of the Ni–Cu–PGE mineralized Aguablanca gabbro and Santa Olalla granodiorite: Confirmation of an Early Carboniferous metallogenic epoch in the Variscan Massif of the Iberian Peninsula. Ore Geology Reviews 34, 343-353.
Suárez, S., Prichard, H. M., Velasco, F., Fisher, P. C., McDonald, I. (2010): Alteration of platinum-group minerals and dispersion of platinum-group elements during progressive weathering of the Aguablanca Ni–Cu deposit, SW Spain. Mineralium Deposita 45, 331-350.
Suárez, S., Nieto, F., Velasco, F., & Martín, F. J. (2011). Serpentine and chlorite as effective Ni-Cu sinks during weathering of the Aguablanca sulphide deposit (SW Spain). TEM evidence for metal-retention mechanisms in sheet silicates. European Journal of Mineralogy, 23(2), 179-196.
R. Piña, F. Gervilla, S.-J. Barnes, L. Ortega, R. Lunar (2012): Distribution of platinum-group and chalcophile elements in the Aguablanca Ni–Cu sulfide deposit (SW Spain): Evidence from a LA-ICP-MS study. Chemical Geology 302-303, 61-75.
Piña, Ruben; Gervilla, Fernando; Ortega, Lorena; Lunar, Rosario (2012): Geochemical constraints on the origin of the Ni-​Cu sulfide ores in the Tejadillas prospect (Cortegana Igneous Complex, SW Spain). Resource Geology 62, 263-280. [with data on Aguablanca ]
Ganino, C., Arndt, N.T., Chauvel, C., Tornos, F. (2014): Metamorphic degassing of carbonates in the contact aureole of the Aguablanca Cu–Ni–PGE deposit, Spain. Contrib. Mineral. Petrol. 168: 1053.

Other Regions, Features and Areas containing this locality

Eurasian PlateTectonic Plate
EuropeContinent

This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
 
Mineral and/or Locality  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization. Public Relations by Blytheweigh.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2020, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: December 1, 2020 02:38:41 Page generated: October 13, 2020 23:05:55
Go to top of page