Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat Articles
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsThe ElementsUsersBooks & MagazinesMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery

Ikuno mine, Ikuno-cho-ono, Asago City, Hyogo, Japani
Regional Level Types
Ikuno mineMine
Ikuno-cho-ono- not defined -
Asago CityCity
HyogoPrefecture
JapanCountry

This page is currently not sponsored. Click here to sponsor this page.
Key
Lock Map
Name(s) in local language(s):生野鉱山, 兵庫県 朝来市 生野町小野
Latitude & Longitude (WGS84): 35° 10' 0'' North , 134° 49' 30'' East
Latitude & Longitude (decimal): 35.16667,134.82500
GeoHash:G#: wyrbh1bsd
Locality type:Mine
Köppen climate type:Cfa : Humid subtropical climate


A silver mine that was first worked in 807 AD. Large scale exploitation started in 1542, using traditional methods. The Japanese government hired a French mining engineer, Francois M Coignet, to modernize the mining methods in 1868. The Mitsubishi conglomerate acquired the mine in 1896. Mining ceased in 1973, by which time the galleries had penetrated several square kilometers of ground at depths up to 1 km. Mostly flooded by 1987.
Highly telescoped xenothermal veins are hosted in Tertiary sediments and volcanics overlying Paleozoic and Mesozoic formations. Although in ancient times silver was the only metal of interest, in more modern times this mine produced a large range of other metals too, including Cu, Zn, Pb, W, Sn, As, Au, Bi, Co.
Features the Senju-hon vein, Chuo shaft, Kanagase deposit (qv), Tasei deposit (qv).
Mitsubishi Corp. still maintains a silica plant here, and the museum with the corporation's excellent mineral collection, and one section of the Kanagase deposit is open for guided underground tourism.

Select Mineral List Type

Standard Detailed Strunz Dana Chemical Elements

Mineral List

Mineral list contains entries from the region specified including sub-localities

56 valid minerals. 3 (TL) - type locality of valid minerals.

Rock Types Recorded

Note: this is a very new system on mindat.org and data is currently VERY limited. Please bear with us while we work towards adding this information!

Rock list contains entries from the region specified including sub-localities

Select Rock List Type

Alphabetical List Tree Diagram

Detailed Mineral List:

Acanthite
Formula: Ag2S
Reference: Shimizu, M., Kato, A., & Matsuyama, F. (1998). Two Se‐bearing Ag–Bi Sulphosalts, Benjaminite and Matildite from the Ikuno Deposits, Hyogo Prefecture, Japan–Au–Ag Mineralization in Polymetallic Zone. Resource Geology, 48(2), 117-124.
Aluminite
Formula: Al2(SO4)(OH)4 · 7H2O
Reference: The Mineral Species of Japan (5th ed) Matsubara; Dr. Yohachiro Okamoto collection (conserved by the Geological Survey of Japan)
'Andesite'
Reference: Kato, a., & Fujiki, Y. (1969). The Occurrence of Stannoidites from the Xenothermal Ore Deposits of the Akenobe, Ikuno, and Tada Mines, Hyogo Prefecfure, and the Fukoku Mine, Kyoto Prefecture, Japan. Mineralogical Journal, 5(6), 417-433.
Antlerite
Formula: Cu3(SO4)(OH)4
Arsenic
Formula: As
Reference: Yamada, S. (2004) Nihonsan-koubutsu Gojuon-hairetsu Sanchi-ichiranhyou (111 pp.)
Arsenopyrite
Formula: FeAsS
Reference: Canadian Mineralogist Vol. 25, pp,229-236 (1987); Kato, a., & Fujiki, Y. (1969). The Occurrence of Stannoidites from the Xenothermal Ore Deposits of the Akenobe, Ikuno, and Tada Mines, Hyogo Prefecfure, and the Fukoku Mine, Kyoto Prefecture, Japan. Mineralogical Journal, 5(6), 417-433.
Benjaminite
Formula: Ag3Bi7S12
Reference: The Mineral Species of Japan (5th ed) Matsubara; Shimizu, M., Kato, A., & Matsuyama, F. (1998). Two Se‐bearing Ag–Bi Sulphosalts, Benjaminite and Matildite from the Ikuno Deposits, Hyogo Prefecture, Japan–Au–Ag Mineralization in Polymetallic Zone. Resource Geology, 48(2), 117-124.
Bismuth
Formula: Bi
Reference: Shimizu, M., & Kato, A. (1996). Pavonite from the Ikuno mine, Hyogo Prefecture, Japan. The Canadian Mineralogist, 34(6), 1323-1327.; Kato, a., & Fujiki, Y. (1969). The Occurrence of Stannoidites from the Xenothermal Ore Deposits of the Akenobe, Ikuno, and Tada Mines, Hyogo Prefecfure, and the Fukoku Mine, Kyoto Prefecture, Japan. Mineralogical Journal, 5(6), 417-433.
Bismuthinite
Formula: Bi2S3
Reference: Shimizu, M., & Kato, A. (1996). Pavonite from the Ikuno mine, Hyogo Prefecture, Japan. The Canadian Mineralogist, 34(6), 1323-1327.; Kato, a., & Fujiki, Y. (1969). The Occurrence of Stannoidites from the Xenothermal Ore Deposits of the Akenobe, Ikuno, and Tada Mines, Hyogo Prefecfure, and the Fukoku Mine, Kyoto Prefecture, Japan. Mineralogical Journal, 5(6), 417-433.
Bornite
Formula: Cu5FeS4
Reference: (information displayed at Mitsubishi Corp. mineral museum at Ikuno.
Brochantite
Formula: Cu4(SO4)(OH)6
Reference: Excelibur Mineral Co. specimen
Calcite
Formula: CaCO3
Reference: Shimizu, M., & Kato, A. (1996). Pavonite from the Ikuno mine, Hyogo Prefecture, Japan. The Canadian Mineralogist, 34(6), 1323-1327.; Kato, a., & Fujiki, Y. (1969). The Occurrence of Stannoidites from the Xenothermal Ore Deposits of the Akenobe, Ikuno, and Tada Mines, Hyogo Prefecfure, and the Fukoku Mine, Kyoto Prefecture, Japan. Mineralogical Journal, 5(6), 417-433.
Canfieldite
Formula: Ag8SnS6
Reference: Handbook of Mineralogy; Taguchi and Kizawa (1973) Koubutsugaku Zasshi, 11, 192-204.
Cassiterite
Formula: SnO2
Reference: Shimizu, M., Kato, A., & Matsuyama, F. (1998). Two Se‐bearing Ag–Bi Sulphosalts, Benjaminite and Matildite from the Ikuno Deposits, Hyogo Prefecture, Japan–Au–Ag Mineralization in Polymetallic Zone. Resource Geology, 48(2), 117-124.; Kato, a., & Fujiki, Y. (1969). The Occurrence of Stannoidites from the Xenothermal Ore Deposits of the Akenobe, Ikuno, and Tada Mines, Hyogo Prefecfure, and the Fukoku Mine, Kyoto Prefecture, Japan. Mineralogical Journal, 5(6), 417-433.
Chalcanthite
Formula: CuSO4 · 5H2O
Reference: National Science Museum, Tokyo, displayed specimen #288.
Chalcopyrite
Formula: CuFeS2
Reference: Ryoichi SADANAGA and Michiaki BUNNO (1974) THE WAKABAYASHI MINERAL COLLECTION Bulletin No. 7 The University Museum, The University of Tokyo; Canadian Mineralogist Vol. 25, pp,229-236 (1987); Kato, a., & Fujiki, Y. (1969). The Occurrence of Stannoidites from the Xenothermal Ore Deposits of the Akenobe, Ikuno, and Tada Mines, Hyogo Prefecfure, and the Fukoku Mine, Kyoto Prefecture, Japan. Mineralogical Journal, 5(6), 417-433.
'Chlorite Group'
Reference: (information displayed at Mitsubishi Corp. mineral museum at Ikuno.
Cobaltite
Formula: CoAsS
Reference: Rocks & Min.: 22:223.
Copper
Formula: Cu
Reference: Yamada, S. (2004) Nihonsan-koubutsu Gojuon-hairetsu Sanchi-ichiranhyou (111 pp.)
Danalite
Formula: Be3Fe2+4(SiO4)3S
Reference: Yamada, S. (2004) Nihonsan-koubutsu Gojuon-hairetsu Sanchi-ichiranhyou (111 pp.)
'Electrum'
Formula: (Au, Ag)
Reference: Shimizu, M., Kato, A., & Matsuyama, F. (1998). Two Se‐bearing Ag–Bi Sulphosalts, Benjaminite and Matildite from the Ikuno Deposits, Hyogo Prefecture, Japan–Au–Ag Mineralization in Polymetallic Zone. Resource Geology, 48(2), 117-124.
Emplectite ?
Formula: CuBiS2
Reference: Yamada, S. (2004) Nihonsan-koubutsu Gojuon-hairetsu Sanchi-ichiranhyou (111 pp.)
Erythrite
Formula: Co3(AsO4)2 · 8H2O
Reference: (information displayed at Mitsubishi Corp. mineral museum at Ikuno.
Eskimoite
Formula: Ag7Pb10Bi15S36
Reference: Suzuki, Y., Nakata, M., Ohe, I. (2011) Eskimoite-like mineral from Ikuno mine, Hyougo Prefecture, Japan. Chigaku Kenkyu, 60 (1), 37-39.
Ferberite
Formula: FeWO4
Reference: Shimizu, M., & Kato, A. (1996). Pavonite from the Ikuno mine, Hyogo Prefecture, Japan. The Canadian Mineralogist, 34(6), 1323-1327.; Kato, a., & Fujiki, Y. (1969). The Occurrence of Stannoidites from the Xenothermal Ore Deposits of the Akenobe, Ikuno, and Tada Mines, Hyogo Prefecfure, and the Fukoku Mine, Kyoto Prefecture, Japan. Mineralogical Journal, 5(6), 417-433.
Fluorite
Formula: CaF2
Reference: Ryoichi SADANAGA and Michiaki BUNNO (1974) THE WAKABAYASHI MINERAL COLLECTION Bulletin No. 7 The University Museum, The University of Tokyo
Galena
Formula: PbS
Reference: Canadian Mineralogist Vol. 25, pp,229-236 (1987); Kato, a., & Fujiki, Y. (1969). The Occurrence of Stannoidites from the Xenothermal Ore Deposits of the Akenobe, Ikuno, and Tada Mines, Hyogo Prefecfure, and the Fukoku Mine, Kyoto Prefecture, Japan. Mineralogical Journal, 5(6), 417-433.
Gold
Formula: Au
Reference: (information displayed at Mitsubishi Corp. mineral museum at Ikuno.
Gypsum
Formula: CaSO4 · 2H2O
Reference: Kato, a., & Fujiki, Y. (1969). The Occurrence of Stannoidites from the Xenothermal Ore Deposits of the Akenobe, Ikuno, and Tada Mines, Hyogo Prefecfure, and the Fukoku Mine, Kyoto Prefecture, Japan. Mineralogical Journal, 5(6), 417-433.
Hübnerite
Formula: MnWO4
Reference: (information displayed at Mitsubishi Corp. mineral museum at Ikuno.
Ikunolite (TL)
Formula: Bi4(S,Se)3
Type Locality:
Reference: Kato, A. et al (1959) Mineralogical Journal, 2, 397-407.; Kato, a., & Fujiki, Y. (1969). The Occurrence of Stannoidites from the Xenothermal Ore Deposits of the Akenobe, Ikuno, and Tada Mines, Hyogo Prefecfure, and the Fukoku Mine, Kyoto Prefecture, Japan. Mineralogical Journal, 5(6), 417-433.
Kësterite
Formula: Cu2ZnSnS4
Reference: No reference listed
'K Feldspar'
Reference: Ryoichi SADANAGA and Michiaki BUNNO (1974) THE WAKABAYASHI MINERAL COLLECTION Bulletin No. 7 The University Museum, The University of Tokyo
'K Feldspar var: Adularia'
Formula: KAlSi3O8
Reference: Ryoichi SADANAGA and Michiaki BUNNO (1974) THE WAKABAYASHI MINERAL COLLECTION Bulletin No. 7 The University Museum, The University of Tokyo
Laumontite
Formula: CaAl2Si4O12 · 4H2O
Marcasite
Formula: FeS2
Reference: Yamada, S. (2004) Nihonsan-koubutsu Gojuon-hairetsu Sanchi-ichiranhyou (111 pp.)
Matildite
Formula: AgBiS2
Reference: Shimizu, M., Kato, A., & Matsuyama, F. (1998): Two Se-bearing Ag–Bi Sulphosalts, Benjaminite and Matildite from the Ikuno Deposits, Hyogo Prefecture, Japan –Au–Ag Mineralization in Polymetallic Zone. Resource Geology, 48, 117-124.
Mawsonite
Formula: Cu6Fe2SnS8
Reference: Handbook of Mineralogy - Anthony, Bideaux, Bladh, Nichols
Muscovite
Formula: KAl2(AlSi3O10)(OH)2
Reference: (information displayed at Mitsubishi Corp. mineral museum at Ikuno.
Muscovite var: Sericite
Formula: KAl2(AlSi3O10)(OH)2
Reference: (information displayed at Mitsubishi Corp. mineral museum at Ikuno.
Pavonite
Formula: AgBi3S5
Reference: Shimizu, M., & Kato, A. (1996). Pavonite from the Ikuno mine, Hyogo Prefecture, Japan. The Canadian Mineralogist, 34(6), 1323-1327.; Shimizu, M., Kato, A., & Matsuyama, F. (1998). Two Se‐bearing Ag–Bi Sulphosalts, Benjaminite and Matildite from the Ikuno Deposits, Hyogo Prefecture, Japan–Au–Ag Mineralization in Polymetallic Zone. Resource Geology, 48(2), 117-124.
Petrukite (TL)
Formula: (Cu,Fe,Zn,Ag)3(Sn,In)S4
Type Locality:
Reference: Kissin & Owens (1987) Joint Annual Meeting, Geological Association of Canada and Mineralogical Association of Canada, Program with Abstracts, 12, 62.; Kissin, S.A. & Owens, D.R. (1989): The relatives of stannite in the light of new data. Canadian Mineralogist 27, 673-688.
Proustite
Formula: Ag3AsS3
Reference: Shimizu, M., Kato, A., & Matsuyama, F. (1998). Two Se‐bearing Ag–Bi Sulphosalts, Benjaminite and Matildite from the Ikuno Deposits, Hyogo Prefecture, Japan–Au–Ag Mineralization in Polymetallic Zone. Resource Geology, 48(2), 117-124.
Pyrargyrite
Formula: Ag3SbS3
Reference: Ryoichi SADANAGA and Michiaki BUNNO (1974) THE WAKABAYASHI MINERAL COLLECTION Bulletin No. 7 The University Museum, The University of Tokyo; Shimizu, M., Kato, A., & Matsuyama, F. (1998). Two Se‐bearing Ag–Bi Sulphosalts, Benjaminite and Matildite from the Ikuno Deposits, Hyogo Prefecture, Japan–Au–Ag Mineralization in Polymetallic Zone. Resource Geology, 48(2), 117-124.
Pyrite
Formula: FeS2
Reference: Ryoichi SADANAGA and Michiaki BUNNO (1974) THE WAKABAYASHI MINERAL COLLECTION Bulletin No. 7 The University Museum, The University of Tokyo; Kato, a., & Fujiki, Y. (1969). The Occurrence of Stannoidites from the Xenothermal Ore Deposits of the Akenobe, Ikuno, and Tada Mines, Hyogo Prefecfure, and the Fukoku Mine, Kyoto Prefecture, Japan. Mineralogical Journal, 5(6), 417-433.
Pyrrhotite
Formula: Fe7S8
Reference: (information displayed at Mitsubishi Corp. mineral museum at Ikuno.
Quartz
Formula: SiO2
Reference: Ryoichi SADANAGA and Michiaki BUNNO (1974) THE WAKABAYASHI MINERAL COLLECTION Bulletin No. 7 The University Museum, The University of Tokyo; Kato, a., & Fujiki, Y. (1969). The Occurrence of Stannoidites from the Xenothermal Ore Deposits of the Akenobe, Ikuno, and Tada Mines, Hyogo Prefecfure, and the Fukoku Mine, Kyoto Prefecture, Japan. Mineralogical Journal, 5(6), 417-433.
Realgar
Formula: As4S4
Reference: (information displayed at Mitsubishi Corp. mineral museum at Ikuno.
Roquesite
Formula: CuInS2
Reference: Canadian Mineralogist Vol. 25, pp,229-236 (1987)
Sakuraiite (TL)
Formula: (Cu,Zn,Fe)3(In,Sn)S4
Type Locality:
Reference: Chigaku Kenkyu (Earth Sci. Studies) (1965) Sakurai Vol., 1-5; Kato, a., & Fujiki, Y. (1969). The Occurrence of Stannoidites from the Xenothermal Ore Deposits of the Akenobe, Ikuno, and Tada Mines, Hyogo Prefecfure, and the Fukoku Mine, Kyoto Prefecture, Japan. Mineralogical Journal, 5(6), 417-433.
Scheelite
Formula: Ca(WO4)
Reference: (information displayed at Mitsubishi Corp. mineral museum at Ikuno.; Kato, a., & Fujiki, Y. (1969). The Occurrence of Stannoidites from the Xenothermal Ore Deposits of the Akenobe, Ikuno, and Tada Mines, Hyogo Prefecfure, and the Fukoku Mine, Kyoto Prefecture, Japan. Mineralogical Journal, 5(6), 417-433.
Siderite
Formula: FeCO3
Reference: Ryoichi SADANAGA and Michiaki BUNNO (1974) THE WAKABAYASHI MINERAL COLLECTION Bulletin No. 7 The University Museum, The University of Tokyo
Silver
Formula: Ag
Reference: (information displayed at Mitsubishi Corp. mineral museum at Ikuno.
Sphalerite
Formula: ZnS
Reference: Ryoichi SADANAGA and Michiaki BUNNO (1974) THE WAKABAYASHI MINERAL COLLECTION Bulletin No. 7 The University Museum, The University of Tokyo; Canadian Mineralogist Vol. 25, pp,229-236 (1987); Kato, a., & Fujiki, Y. (1969). The Occurrence of Stannoidites from the Xenothermal Ore Deposits of the Akenobe, Ikuno, and Tada Mines, Hyogo Prefecfure, and the Fukoku Mine, Kyoto Prefecture, Japan. Mineralogical Journal, 5(6), 417-433.
Spherocobaltite
Formula: CoCO3
Reference: Kato (1973) Sakurai Koubutsu Hyohon, 35. (Kinichi Sakurai collection)
Stannite
Formula: Cu2FeSnS4
Reference: Shimizu, M., Shimizu, M., & Tsunoda, K. (2008). Physicochemical Environment of Formation of Tin Sulfide-Bearing. Far Eastern Studies 7:23-40; Kato, a., & Fujiki, Y. (1969). The Occurrence of Stannoidites from the Xenothermal Ore Deposits of the Akenobe, Ikuno, and Tada Mines, Hyogo Prefecfure, and the Fukoku Mine, Kyoto Prefecture, Japan. Mineralogical Journal, 5(6), 417-433.
Stannoidite
Formula: Cu+6Cu2+2(Fe2+,Zn)3Sn2S12
Reference: Canadian Mineralogist Vol. 25, pp,229-236 (1987)
Stephanite
Formula: Ag5SbS4
Reference: (information displayed at Mitsubishi Corp. mineral museum at Ikuno.
Tennantite
Formula: Cu6[Cu4(Fe,Zn)2]As4S13
Reference: Kato, a., & Fujiki, Y. (1969). The Occurrence of Stannoidites from the Xenothermal Ore Deposits of the Akenobe, Ikuno, and Tada Mines, Hyogo Prefecfure, and the Fukoku Mine, Kyoto Prefecture, Japan. Mineralogical Journal, 5(6), 417-433.
Tetrahedrite
Formula: Cu6[Cu4(Fe,Zn)2]Sb4S13
Reference: (information displayed at Mitsubishi Corp. mineral museum at Ikuno.; Canadian Mineralogist Vol. 25, pp,229-236 (1987)
Treasurite ?
Formula: Ag7Pb6Bi15S32
Reference: Shimizu, M. & Kato, A. (1996) Canadian Mineralogist, 34, 1323-1327.
'Wolframite'
Formula: (Fe2+)WO4 to (Mn2+)WO4
Xanthoconite
Formula: Ag3AsS3
Reference: Kato (1973) Sakurai Koubutsu Hyohon, 17.

List of minerals arranged by Strunz 10th Edition classification

Group 1 - Elements
'Arsenic'1.CA.05As
'Bismuth'1.CA.05Bi
'Copper'1.AA.05Cu
'Electrum'1.AA.05(Au, Ag)
'Gold'1.AA.05Au
Silver1.AA.05Ag
Group 2 - Sulphides and Sulfosalts
'Acanthite'2.BA.35Ag2S
'Arsenopyrite'2.EB.20FeAsS
'Benjaminite'2.JA.05eAg3Bi7S12
'Bismuthinite'2.DB.05Bi2S3
'Bornite'2.BA.15Cu5FeS4
'Canfieldite'2.BA.70Ag8SnS6
'Chalcopyrite'2.CB.10aCuFeS2
'Cobaltite'2.EB.25CoAsS
'Emplectite' ?2.HA.05CuBiS2
'Eskimoite'2.JB.40bAg7Pb10Bi15S36
'Galena'2.CD.10PbS
'Ikunolite' (TL)2.DC.05Bi4(S,Se)3
'Kësterite '2.CB.15aCu2ZnSnS4
'Marcasite'2.EB.10aFeS2
'Matildite'2.JA.20AgBiS2
'Mawsonite'2.CB.20Cu6Fe2SnS8
'Pavonite'2.JA.05aAgBi3S5
'Petrukite' (TL)2.KA.05(Cu,Fe,Zn,Ag)3(Sn,In)S4
'Proustite'2.GA.05Ag3AsS3
'Pyrargyrite'2.GA.05Ag3SbS3
'Pyrite'2.EB.05aFeS2
'Pyrrhotite'2.CC.10Fe7S8
'Realgar'2.FA.15aAs4S4
'Roquesite'2.CB.10aCuInS2
'Sakuraiite' (TL)2.CB.05b(Cu,Zn,Fe)3(In,Sn)S4
Sphalerite2.CB.05aZnS
Stannite2.CB.15aCu2FeSnS4
Stannoidite2.CB.15cCu+6Cu2+2(Fe2+,Zn)3Sn2S12
Stephanite2.GB.10Ag5SbS4
Tennantite2.GB.05Cu6[Cu4(Fe,Zn)2]As4S13
Tetrahedrite2.GB.05Cu6[Cu4(Fe,Zn)2]Sb4S13
Treasurite ?2.JB.40aAg7Pb6Bi15S32
Xanthoconite2.GA.10Ag3AsS3
Group 3 - Halides
'Fluorite'3.AB.25CaF2
Group 4 - Oxides and Hydroxides
'Cassiterite'4.DB.05SnO2
'Ferberite'4.DB.30FeWO4
'Hübnerite'4.DB.30MnWO4
'Quartz'4.DA.05SiO2
Group 5 - Nitrates and Carbonates
'Calcite'5.AB.05CaCO3
Siderite5.AB.05FeCO3
Spherocobaltite5.AB.05CoCO3
Group 7 - Sulphates, Chromates, Molybdates and Tungstates
'Aluminite'7.DC.05Al2(SO4)(OH)4 · 7H2O
'Antlerite'7.BB.15Cu3(SO4)(OH)4
'Brochantite'7.BB.25Cu4(SO4)(OH)6
'Chalcanthite'7.CB.20CuSO4 · 5H2O
'Gypsum'7.CD.40CaSO4 · 2H2O
'Scheelite'7.GA.05Ca(WO4)
Group 8 - Phosphates, Arsenates and Vanadates
'Erythrite'8.CE.40Co3(AsO4)2 · 8H2O
Group 9 - Silicates
'Danalite'9.FB.10Be3Fe2+4(SiO4)3S
'Laumontite'9.GB.10CaAl2Si4O12 · 4H2O
'Muscovite'9.EC.15KAl2(AlSi3O10)(OH)2
var: Sericite9.EC.15KAl2(AlSi3O10)(OH)2
Unclassified Minerals, Rocks, etc.
'Andesite'-
'Chlorite Group'-
'K Feldspar'-
'var: Adularia'-KAlSi3O8
Wolframite-(Fe2+)WO4 to (Mn2+)WO4

List of minerals arranged by Dana 8th Edition classification

Group 1 - NATIVE ELEMENTS AND ALLOYS
Metals, other than the Platinum Group
Copper1.1.1.3Cu
Gold1.1.1.1Au
Silver1.1.1.2Ag
Semi-metals and non-metals
Arsenic1.3.1.1As
Bismuth1.3.1.4Bi
Group 2 - SULFIDES
AmBnXp, with (m+n):p = 2:1
Acanthite2.4.1.1Ag2S
AmBnXp, with (m+n):p = 3:2
Bornite2.5.2.1Cu5FeS4
Canfieldite2.5.6.2Ag8SnS6
AmBnXp, with (m+n):p = 4:3
Ikunolite (TL)2.6.2.3Bi4(S,Se)3
AmXp, with m:p = 1:1
Galena2.8.1.1PbS
Pyrrhotite2.8.10.1Fe7S8
Realgar2.8.21.1As4S4
Sphalerite2.8.2.1ZnS
AmBnXp, with (m+n):p = 1:1
Chalcopyrite2.9.1.1CuFeS2
Kësterite 2.9.2.9Cu2ZnSnS4
Mawsonite2.9.3.1Cu6Fe2SnS8
Petrukite (TL)2.9.18.1(Cu,Fe,Zn,Ag)3(Sn,In)S4
Roquesite2.9.1.4CuInS2
Sakuraiite (TL)2.9.2.5(Cu,Zn,Fe)3(In,Sn)S4
Stannite2.9.2.1Cu2FeSnS4
Stannoidite2.9.3.3Cu+6Cu2+2(Fe2+,Zn)3Sn2S12
AmBnXp, with (m+n):p = 2:3
Bismuthinite2.11.2.3Bi2S3
AmBnXp, with (m+n):p = 1:2
Arsenopyrite2.12.4.1FeAsS
Cobaltite2.12.3.1CoAsS
Marcasite2.12.2.1FeS2
Pyrite2.12.1.1FeS2
Group 3 - SULFOSALTS
ø = 4
Stephanite3.2.4.1Ag5SbS4
3 <ø < 4
Tennantite3.3.6.2Cu6[Cu4(Fe,Zn)2]As4S13
Tetrahedrite3.3.6.1Cu6[Cu4(Fe,Zn)2]Sb4S13
ø = 3
Proustite3.4.1.1Ag3AsS3
Pyrargyrite3.4.1.2Ag3SbS3
Xanthoconite3.4.2.1Ag3AsS3
2 < ø < 2.49
Eskimoite3.6.2.1Ag7Pb10Bi15S36
Treasurite ?3.6..3Ag7Pb6Bi15S32
ø = 2
Emplectite ?3.7.5.2CuBiS2
Matildite3.7.1.1AgBiS2
1 < ø < 2
Benjaminite3.8.10.3Ag3Bi7S12
Pavonite3.8.10.1AgBi3S5
Group 4 - SIMPLE OXIDES
AX2
Cassiterite4.4.1.5SnO2
Group 9 - NORMAL HALIDES
AX2
Fluorite9.2.1.1CaF2
Group 14 - ANHYDROUS NORMAL CARBONATES
A(XO3)
Calcite14.1.1.1CaCO3
Siderite14.1.1.3FeCO3
Spherocobaltite14.1.1.5CoCO3
Group 29 - HYDRATED ACID AND NORMAL SULFATES
AXO4·xH2O
Chalcanthite29.6.7.1CuSO4 · 5H2O
Gypsum29.6.3.1CaSO4 · 2H2O
Group 30 - ANHYDROUS SULFATES CONTAINING HYDROXYL OR HALOGEN
(AB)m(XO4)pZq, where m:p>2:1
Antlerite30.1.12.1Cu3(SO4)(OH)4
Brochantite30.1.3.1Cu4(SO4)(OH)6
Group 31 - HYDRATED SULFATES CONTAINING HYDROXYL OR HALOGEN
(AB)2(XO4)Zq·xH2O
Aluminite31.7.4.1Al2(SO4)(OH)4 · 7H2O
Group 40 - HYDRATED NORMAL PHOSPHATES,ARSENATES AND VANADATES
A3(XO4)2·xH2O
Erythrite40.3.6.3Co3(AsO4)2 · 8H2O
Group 48 - ANHYDROUS MOLYBDATES AND TUNGSTATES
AXO4
Ferberite48.1.1.2FeWO4
Hübnerite48.1.1.1MnWO4
Scheelite48.1.2.1Ca(WO4)
Group 71 - PHYLLOSILICATES Sheets of Six-Membered Rings
Sheets of 6-membered rings with 2:1 layers
Muscovite71.2.2a.1KAl2(AlSi3O10)(OH)2
Group 75 - TECTOSILICATES Si Tetrahedral Frameworks
Si Tetrahedral Frameworks - SiO2 with [4] coordinated Si
Quartz75.1.3.1SiO2
Group 76 - TECTOSILICATES Al-Si Framework
Al-Si Framework Feldspathoids and related species
Danalite76.2.4.2Be3Fe2+4(SiO4)3S
Group 77 - TECTOSILICATES Zeolites
Zeolite group - True zeolites
Laumontite77.1.1.4CaAl2Si4O12 · 4H2O
Unclassified Minerals, Rocks, etc.
'Andesite'-
'Chlorite Group'-
'Electrum'-(Au, Ag)
'K Feldspar'-
'var: Adularia'-KAlSi3O8
Muscovite
var: Sericite
-KAl2(AlSi3O10)(OH)2
'Wolframite'-(Fe2+)WO4 to (Mn2+)WO4

List of minerals for each chemical element

HHydrogen
H AluminiteAl2(SO4)(OH)4 · 7H2O
H AntleriteCu3(SO4)(OH)4
H BrochantiteCu4(SO4)(OH)6
H ChalcanthiteCuSO4 · 5H2O
H ErythriteCo3(AsO4)2 · 8H2O
H GypsumCaSO4 · 2H2O
H LaumontiteCaAl2Si4O12 · 4H2O
H MuscoviteKAl2(AlSi3O10)(OH)2
H Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
BeBeryllium
Be DanaliteBe3Fe42+(SiO4)3S
CCarbon
C CalciteCaCO3
C SideriteFeCO3
C SpherocobaltiteCoCO3
OOxygen
O K Feldspar (var: Adularia)KAlSi3O8
O AluminiteAl2(SO4)(OH)4 · 7H2O
O AntleriteCu3(SO4)(OH)4
O BrochantiteCu4(SO4)(OH)6
O CalciteCaCO3
O CassiteriteSnO2
O ChalcanthiteCuSO4 · 5H2O
O DanaliteBe3Fe42+(SiO4)3S
O ErythriteCo3(AsO4)2 · 8H2O
O FerberiteFeWO4
O GypsumCaSO4 · 2H2O
O HübneriteMnWO4
O LaumontiteCaAl2Si4O12 · 4H2O
O MuscoviteKAl2(AlSi3O10)(OH)2
O QuartzSiO2
O ScheeliteCa(WO4)
O Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
O SideriteFeCO3
O SpherocobaltiteCoCO3
O Wolframite(Fe2+)WO4 to (Mn2+)WO4
FFluorine
F FluoriteCaF2
AlAluminium
Al K Feldspar (var: Adularia)KAlSi3O8
Al AluminiteAl2(SO4)(OH)4 · 7H2O
Al LaumontiteCaAl2Si4O12 · 4H2O
Al MuscoviteKAl2(AlSi3O10)(OH)2
Al Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
SiSilicon
Si K Feldspar (var: Adularia)KAlSi3O8
Si DanaliteBe3Fe42+(SiO4)3S
Si LaumontiteCaAl2Si4O12 · 4H2O
Si MuscoviteKAl2(AlSi3O10)(OH)2
Si QuartzSiO2
Si Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
SSulfur
S AcanthiteAg2S
S AluminiteAl2(SO4)(OH)4 · 7H2O
S AntleriteCu3(SO4)(OH)4
S ArsenopyriteFeAsS
S BenjaminiteAg3Bi7S12
S BismuthiniteBi2S3
S BorniteCu5FeS4
S BrochantiteCu4(SO4)(OH)6
S CanfielditeAg8SnS6
S ChalcanthiteCuSO4 · 5H2O
S ChalcopyriteCuFeS2
S CobaltiteCoAsS
S DanaliteBe3Fe42+(SiO4)3S
S EmplectiteCuBiS2
S EskimoiteAg7Pb10Bi15S36
S GalenaPbS
S GypsumCaSO4 · 2H2O
S IkunoliteBi4(S,Se)3
S Kësterite Cu2ZnSnS4
S MarcasiteFeS2
S MatilditeAgBiS2
S MawsoniteCu6Fe2SnS8
S PavoniteAgBi3S5
S Petrukite(Cu,Fe,Zn,Ag)3(Sn,In)S4
S ProustiteAg3AsS3
S PyrargyriteAg3SbS3
S PyriteFeS2
S PyrrhotiteFe7S8
S RealgarAs4S4
S RoquesiteCuInS2
S Sakuraiite(Cu,Zn,Fe)3(In,Sn)S4
S SphaleriteZnS
S StanniteCu2FeSnS4
S StannoiditeCu6+Cu22+(Fe2+,Zn)3Sn2S12
S StephaniteAg5SbS4
S TennantiteCu6[Cu4(Fe,Zn)2]As4S13
S TetrahedriteCu6[Cu4(Fe,Zn)2]Sb4S13
S TreasuriteAg7Pb6Bi15S32
S XanthoconiteAg3AsS3
KPotassium
K K Feldspar (var: Adularia)KAlSi3O8
K MuscoviteKAl2(AlSi3O10)(OH)2
K Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
CaCalcium
Ca CalciteCaCO3
Ca FluoriteCaF2
Ca GypsumCaSO4 · 2H2O
Ca LaumontiteCaAl2Si4O12 · 4H2O
Ca ScheeliteCa(WO4)
MnManganese
Mn HübneriteMnWO4
Mn Wolframite(Fe2+)WO4 to (Mn2+)WO4
FeIron
Fe ArsenopyriteFeAsS
Fe BorniteCu5FeS4
Fe ChalcopyriteCuFeS2
Fe DanaliteBe3Fe42+(SiO4)3S
Fe FerberiteFeWO4
Fe MarcasiteFeS2
Fe MawsoniteCu6Fe2SnS8
Fe Petrukite(Cu,Fe,Zn,Ag)3(Sn,In)S4
Fe PyriteFeS2
Fe PyrrhotiteFe7S8
Fe Sakuraiite(Cu,Zn,Fe)3(In,Sn)S4
Fe SideriteFeCO3
Fe StanniteCu2FeSnS4
Fe StannoiditeCu6+Cu22+(Fe2+,Zn)3Sn2S12
Fe TetrahedriteCu6[Cu4(Fe,Zn)2]Sb4S13
Fe Wolframite(Fe2+)WO4 to (Mn2+)WO4
CoCobalt
Co CobaltiteCoAsS
Co ErythriteCo3(AsO4)2 · 8H2O
Co SpherocobaltiteCoCO3
CuCopper
Cu AntleriteCu3(SO4)(OH)4
Cu BorniteCu5FeS4
Cu BrochantiteCu4(SO4)(OH)6
Cu ChalcanthiteCuSO4 · 5H2O
Cu ChalcopyriteCuFeS2
Cu CopperCu
Cu EmplectiteCuBiS2
Cu Kësterite Cu2ZnSnS4
Cu MawsoniteCu6Fe2SnS8
Cu Petrukite(Cu,Fe,Zn,Ag)3(Sn,In)S4
Cu RoquesiteCuInS2
Cu Sakuraiite(Cu,Zn,Fe)3(In,Sn)S4
Cu StanniteCu2FeSnS4
Cu StannoiditeCu6+Cu22+(Fe2+,Zn)3Sn2S12
Cu TennantiteCu6[Cu4(Fe,Zn)2]As4S13
Cu TetrahedriteCu6[Cu4(Fe,Zn)2]Sb4S13
ZnZinc
Zn Kësterite Cu2ZnSnS4
Zn Petrukite(Cu,Fe,Zn,Ag)3(Sn,In)S4
Zn Sakuraiite(Cu,Zn,Fe)3(In,Sn)S4
Zn SphaleriteZnS
Zn StannoiditeCu6+Cu22+(Fe2+,Zn)3Sn2S12
Zn TetrahedriteCu6[Cu4(Fe,Zn)2]Sb4S13
AsArsenic
As ArsenicAs
As ArsenopyriteFeAsS
As CobaltiteCoAsS
As ErythriteCo3(AsO4)2 · 8H2O
As ProustiteAg3AsS3
As RealgarAs4S4
As TennantiteCu6[Cu4(Fe,Zn)2]As4S13
As XanthoconiteAg3AsS3
SeSelenium
Se IkunoliteBi4(S,Se)3
AgSilver
Ag AcanthiteAg2S
Ag BenjaminiteAg3Bi7S12
Ag CanfielditeAg8SnS6
Ag Electrum(Au, Ag)
Ag EskimoiteAg7Pb10Bi15S36
Ag MatilditeAgBiS2
Ag PavoniteAgBi3S5
Ag Petrukite(Cu,Fe,Zn,Ag)3(Sn,In)S4
Ag ProustiteAg3AsS3
Ag PyrargyriteAg3SbS3
Ag SilverAg
Ag StephaniteAg5SbS4
Ag TreasuriteAg7Pb6Bi15S32
Ag XanthoconiteAg3AsS3
InIndium
In Petrukite(Cu,Fe,Zn,Ag)3(Sn,In)S4
In RoquesiteCuInS2
In Sakuraiite(Cu,Zn,Fe)3(In,Sn)S4
SnTin
Sn CanfielditeAg8SnS6
Sn CassiteriteSnO2
Sn Kësterite Cu2ZnSnS4
Sn MawsoniteCu6Fe2SnS8
Sn Petrukite(Cu,Fe,Zn,Ag)3(Sn,In)S4
Sn Sakuraiite(Cu,Zn,Fe)3(In,Sn)S4
Sn StanniteCu2FeSnS4
Sn StannoiditeCu6+Cu22+(Fe2+,Zn)3Sn2S12
SbAntimony
Sb PyrargyriteAg3SbS3
Sb StephaniteAg5SbS4
Sb TetrahedriteCu6[Cu4(Fe,Zn)2]Sb4S13
WTungsten
W FerberiteFeWO4
W HübneriteMnWO4
W ScheeliteCa(WO4)
W Wolframite(Fe2+)WO4 to (Mn2+)WO4
AuGold
Au Electrum(Au, Ag)
Au GoldAu
PbLead
Pb EskimoiteAg7Pb10Bi15S36
Pb GalenaPbS
Pb TreasuriteAg7Pb6Bi15S32
BiBismuth
Bi BenjaminiteAg3Bi7S12
Bi BismuthBi
Bi BismuthiniteBi2S3
Bi EmplectiteCuBiS2
Bi EskimoiteAg7Pb10Bi15S36
Bi IkunoliteBi4(S,Se)3
Bi MatilditeAgBiS2
Bi PavoniteAgBi3S5
Bi TreasuriteAg7Pb6Bi15S32

Regional Geology

This geological map and associated information on rock units at or nearby to the coordinates given for this locality is based on relatively small scale geological maps provided by various national Geological Surveys. This does not necessarily represent the complete geology at this locality but it gives a background for the region in which it is found.

Click on geological units on the map for more information. Click here to view full-screen map on Macrostrat.org

Paleogene - Cretaceous
23.03 - 145 Ma



ID: 3185777
Mesozoic-Cenozoic volcanic and intrusive rocks

Age: Phanerozoic (23.03 - 145 Ma)

Lithology: Intermediate-felsic volcanic rocks

Reference: Chorlton, L.B. Generalized geology of the world: bedrock domains and major faults in GIS format: a small-scale world geology map with an extended geological attribute database. doi: 10.4095/223767. Geological Survey of Canada, Open File 5529. [154]

Data and map coding provided by Macrostrat.org, used under Creative Commons Attribution 4.0 License

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
Kato, a., & Fujiki, Y. (1969). The Occurrence of Stannoidites from the Xenothermal Ore Deposits of the Akenobe, Ikuno, and Tada Mines, Hyogo Prefecfure, and the Fukoku Mine, Kyoto Prefecture, Japan. Mineralogical Journal, 5(6), 417-433.
- Shimizu, M., Kato, A., & Matsuyama, F. (1998): Two Se-bearing Ag–Bi Sulphosalts, Benjaminite and Matildite from the Ikuno Deposits, Hyogo Prefecture, Japan –Au–Ag Mineralization in Polymetallic Zone. Resource Geology, 48, 117-124.
- Kamitani, M., Okumura, K., Teraoka, Y., Miyano, S., and Watanabe, Y. (2007): Mineral Resources Map of East Asia. Geological Survey of Japan.

Localities in this Region
Show map

Japan

This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization. Public Relations by Blytheweigh.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2019, except where stated. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: March 19, 2019 21:44:44 Page generated: December 4, 2018 12:38:21
Go to top of page