SUPPORT US. If mindat.org is important to you, click here to donate to our Fall 2019 fundraiser!
Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsBooks & Magazines
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryMineral Photography

Howe Quarry (Howe #1 Quarry; Huspband Quarry), South Glastonbury, Glastonbury, Hartford Co., Connecticut, USAi
Regional Level Types
Howe Quarry (Howe #1 Quarry; Huspband Quarry)Quarry
South Glastonbury- not defined -
Glastonbury- not defined -
Hartford Co.County
ConnecticutState
USACountry

This page is currently not sponsored. Click here to sponsor this page.
Key
Latitude & Longitude (WGS84):
41° 38' 22'' North , 72° 36' 1'' West
Latitude & Longitude (decimal):
Locality type:
Nearest Settlements:
PlacePopulationDistance
Cromwell13,750 (2017)6.2km
Glastonbury Center7,387 (2017)6.8km
Portland5,862 (2017)8.1km
Glastonbury31,876 (2017)8.1km
Lake Pocotopaug3,436 (2017)8.8km


George Andrews opened the Howe No. 1 quarry in a granite pegmatite about 1870. Several years later the northern half of the pegmatite was sold to Joshua and William P. Huspband and the southern half was leased for 20 years to Charles Hall. In 1905 Louis W. Howe of South Glastonbury acquired both parts of the property and produced 65,000-70,000 tons of feldspar between 1905 and 1928, when it became inactive. The opencut trending N. 5° E ended up being about 100 feet wide, almost 800 feet long, and 100 feet deep at the south end. For a time it was the largest pegmatite quarry in Connecticut. The feldspar was sold for use in porcelain and for Bon Ami scouring compound. In the early 1990s Vespa Stone Products attempted to use some of the dump material for crushed stone, but too much mica made this unacceptable for construction.

The typical granite pegmatite consists of at least three units: a thin wall zone of plagioclase-microcline perthite-quartz pegmatite that contains about 0.08 percent of beryl in crystals as much as a fifth of an inch in cross section, a core of microcline perthite-plagioclase-quartz pegmatite containing less than 1 percent of muscovite, The core of microcline perthite-plagioclase-quartz rock appears to have formed most of the pegmatite and to have been coarsely crystallized and therefore amenable to hand cobbing. The white microcline is intergrown with small amounts of albite. It seldom occurs in pure masses more than 3 feet across, the bulk of the material shipped being an irregular or graphic intergrowth of quartz and feldspar.

The largest mica “books” were not more than 5 inches across and showed wedge structure, crumpling, or ruling. None of the mica is of commercial quality.

Biotite is present only here and there. It occurs in small crystals in the finer-grained portions of the pegmatite.

In a few places there is a small quantity of red, well crystallized garnets up to an inch in diameter.

Black tourmaline is present, but none of the crystals observed were more than one-half inch in diameter. Occasionally it is present in granular masses of minute crystals that form veins, one-sixteenth to one-fourth of an inch wide, traversing the pegmatite.

Small fracture filling units about a foot in maximum thickness contained as much as 1 percent of beryl. Although the beryl content was extremely small, crystals more than 6 inches in diameter have been described.

Rare minerals are generally lacking from this pegmatite, but some molybdenite, columbite, uraninite and secondary uranium minerals have been found.


Regions containing this locality

North America PlateTectonic Plate

Select Mineral List Type

Standard Detailed Strunz Dana Chemical Elements

Mineral List


21 valid minerals. 1 erroneous literature entry.

Detailed Mineral List:

Albite
Formula: Na(AlSi3O8)
Habit: massive
Colour: white
Reference: Personally collected by Kevin Czaja.; Rocks and Minerals (1999) 74:110-121
'Allanite Group' ?
Formula: {A12+REE3+}{M3+2M32+}(Si2O7)(SiO4)O(OH)
Description: Listed in Table 1 in Betts (1999) with a question mark.
Reference: Betts, John. (1999): The Quarries and Minerals of the Dayton Road District, South Glastonbury, Connecticut. Rocks and Minerals. Volume 74, Number 2. pp. 110-121
Almandine
Formula: Fe2+3Al2(SiO4)3
Colour: red
Description: well formed up to 1/2-inch
Reference: Van King specimen; Rocks and Minerals (1999) 74:110-121
Annite
Formula: KFe2+3(AlSi3O10)(OH)2
Colour: black
Description: fka biotite
Reference: Van King specimen; Personally collected by Kevin Czaja.; Rocks and Minerals (1999) 74:110-121
Autunite
Formula: Ca(UO2)2(PO4)2 · 11H2O
Reference: Rocks and Minerals (1999) 74:110-121
Beryl
Formula: Be3Al2(Si6O18)
Colour: yellow-green
Description: crystals more than 6 inches in diameter have been described
Reference: Personally collected by Kevin Czaja.; Rocks and Minerals (1999) 74:110-121
Columbite-(Fe)
Formula: Fe2+Nb2O6
Colour: black
Description: masses and crystals up to 1/2-inch
Reference: Rocks and Minerals (1999) 74:110-121
Fluorapatite
Formula: Ca5(PO4)3F
Reference: Personally collected by Kevin Czaja; Betts (1999)
Fluorapatite var: Mn-bearing Fluorapatite
Formula: (Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
Reference: Rocks and Minerals (1999) 74:110-121
Meta-autunite
Formula: Ca(UO2)2(PO4)2 · 6-8H2O
Habit: thin crusts
Colour: pale yellow
Fluorescence: green
Description: Associated with other uranium minerals
Reference: Harold Moritz collection; Betts (1999)
Metatorbernite
Formula: Cu(UO2)2(PO4)2 · 8H2O
Habit: square, tabular
Colour: green
Description: as flaky coatings with not very distinct crystals
Reference: Harold Moritz collection; Betts (1999)
Microcline
Formula: K(AlSi3O8)
Colour: white
Description: seldom occurs in pure masses more than 3 feet across, well-formed crystal bordering quartz dikes
Reference: Personally collected by Kevin Czaja.; Rocks and Minerals (1999) 74:110-121
'Microlite Group' ?
Formula: A2-mTa2X6-wZ-n
Description: Listed in Table 1 in Betts (1999) with a question mark.
Reference: Betts, John. (1999): The Quarries and Minerals of the Dayton Road District, South Glastonbury, Connecticut. Rocks and Minerals. Volume 74, Number 2. pp. 110-121
Molybdenite
Formula: MoS2
Reference: Rocks and Minerals (1999) 74:110-121
'Monazite' ?
Description: Listed in Table 1 in Betts (1999) with a question mark.
Reference: Betts, John. (1999): The Quarries and Minerals of the Dayton Road District, South Glastonbury, Connecticut. Rocks and Minerals. Volume 74, Number 2. pp. 110-121
Muscovite
Formula: KAl2(AlSi3O10)(OH)2
Description: largest mica “books” were not more than 5 inches across and showed wedge structure, crumpling, or ruling
Reference: Personally collected by Kevin Czaja.; Rocks and Minerals (1999) 74:110-121
Opal
Formula: SiO2 · nH2O
Habit: thin coatings
Colour: colorless
Fluorescence: green
Description: coatings visible via their green fluorescence
Reference: Harold Moritz collection
Opal var: Opal-AN
Formula: SiO2 · nH2O
Habit: thin coatings
Colour: colorless
Fluorescence: green
Description: coatings visible via their green fluorescence
Reference: Harold Moritz collection
Pyrite
Formula: FeS2
Reference: Fred E Davis Collection
Pyrolusite
Formula: Mn4+O2
Reference: Rocks and Minerals (1999) 74:110-121
Quartz
Formula: SiO2
Reference: Personally collected by Kevin Czaja.; Rocks and Minerals (1999) 74:110-121
Quartz var: Smoky Quartz
Formula: SiO2
Colour: grey to black
Reference: Van King specimen
Samarskite-(Y)
Formula: YFe3+Nb2O8
Habit: tabular
Colour: black with brown coating
Description: Small crystals <1 cm associated with columbite.
Reference: Harold Moritz collection
Schorl
Formula: Na(Fe2+3)Al6(Si6O18)(BO3)3(OH)3(OH)
Colour: black
Description: none of the crystals observed were more than one-half inch in diameter. Occasionally it is present in granular masses of minute crystals that form veins, one-sixteenth to one-fourth of an inch wide
Reference: Personally collected by Kevin Czaja.; Rocks and Minerals (1999) 74:110-121
Torbernite
Formula: Cu(UO2)2(PO4)2 · 12H2O
Reference: Rocks and Minerals (1999) 74:110-121
Uraninite
Formula: UO2
Habit: crudely octahedral
Colour: black
Description: small blebs or crude octahedra, associated with colorful secondaries.
Reference: Harold Moritz collection
Uranophane
Formula: Ca(UO2)2(SiO3OH)2 · 5H2O
Reference: Personally collected by Kevin Czaja.
Xenotime-(Y) ?
Formula: Y(PO4)
Description: Listed on Table 1 in Betts (1999) with a question mark.
Reference: Betts, John. (1999): The Quarries and Minerals of the Dayton Road District, South Glastonbury, Connecticut. Rocks & Minerals: 74(2): 110-121.

List of minerals arranged by Strunz 10th Edition classification

Group 2 - Sulphides and Sulfosalts
Molybdenite2.EA.30MoS2
Pyrite2.EB.05aFeS2
Group 4 - Oxides and Hydroxides
Columbite-(Fe)4.DB.35Fe2+Nb2O6
'Microlite Group' ?4.00.A2-mTa2X6-wZ-n
Opal4.DA.10SiO2 · nH2O
var: Opal-AN4.DA.10SiO2 · nH2O
Pyrolusite ?4.DB.05Mn4+O2
Quartz4.DA.05SiO2
var: Smoky Quartz4.DA.05SiO2
Samarskite-(Y)4.DB.25YFe3+Nb2O8
Uraninite4.DL.05UO2
Group 8 - Phosphates, Arsenates and Vanadates
Autunite8.EB.05Ca(UO2)2(PO4)2 · 11H2O
Fluorapatite8.BN.05Ca5(PO4)3F
var: Mn-bearing Fluorapatite8.BN.05(Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
Meta-autunite8.EB.10Ca(UO2)2(PO4)2 · 6-8H2O
Metatorbernite8.EB.10Cu(UO2)2(PO4)2 · 8H2O
Torbernite8.EB.05Cu(UO2)2(PO4)2 · 12H2O
Xenotime-(Y) ?8.AD.35Y(PO4)
Group 9 - Silicates
Albite9.FA.35Na(AlSi3O8)
Almandine9.AD.25Fe2+3Al2(SiO4)3
Annite9.EC.20KFe2+3(AlSi3O10)(OH)2
Beryl9.CJ.05Be3Al2(Si6O18)
Microcline9.FA.30K(AlSi3O8)
Muscovite9.EC.15KAl2(AlSi3O10)(OH)2
Schorl9.CK.05Na(Fe2+3)Al6(Si6O18)(BO3)3(OH)3(OH)
Uranophane9.AK.15Ca(UO2)2(SiO3OH)2 · 5H2O
Unclassified Minerals, Rocks, etc.
'Allanite Group' ?-{A12+REE3+}{M3+2M32+}(Si2O7)(SiO4)O(OH)
'Monazite' ?-

List of minerals arranged by Dana 8th Edition classification

Group 2 - SULFIDES
AmBnXp, with (m+n):p = 1:2
Molybdenite2.12.10.1MoS2
Pyrite2.12.1.1FeS2
Group 4 - SIMPLE OXIDES
AX2
Pyrolusite ?4.4.1.4Mn4+O2
Group 5 - OXIDES CONTAINING URANIUM OR THORIUM
AXO2·xH2O
Uraninite5.1.1.1UO2
Group 8 - MULTIPLE OXIDES CONTAINING NIOBIUM,TANTALUM OR TITANIUM
ABO4
Samarskite-(Y)8.1.11.1YFe3+Nb2O8
A2B2O6(O,OH,F)
'Microlite Group' ?8.2.2.1A2-mTa2X6-wZ-n
AB2O6
Columbite-(Fe)8.3.2.2Fe2+Nb2O6
Group 40 - HYDRATED NORMAL PHOSPHATES,ARSENATES AND VANADATES
AB2(XO4)2·xH2O, containing (UO2)2+
Autunite40.2a.1.1Ca(UO2)2(PO4)2 · 11H2O
Meta-autunite40.2a.1.2Ca(UO2)2(PO4)2 · 6-8H2O
Metatorbernite40.2a.13.2Cu(UO2)2(PO4)2 · 8H2O
Torbernite40.2a.13.1Cu(UO2)2(PO4)2 · 12H2O
Group 41 - ANHYDROUS PHOSPHATES, ETC.CONTAINING HYDROXYL OR HALOGEN
A5(XO4)3Zq
Fluorapatite41.8.1.1Ca5(PO4)3F
Group 51 - NESOSILICATES Insular SiO4 Groups Only
Insular SiO4 Groups Only with cations in [6] and >[6] coordination
Almandine51.4.3a.2Fe2+3Al2(SiO4)3
Group 53 - NESOSILICATES Insular SiO4 Groups and Other Anions or Complex Cations
Insular SiO4 Groups and Other Anions of Complex Cations with (UO2)
Uranophane53.3.1.2Ca(UO2)2(SiO3OH)2 · 5H2O
Group 61 - CYCLOSILICATES Six-Membered Rings
Six-Membered Rings with [Si6O18] rings; possible (OH) and Al substitution
Beryl61.1.1.1Be3Al2(Si6O18)
Six-Membered Rings with borate groups
Schorl61.3.1.10Na(Fe2+3)Al6(Si6O18)(BO3)3(OH)3(OH)
Group 71 - PHYLLOSILICATES Sheets of Six-Membered Rings
Sheets of 6-membered rings with 2:1 layers
Annite71.2.2b.3KFe2+3(AlSi3O10)(OH)2
Muscovite71.2.2a.1KAl2(AlSi3O10)(OH)2
Group 75 - TECTOSILICATES Si Tetrahedral Frameworks
Si Tetrahedral Frameworks - SiO2 with [4] coordinated Si
Quartz75.1.3.1SiO2
Si Tetrahedral Frameworks - SiO2 with H2O and organics
Opal75.2.1.1SiO2 · nH2O
Group 76 - TECTOSILICATES Al-Si Framework
Al-Si Framework with Al-Si frameworks
Albite76.1.3.1Na(AlSi3O8)
Microcline76.1.1.5K(AlSi3O8)
Unclassified Minerals, Mixtures, etc.
'Allanite Group' ?-{A12+REE3+}{M3+2M32+}(Si2O7)(SiO4)O(OH)
Fluorapatite
var: Mn-bearing Fluorapatite
-(Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
'Monazite' ?-
Opal
var: Opal-AN
-SiO2 · nH2O
Quartz
var: Smoky Quartz
-SiO2
Xenotime-(Y) ?-Y(PO4)

List of minerals for each chemical element

HHydrogen
H AutuniteCa(UO2)2(PO4)2 · 11H2O
H TorberniteCu(UO2)2(PO4)2 · 12H2O
H UranophaneCa(UO2)2(SiO3OH)2 · 5H2O
H AnniteKFe32+(AlSi3O10)(OH)2
H Fluorapatite (var: Mn-bearing Fluorapatite)(Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
H MetatorberniteCu(UO2)2(PO4)2 · 8H2O
H Opal (var: Opal-AN)SiO2 · nH2O
H OpalSiO2 · nH2O
H MuscoviteKAl2(AlSi3O10)(OH)2
H SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
H Meta-autuniteCa(UO2)2(PO4)2 · 6-8H2O
H Allanite Group{A12+REE3+}{M23+M32+}(Si2O7)(SiO4)O(OH)
BeBeryllium
Be BerylBe3Al2(Si6O18)
BBoron
B SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
OOxygen
O AutuniteCa(UO2)2(PO4)2 · 11H2O
O TorberniteCu(UO2)2(PO4)2 · 12H2O
O UraniniteUO2
O FluorapatiteCa5(PO4)3F
O BerylBe3Al2(Si6O18)
O UranophaneCa(UO2)2(SiO3OH)2 · 5H2O
O AlmandineFe32+Al2(SiO4)3
O AnniteKFe32+(AlSi3O10)(OH)2
O Columbite-(Fe)Fe2+Nb2O6
O Fluorapatite (var: Mn-bearing Fluorapatite)(Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
O MetatorberniteCu(UO2)2(PO4)2 · 8H2O
O Opal (var: Opal-AN)SiO2 · nH2O
O OpalSiO2 · nH2O
O MicroclineK(AlSi3O8)
O MuscoviteKAl2(AlSi3O10)(OH)2
O SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
O Meta-autuniteCa(UO2)2(PO4)2 · 6-8H2O
O Samarskite-(Y)YFe3+Nb2O8
O AlbiteNa(AlSi3O8)
O QuartzSiO2
O Quartz (var: Smoky Quartz)SiO2
O Allanite Group{A12+REE3+}{M23+M32+}(Si2O7)(SiO4)O(OH)
O Xenotime-(Y)Y(PO4)
O PyrolusiteMn4+O2
FFluorine
F FluorapatiteCa5(PO4)3F
F Fluorapatite (var: Mn-bearing Fluorapatite)(Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
NaSodium
Na SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
Na AlbiteNa(AlSi3O8)
AlAluminium
Al BerylBe3Al2(Si6O18)
Al AlmandineFe32+Al2(SiO4)3
Al AnniteKFe32+(AlSi3O10)(OH)2
Al MicroclineK(AlSi3O8)
Al MuscoviteKAl2(AlSi3O10)(OH)2
Al SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
Al AlbiteNa(AlSi3O8)
SiSilicon
Si BerylBe3Al2(Si6O18)
Si UranophaneCa(UO2)2(SiO3OH)2 · 5H2O
Si AlmandineFe32+Al2(SiO4)3
Si AnniteKFe32+(AlSi3O10)(OH)2
Si Opal (var: Opal-AN)SiO2 · nH2O
Si OpalSiO2 · nH2O
Si MicroclineK(AlSi3O8)
Si MuscoviteKAl2(AlSi3O10)(OH)2
Si SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
Si AlbiteNa(AlSi3O8)
Si QuartzSiO2
Si Quartz (var: Smoky Quartz)SiO2
Si Allanite Group{A12+REE3+}{M23+M32+}(Si2O7)(SiO4)O(OH)
PPhosphorus
P AutuniteCa(UO2)2(PO4)2 · 11H2O
P TorberniteCu(UO2)2(PO4)2 · 12H2O
P FluorapatiteCa5(PO4)3F
P Fluorapatite (var: Mn-bearing Fluorapatite)(Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
P MetatorberniteCu(UO2)2(PO4)2 · 8H2O
P Meta-autuniteCa(UO2)2(PO4)2 · 6-8H2O
P Xenotime-(Y)Y(PO4)
SSulfur
S MolybdeniteMoS2
S PyriteFeS2
ClChlorine
Cl Fluorapatite (var: Mn-bearing Fluorapatite)(Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
KPotassium
K AnniteKFe32+(AlSi3O10)(OH)2
K MicroclineK(AlSi3O8)
K MuscoviteKAl2(AlSi3O10)(OH)2
CaCalcium
Ca AutuniteCa(UO2)2(PO4)2 · 11H2O
Ca FluorapatiteCa5(PO4)3F
Ca UranophaneCa(UO2)2(SiO3OH)2 · 5H2O
Ca Fluorapatite (var: Mn-bearing Fluorapatite)(Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
Ca Meta-autuniteCa(UO2)2(PO4)2 · 6-8H2O
MnManganese
Mn Fluorapatite (var: Mn-bearing Fluorapatite)(Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
Mn PyrolusiteMn4+O2
FeIron
Fe AlmandineFe32+Al2(SiO4)3
Fe AnniteKFe32+(AlSi3O10)(OH)2
Fe Columbite-(Fe)Fe2+Nb2O6
Fe PyriteFeS2
Fe SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
Fe Samarskite-(Y)YFe3+Nb2O8
CuCopper
Cu TorberniteCu(UO2)2(PO4)2 · 12H2O
Cu MetatorberniteCu(UO2)2(PO4)2 · 8H2O
YYttrium
Y Samarskite-(Y)YFe3+Nb2O8
Y Xenotime-(Y)Y(PO4)
NbNiobium
Nb Columbite-(Fe)Fe2+Nb2O6
Nb Samarskite-(Y)YFe3+Nb2O8
MoMolybdenum
Mo MolybdeniteMoS2
TaTantalum
Ta Microlite GroupA2-mTa2X6-wZ-n
UUranium
U AutuniteCa(UO2)2(PO4)2 · 11H2O
U TorberniteCu(UO2)2(PO4)2 · 12H2O
U UraniniteUO2
U UranophaneCa(UO2)2(SiO3OH)2 · 5H2O
U MetatorberniteCu(UO2)2(PO4)2 · 8H2O
U Meta-autuniteCa(UO2)2(PO4)2 · 6-8H2O

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
Sanford, Samuel and R. W. Stone. (1914): Useful Minerals of the United States. United States Geological Survey Bulletin 585.
Watts, A. S. (1916): The Feldspars of the New England and North Appalachian States. U. S. Bureau of Mines Bulletin 92.
Montague, S. A. (1937): Some Mineral Localities Near Portland, Conn. Rocks & Minerals: 12(5): 145.
Zodac, Peter (1941): The Andrews Quarry Near Portland, Conn. Rocks and Minerals: 16(5): 164-167.
Jones, Robert W. (1960): Luminescent Minerals of Connecticut, a Guide to Their Properties and Locations. Fluorescent House, Branford, Connecticut.
Foye, W. G. (1922): Mineral Localities in the Vicinity of Middletown, Connecticut. American Mineralogist: 7: 4-12.
Cameron, Eugene N., David M. Larrabee, Andrew H. McNair, James T. Page, Glenn W. Stewart, and Vincent E. Shainin. (1954): Pegmatite Investigations 1942-45 New England; USGS Professional Paper 255.
Schooner, Richard. (1958): The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut.
Stugard, Frederick, Jr. (1958): Pegmatites of the Middletown Area, Connecticut. U. S. Geological Survey Bulletin 1042-Q.
Schooner, Richard. (1961): The Mineralogy of Connecticut. Fluorescent House, Branford, Connecticut.
Ryerson, Kathleen. (1972): Rock Hound's Guide to Connecticut. Pequot Press.
Bastin, Edson S. (1910): Economic Geology Of The Feldspar Deposits Of The United States. U. S. Geological Survey Bulletin 420.
Stearns, H. T. (1983): Memoirs of a Geologist: From Poverty Peak to Piggery Gulch. Hawaii Institute of Geophysics, Honolulu.
Sterrett, Douglas B. (1923): Mica Deposits Of The United States. U. S. Geological Survey Bulletin 740.
Schairer, J. F. (1931): The Minerals of Connecticut. State Geological and Natural History Survey, Hartford, Conn. Bulletin 51.
Betts, John. (1996): The Quarries and Minerals of South Glastonbury, Connecticut. George F. Kunz Competition Papers 1996. New York Mineralogical Club.
Betts, John. (1999): The Quarries and Minerals of the Dayton Road District, South Glastonbury, Connecticut. Rocks & Minerals: 74(2): 110-121.


This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
 
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization. Public Relations by Blytheweigh.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2019, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: December 16, 2019 07:40:41 Page generated: August 18, 2019 20:57:17
Go to top of page