Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsBooks & Magazines
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryMineral Photography

Black Swan Ni Mine (Silver Swan; Cygnet), Kanowna Goldfield, Kalgoorlie-Boulder Shire, Western Australia, Australiai
Regional Level Types
Black Swan Ni Mine (Silver Swan; Cygnet)Mine
Kanowna GoldfieldOre Field
Kalgoorlie-Boulder ShireShire
Western AustraliaState
AustraliaCountry

This page is currently not sponsored. Click here to sponsor this page.
Key
Latitude & Longitude (WGS84):
30° 23' 39'' South , 121° 39' 15'' East
Latitude & Longitude (decimal):
Locality type:
Deposit first discovered:
1968 (approx.)
Köppen climate type:
Nearest Settlements:
PlacePopulationDistance
Kalgoorlie31,107 (2014)42.7km
Williamstown161 (2018)42.8km
Boulder5,178 (2017)45.8km


Ni deposit, located 53 km north north east of Kalgoorlie.

This small nickel deposit was discovered in the late 1960's during the nickel boom. The Silver Swan underground mine started in 1996 and the Black Swan open pit in 2004. Both were placed on care and maintenance in 2009. The mine was originally owned by MPI Mines Ltd, then was acquired by Lionore in 2004, in turn this company was taken over by Norilsk in 2009.

Black Swan is a disseminated deposit, further underground the Silver Swan is massive sulphide ore, and the Cygnet deposit is high grade disseminated ores lying underneath the Black Swan ore. All three are located in the Black Swan Komatiite, located in the upper greenschist to lower amphibolite facies of the metamorphosed felsic metasedimentary dominated Gindalbie Formation. The Black Swan Komatiite dips steeply north-east, 150-600 metres thick, and is 3 kilometres long. A large amount of the komatiite has been altered to carbonate-quartz-talc-sericite, and in the less altered areas is antigorite-carbonate-talc-chrysotile serpentinite.

The Black Swan deposit is low grade disseminated nickel accumulate, 400 metres south-east of Silver Swan, and 50 metres above the base of the Black Swan Komatiite. It is an elongate body, 350 metres long, with a central core of pyrite, millerite, violarite, surrounded by discrete smaller mineralised zones. Thickness and nickel grades decrease with depth. The disseminated sulphide is composed of up to 2mm interstitial olivine pseudomorphs, and also contains a rare droplet style up to 10mm across. Both are predominantly pyrite and lesser millerite, magnetite and minor violarite, chalcopyrite.

The Silver Swan deposit is a discrete, steeply plunging high grade massive sulphide shoot of pyrrhotite, pentlandite, pyrite, chalcopyrite, magnetite and ferrochromite. Mineralisation occurs on the footwall, 190-740 metres below the surface, up to 20 metres thick, 75 metres long, and dips at 45-75 degrees north-east. There is upper and lower lenses separated by a narrow neck. There is no sulphide mineralisation in the footwall or hanging wall. The massive sulphide is coarse grained with no banding or layering, although stringers and sub-parrallel lenses exists. The ore contains pyrrhotite and pentlandite with minor violarite, chalcopyrite, pyrite and gersdoffite.

Cygnet is a coherent uniform lens of disseminated pyrite, millerite, vaesite, 5-10 metres above the base of the Black Swan Komatiite. It partially overlaps the Black Swan Deposit. Cygnet is up to 40 metres thick, 190 metres long, dips 70 degrees north-east, with a vertical extent of 300 metres with Ni grade and thickness declining with depth. The gangue is coarsely crystalline interlocking plates of iron bearing magnesite breunnerite with minor quartz, with fine grained magnetite and sometimes chromite.




Regions containing this locality

Australian Plate (Australia Plate)Tectonic Plate
West Australian Element, Western Australia, AustraliaCraton
Yilgarn Craton, Western Australia, AustraliaCraton
Kambalda Nickel Metallogenic Province, Western Australia, AustraliaGeologic Province

Select Mineral List Type

Standard Detailed Strunz Dana Chemical Elements

Commodity List

This is a list of exploitable or exploited mineral commodities recorded at this locality.


Mineral List


30 valid minerals.

Rock Types Recorded

Note: this is a very new system on mindat.org and data is currently VERY limited. Please bear with us while we work towards adding this information!

Select Rock List Type

Alphabetical List Tree Diagram

Detailed Mineral List:

Antigorite
Formula: Mg3(Si2O5)(OH)4
Reference: Marston, R.J. (1984) Nickel Mineralization in Western Australia. Mineral Resources Bulletin 14, Geological Survey of Western Australia, 291 pages.; Barnes, S. J., Wells, M. A., & Verrall, M. R. (2009). Effects of magmatic processes, serpentinization, and talc-carbonate alteration on sulfide mineralogy and ore textures in the Black Swan disseminated nickel sulfide deposit, Yilgarn Craton. Economic Geology, 104(4), 539-562.
Arsenopyrite
Formula: FeAsS
Reference: Vukmanovic, Z. (2013) Microstructural Characterization of Sulphide and Oxide Minerals in Magmatic Sulphide ores. PhD Thesis, University of Western Australia, 200 pages plus tables. Baensch, A. (2000) The Mineralogy of the Massive Sulphides in the High Grade Silver Swan Massive Nickel Sulphide Deposit. With an emphasis on the distribution of arsenic and cobalt mineralisation. BSc. thesis, Curtin University of Technology, 225 pages.
Brucite
Formula: Mg(OH)2
Reference: Barnes, S. J., Wells, M. A., & Verrall, M. R. (2009). Effects of magmatic processes, serpentinization, and talc-carbonate alteration on sulfide mineralogy and ore textures in the Black Swan disseminated nickel sulfide deposit, Yilgarn Craton. Economic Geology, 104(4), 539-562.
Calcite
Formula: CaCO3
Reference: Vukmanovic, Z. (2013) Microstructural Characterization of Sulphide and Oxide Minerals in Magmatic Sulphide ores. PhD Thesis, University of Western Australia, 200 pages plus tables.
Chalcopyrite
Formula: CuFeS2
Reference: Marston, R.J. (1984) Nickel Mineralization in Western Australia. Mineral Resources Bulletin 14, Geological Survey of Western Australia, 291 pages. Baensch, A. (2000) The Mineralogy of the Massive Sulphides in the High Grade Silver Swan Massive Nickel Sulphide Deposit. With an emphasis on the distribution of arsenic and cobalt mineralisation. BSc. thesis, Curtin University of Technology, 225 pages.; Barnes, S. J., Wells, M. A., & Verrall, M. R. (2009). Effects of magmatic processes, serpentinization, and talc-carbonate alteration on sulfide mineralogy and ore textures in the Black Swan disseminated nickel sulfide deposit, Yilgarn Craton. Economic Geology, 104(4), 539-562.
'Chlorite Group'
Reference: Vukmanovic, Z. (2013) Microstructural Characterization of Sulphide and Oxide Minerals in Magmatic Sulphide ores. PhD Thesis, University of Western Australia, 200 pages plus tables.; Barnes, S. J., Wells, M. A., & Verrall, M. R. (2009). Effects of magmatic processes, serpentinization, and talc-carbonate alteration on sulfide mineralogy and ore textures in the Black Swan disseminated nickel sulfide deposit, Yilgarn Craton. Economic Geology, 104(4), 539-562.
Chloritoid
Formula: (Fe2+,Mg,Mn2+)Al2(SiO4)O(OH)2
Reference: Baensch, A. (2000) The Mineralogy of the Massive Sulphides in the High Grade Silver Swan Massive Nickel Sulphide Deposit. With an emphasis on the distribution of arsenic and cobalt mineralisation. BSc. thesis, Curtin University of Technology, 225 pages.
Chromite
Formula: Fe2+Cr3+2O4
Reference: Marston, R.J. (1984) Nickel Mineralization in Western Australia. Mineral Resources Bulletin 14, Geological Survey of Western Australia, 291 pages. Baensch, A. (2000) The Mineralogy of the Massive Sulphides in the High Grade Silver Swan Massive Nickel Sulphide Deposit. With an emphasis on the distribution of arsenic and cobalt mineralisation. BSc. thesis, Curtin University of Technology, 225 pages.
Chrysotile
Formula: Mg3(Si2O5)(OH)4
Reference: Marston, R.J. (1984) Nickel Mineralization in Western Australia. Mineral Resources Bulletin 14, Geological Survey of Western Australia, 291 pages.
Clinochlore
Formula: Mg5Al(AlSi3O10)(OH)8
Reference: Barnes, S. J., Wells, M. A., & Verrall, M. R. (2009). Effects of magmatic processes, serpentinization, and talc-carbonate alteration on sulfide mineralogy and ore textures in the Black Swan disseminated nickel sulfide deposit, Yilgarn Craton. Economic Geology, 104(4), 539-562.
Covellite
Formula: CuS
Reference: Barnes, S. J., Wells, M. A., & Verrall, M. R. (2009). Effects of magmatic processes, serpentinization, and talc-carbonate alteration on sulfide mineralogy and ore textures in the Black Swan disseminated nickel sulfide deposit, Yilgarn Craton. Economic Geology, 104(4), 539-562.
Dolomite
Formula: CaMg(CO3)2
Reference: Baensch, A. (2000) The Mineralogy of the Massive Sulphides in the High Grade Silver Swan Massive Nickel Sulphide Deposit. With an emphasis on the distribution of arsenic and cobalt mineralisation. BSc. thesis, Curtin University of Technology, 225 pages.; Barnes, S. J., Wells, M. A., & Verrall, M. R. (2009). Effects of magmatic processes, serpentinization, and talc-carbonate alteration on sulfide mineralogy and ore textures in the Black Swan disseminated nickel sulfide deposit, Yilgarn Craton. Economic Geology, 104(4), 539-562.
'Fayalite-Forsterite Series'
Reference: Marston, R.J. (1984) Nickel Mineralization in Western Australia. Mineral Resources Bulletin 14, Geological Survey of Western Australia, 291 pages.; Barnes, S. J., Wells, M. A., & Verrall, M. R. (2009). Effects of magmatic processes, serpentinization, and talc-carbonate alteration on sulfide mineralogy and ore textures in the Black Swan disseminated nickel sulfide deposit, Yilgarn Craton. Economic Geology, 104(4), 539-562.
Gersdorffite
Formula: NiAsS
Reference: Marston, R.J. (1984) Nickel Mineralization in Western Australia. Mineral Resources Bulletin 14, Geological Survey of Western Australia, 291 pages. Baensch, A. (2000) The Mineralogy of the Massive Sulphides in the High Grade Silver Swan Massive Nickel Sulphide Deposit. With an emphasis on the distribution of arsenic and cobalt mineralisation. BSc. thesis, Curtin University of Technology, 225 pages.; Barnes, S. J., Wells, M. A., & Verrall, M. R. (2009). Effects of magmatic processes, serpentinization, and talc-carbonate alteration on sulfide mineralogy and ore textures in the Black Swan disseminated nickel sulfide deposit, Yilgarn Craton. Economic Geology, 104(4), 539-562.
Gold
Formula: Au
Reference: Baensch, A. (2000) The Mineralogy of the Massive Sulphides in the High Grade Silver Swan Massive Nickel Sulphide Deposit. With an emphasis on the distribution of arsenic and cobalt mineralisation. BSc. thesis, Curtin University of Technology, 225 pages.
Hydrotalcite
Formula: Mg6Al2(CO3)(OH)16 · 4H2O
Reference: Barnes, S. J., Wells, M. A., & Verrall, M. R. (2009). Effects of magmatic processes, serpentinization, and talc-carbonate alteration on sulfide mineralogy and ore textures in the Black Swan disseminated nickel sulfide deposit, Yilgarn Craton. Economic Geology, 104(4), 539-562.
Iowaite
Formula: Mg6Fe3+2(OH)16Cl2 · 4H2O
Reference: Barnes, S. J., Wells, M. A., & Verrall, M. R. (2009). Effects of magmatic processes, serpentinization, and talc-carbonate alteration on sulfide mineralogy and ore textures in the Black Swan disseminated nickel sulfide deposit, Yilgarn Craton. Economic Geology, 104(4), 539-562.
Lizardite
Formula: Mg3(Si2O5)(OH)4
Reference: Barnes, S. J., Wells, M. A., & Verrall, M. R. (2009). Effects of magmatic processes, serpentinization, and talc-carbonate alteration on sulfide mineralogy and ore textures in the Black Swan disseminated nickel sulfide deposit, Yilgarn Craton. Economic Geology, 104(4), 539-562.
Magnesite
Formula: MgCO3
Reference: Marston, R.J. (1984) Nickel Mineralization in Western Australia. Mineral Resources Bulletin 14, Geological Survey of Western Australia, 291 pages.; Barnes, S. J., Wells, M. A., & Verrall, M. R. (2009). Effects of magmatic processes, serpentinization, and talc-carbonate alteration on sulfide mineralogy and ore textures in the Black Swan disseminated nickel sulfide deposit, Yilgarn Craton. Economic Geology, 104(4), 539-562.
Magnesite var: Breunnerite
Formula: (Mg,Fe)CO3
Reference: Marston, R.J. (1984) Nickel Mineralization in Western Australia. Mineral Resources Bulletin 14, Geological Survey of Western Australia, 291 pages. http://www.portergeo.com.au/database/mineinfo.asp?mineid=mn158
Magnetite
Formula: Fe2+Fe3+2O4
Reference: Marston, R.J. (1984) Nickel Mineralization in Western Australia. Mineral Resources Bulletin 14, Geological Survey of Western Australia, 291 pages. Baensch, A. (2000) The Mineralogy of the Massive Sulphides in the High Grade Silver Swan Massive Nickel Sulphide Deposit. With an emphasis on the distribution of arsenic and cobalt mineralisation. BSc. thesis, Curtin University of Technology, 225 pages.; Barnes, S. J., Wells, M. A., & Verrall, M. R. (2009). Effects of magmatic processes, serpentinization, and talc-carbonate alteration on sulfide mineralogy and ore textures in the Black Swan disseminated nickel sulfide deposit, Yilgarn Craton. Economic Geology, 104(4), 539-562.
Millerite
Formula: NiS
Reference: Marston, R.J. (1984) Nickel Mineralization in Western Australia. Mineral Resources Bulletin 14, Geological Survey of Western Australia, 291 pages. Vukmanovic, Z. (2013) Microstructural Characterization of Sulphide and Oxide Minerals in Magmatic Sulphide ores. PhD Thesis, University of Western Australia, 200 pages plus tables. Baensch, A. (2000) The Mineralogy of the Massive Sulphides in the High Grade Silver Swan Massive Nickel Sulphide Deposit. With an emphasis on the distribution of arsenic and cobalt mineralisation. BSc. thesis, Curtin University of Technology, 225 pages.; Barnes, S. J., Wells, M. A., & Verrall, M. R. (2009). Effects of magmatic processes, serpentinization, and talc-carbonate alteration on sulfide mineralogy and ore textures in the Black Swan disseminated nickel sulfide deposit, Yilgarn Craton. Economic Geology, 104(4), 539-562.
Muscovite
Formula: KAl2(AlSi3O10)(OH)2
Reference: Marston, R.J. (1984) Nickel Mineralization in Western Australia. Mineral Resources Bulletin 14, Geological Survey of Western Australia, 291 pages.
Muscovite var: Fuchsite
Formula: K(Al,Cr)3Si3O10(OH)2
Reference: Baensch, A. (2000) The Mineralogy of the Massive Sulphides in the High Grade Silver Swan Massive Nickel Sulphide Deposit. With an emphasis on the distribution of arsenic and cobalt mineralisation. BSc. thesis, Curtin University of Technology, 225 pages.
Muscovite var: Sericite
Formula: KAl2(AlSi3O10)(OH)2
Reference: http://www.portergeo.com.au/database/mineinfo.asp?mineid=mn158; Marston, R.J. (1984) Nickel Mineralization in Western Australia. Mineral Resources Bulletin 14, Geological Survey of Western Australia, 291 pages. Baensch, A. (2000) The Mineralogy of the Massive Sulphides in the High Grade Silver Swan Massive Nickel Sulphide Deposit. With an emphasis on the distribution of arsenic and cobalt mineralisation. BSc. thesis, Curtin University of Technology, 225 pages.
Pentlandite
Formula: (FexNiy)Σ9S8
Reference: Marston, R.J. (1984) Nickel Mineralization in Western Australia. Mineral Resources Bulletin 14, Geological Survey of Western Australia, 291 pages. Vukmanovic, Z. (2013) Microstructural Characterization of Sulphide and Oxide Minerals in Magmatic Sulphide ores. PhD Thesis, University of Western Australia, 200 pages plus tables. Baensch, A. (2000) The Mineralogy of the Massive Sulphides in the High Grade Silver Swan Massive Nickel Sulphide Deposit. With an emphasis on the distribution of arsenic and cobalt mineralisation. BSc. thesis, Curtin University of Technology, 225 pages.; Barnes, S. J., Wells, M. A., & Verrall, M. R. (2009). Effects of magmatic processes, serpentinization, and talc-carbonate alteration on sulfide mineralogy and ore textures in the Black Swan disseminated nickel sulfide deposit, Yilgarn Craton. Economic Geology, 104(4), 539-562.
Polydymite
Formula: Ni2+Ni3+2S4
Reference: Marston, R.J. (1984) Nickel Mineralization in Western Australia. Mineral Resources Bulletin 14, Geological Survey of Western Australia, 291 pages. Baensch, A. (2000) The Mineralogy of the Massive Sulphides in the High Grade Silver Swan Massive Nickel Sulphide Deposit. With an emphasis on the distribution of arsenic and cobalt mineralisation. BSc. thesis, Curtin University of Technology, 225 pages.; Barnes, S. J., Wells, M. A., & Verrall, M. R. (2009). Effects of magmatic processes, serpentinization, and talc-carbonate alteration on sulfide mineralogy and ore textures in the Black Swan disseminated nickel sulfide deposit, Yilgarn Craton. Economic Geology, 104(4), 539-562.
Pyrite
Formula: FeS2
Reference: Marston, R.J. (1984) Nickel Mineralization in Western Australia. Mineral Resources Bulletin 14, Geological Survey of Western Australia, 291 pages. Baensch, A. (2000) The Mineralogy of the Massive Sulphides in the High Grade Silver Swan Massive Nickel Sulphide Deposit. With an emphasis on the distribution of arsenic and cobalt mineralisation. BSc. thesis, Curtin University of Technology, 225 pages. Vukmanovic, Z. (2013) Microstructural Characterization of Sulphide and Oxide Minerals in Magmatic Sulphide ores. PhD Thesis, University of Western Australia, 200 pages plus tables.; Barnes, S. J., Wells, M. A., & Verrall, M. R. (2009). Effects of magmatic processes, serpentinization, and talc-carbonate alteration on sulfide mineralogy and ore textures in the Black Swan disseminated nickel sulfide deposit, Yilgarn Craton. Economic Geology, 104(4), 539-562.
Pyroaurite
Formula: Mg6Fe3+2(OH)16[CO3] · 4H2O
Reference: Barnes, S. J., Wells, M. A., & Verrall, M. R. (2009). Effects of magmatic processes, serpentinization, and talc-carbonate alteration on sulfide mineralogy and ore textures in the Black Swan disseminated nickel sulfide deposit, Yilgarn Craton. Economic Geology, 104(4), 539-562.
Pyrrhotite
Formula: Fe7S8
Reference: Marston, R.J. (1984) Nickel Mineralization in Western Australia. Mineral Resources Bulletin 14, Geological Survey of Western Australia, 291 pages. Baensch, A. (2000) The Mineralogy of the Massive Sulphides in the High Grade Silver Swan Massive Nickel Sulphide Deposit. With an emphasis on the distribution of arsenic and cobalt mineralisation. BSc. thesis, Curtin University of Technology, 225 pages. ; Barnes, S. J., Wells, M. A., & Verrall, M. R. (2009). Effects of magmatic processes, serpentinization, and talc-carbonate alteration on sulfide mineralogy and ore textures in the Black Swan disseminated nickel sulfide deposit, Yilgarn Craton. Economic Geology, 104(4), 539-562.
Quartz
Formula: SiO2
Reference: http://www.portergeo.com.au/database/mineinfo.asp?mineid=mn158 Baensch, A. (2000) The Mineralogy of the Massive Sulphides in the High Grade Silver Swan Massive Nickel Sulphide Deposit. With an emphasis on the distribution of arsenic and cobalt mineralisation. BSc. thesis, Curtin University of Technology, 225 pages.
'Serpentine Subgroup'
Formula: D3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn
Reference: Barnes, S. J., Wells, M. A., & Verrall, M. R. (2009). Effects of magmatic processes, serpentinization, and talc-carbonate alteration on sulfide mineralogy and ore textures in the Black Swan disseminated nickel sulfide deposit, Yilgarn Craton. Economic Geology, 104(4), 539-562.
Sphalerite
Formula: ZnS
Reference: Baensch, A. (2000) The Mineralogy of the Massive Sulphides in the High Grade Silver Swan Massive Nickel Sulphide Deposit. With an emphasis on the distribution of arsenic and cobalt mineralisation. BSc. thesis, Curtin University of Technology, 225 pages.
Talc
Formula: Mg3Si4O10(OH)2
Reference: Marston, R.J. (1984) Nickel Mineralization in Western Australia. Mineral Resources Bulletin 14, Geological Survey of Western Australia, 291 pages. Baensch, A. (2000) The Mineralogy of the Massive Sulphides in the High Grade Silver Swan Massive Nickel Sulphide Deposit. With an emphasis on the distribution of arsenic and cobalt mineralisation. BSc. thesis, Curtin University of Technology, 225 pages. Vukmanovic, Z. (2013) Microstructural Characterization of Sulphide and Oxide Minerals in Magmatic Sulphide ores. PhD Thesis, University of Western Australia, 200 pages plus tables.; Barnes, S. J., Wells, M. A., & Verrall, M. R. (2009). Effects of magmatic processes, serpentinization, and talc-carbonate alteration on sulfide mineralogy and ore textures in the Black Swan disseminated nickel sulfide deposit, Yilgarn Craton. Economic Geology, 104(4), 539-562.
Vaesite
Formula: NiS2
Reference: Marston, R.J. (1984) Nickel Mineralization in Western Australia. Mineral Resources Bulletin 14, Geological Survey of Western Australia, 291 pages. Baensch, A. (2000) The Mineralogy of the Massive Sulphides in the High Grade Silver Swan Massive Nickel Sulphide Deposit. With an emphasis on the distribution of arsenic and cobalt mineralisation. BSc. thesis, Curtin University of Technology, 225 pages.; Barnes, S. J., Wells, M. A., & Verrall, M. R. (2009). Effects of magmatic processes, serpentinization, and talc-carbonate alteration on sulfide mineralogy and ore textures in the Black Swan disseminated nickel sulfide deposit, Yilgarn Craton. Economic Geology, 104(4), 539-562.
Violarite
Formula: Fe2+Ni3+2S4
Reference: Marston, R.J. (1984) Nickel Mineralization in Western Australia. Mineral Resources Bulletin 14, Geological Survey of Western Australia, 291 pages. Baensch, A. (2000) The Mineralogy of the Massive Sulphides in the High Grade Silver Swan Massive Nickel Sulphide Deposit. With an emphasis on the distribution of arsenic and cobalt mineralisation. BSc. thesis, Curtin University of Technology, 225 pages.; Barnes, S. J., Wells, M. A., & Verrall, M. R. (2009). Effects of magmatic processes, serpentinization, and talc-carbonate alteration on sulfide mineralogy and ore textures in the Black Swan disseminated nickel sulfide deposit, Yilgarn Craton. Economic Geology, 104(4), 539-562.

List of minerals arranged by Strunz 10th Edition classification

Group 1 - Elements
Gold1.AA.05Au
Group 2 - Sulphides and Sulfosalts
Arsenopyrite2.EB.20FeAsS
Chalcopyrite2.CB.10aCuFeS2
Covellite2.CA.05aCuS
Gersdorffite2.EB.25NiAsS
Millerite2.CC.20NiS
Pentlandite2.BB.15(FexNiy)Σ9S8
Polydymite2.DA.05Ni2+Ni3+2S4
Pyrite2.EB.05aFeS2
Pyrrhotite2.CC.10Fe7S8
Sphalerite2.CB.05aZnS
Vaesite2.EB.05aNiS2
Violarite2.DA.05Fe2+Ni3+2S4
Group 4 - Oxides and Hydroxides
Brucite4.FE.05Mg(OH)2
Chromite4.BB.05Fe2+Cr3+2O4
Iowaite4.FL.05Mg6Fe3+2(OH)16Cl2 · 4H2O
Magnetite4.BB.05Fe2+Fe3+2O4
Quartz4.DA.05SiO2
Group 5 - Nitrates and Carbonates
Calcite5.AB.05CaCO3
Dolomite5.AB.10CaMg(CO3)2
Hydrotalcite5.DA.50Mg6Al2(CO3)(OH)16 · 4H2O
Magnesite5.AB.05MgCO3
var: Breunnerite5.AB.05(Mg,Fe)CO3
Pyroaurite5.DA.50Mg6Fe3+2(OH)16[CO3] · 4H2O
Group 9 - Silicates
Antigorite9.ED.15Mg3(Si2O5)(OH)4
Chloritoid9.AF.85(Fe2+,Mg,Mn2+)Al2(SiO4)O(OH)2
Chrysotile9.ED.15Mg3(Si2O5)(OH)4
Clinochlore9.EC.55Mg5Al(AlSi3O10)(OH)8
Lizardite9.ED.15Mg3(Si2O5)(OH)4
Muscovite9.EC.15KAl2(AlSi3O10)(OH)2
var: Fuchsite9.EC.15K(Al,Cr)3Si3O10(OH)2
var: Sericite9.EC.15KAl2(AlSi3O10)(OH)2
Talc9.EC.05Mg3Si4O10(OH)2
Unclassified Minerals, Rocks, etc.
'Chlorite Group'-
'Fayalite-Forsterite Series'-
'Serpentine Subgroup'-D3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn

List of minerals arranged by Dana 8th Edition classification

Group 1 - NATIVE ELEMENTS AND ALLOYS
Metals, other than the Platinum Group
Gold1.1.1.1Au
Group 2 - SULFIDES
AmBnXp, with (m+n):p = 9:8
Pentlandite2.7.1.1(FexNiy)Σ9S8
AmXp, with m:p = 1:1
Covellite2.8.12.1CuS
Millerite2.8.16.1NiS
Pyrrhotite2.8.10.1Fe7S8
Sphalerite2.8.2.1ZnS
AmBnXp, with (m+n):p = 1:1
Chalcopyrite2.9.1.1CuFeS2
AmBnXp, with (m+n):p = 3:4
Polydymite2.10.1.7Ni2+Ni3+2S4
Violarite2.10.1.8Fe2+Ni3+2S4
AmBnXp, with (m+n):p = 1:2
Arsenopyrite2.12.4.1FeAsS
Gersdorffite2.12.3.2NiAsS
Pyrite2.12.1.1FeS2
Vaesite2.12.1.2NiS2
Group 6 - HYDROXIDES AND OXIDES CONTAINING HYDROXYL
X(OH)2
Brucite6.2.1.1Mg(OH)2
Miscellaneous
Iowaite6.4.5.1Mg6Fe3+2(OH)16Cl2 · 4H2O
Group 7 - MULTIPLE OXIDES
AB2X4
Chromite7.2.3.3Fe2+Cr3+2O4
Magnetite7.2.2.3Fe2+Fe3+2O4
Group 14 - ANHYDROUS NORMAL CARBONATES
A(XO3)
Calcite14.1.1.1CaCO3
Magnesite14.1.1.2MgCO3
AB(XO3)2
Dolomite14.2.1.1CaMg(CO3)2
Group 16b - HYDRATED CARBONATES CONTAINING HYDROXYL OR HALOGEN
Hydrotalcite16b.6.2.1Mg6Al2(CO3)(OH)16 · 4H2O
Pyroaurite16b.6.2.3Mg6Fe3+2(OH)16[CO3] · 4H2O
Group 52 - NESOSILICATES Insular SiO4 Groups and O,OH,F,H2O
Insular SiO4 Groups and O, OH, F, and H2O with cations in [6] coordination only
Chloritoid52.3.3.1(Fe2+,Mg,Mn2+)Al2(SiO4)O(OH)2
Group 71 - PHYLLOSILICATES Sheets of Six-Membered Rings
Sheets of 6-membered rings with 1:1 layers
Antigorite71.1.2a.1Mg3(Si2O5)(OH)4
Chrysotile71.1.5.1Mg3(Si2O5)(OH)4
Lizardite71.1.2b.2Mg3(Si2O5)(OH)4
Sheets of 6-membered rings with 2:1 layers
Muscovite71.2.2a.1KAl2(AlSi3O10)(OH)2
Talc71.2.1.3Mg3Si4O10(OH)2
Sheets of 6-membered rings interlayered 1:1, 2:1, and octahedra
Clinochlore71.4.1.4Mg5Al(AlSi3O10)(OH)8
Group 75 - TECTOSILICATES Si Tetrahedral Frameworks
Si Tetrahedral Frameworks - SiO2 with [4] coordinated Si
Quartz75.1.3.1SiO2
Unclassified Minerals, Mixtures, etc.
'Chlorite Group'-
'Fayalite-Forsterite Series'-
Magnesite
var: Breunnerite
-(Mg,Fe)CO3
Muscovite
var: Fuchsite
-K(Al,Cr)3Si3O10(OH)2
var: Sericite-KAl2(AlSi3O10)(OH)2
'Serpentine Subgroup'-D3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn

List of minerals for each chemical element

HHydrogen
H TalcMg3Si4O10(OH)2
H AntigoriteMg3(Si2O5)(OH)4
H ChrysotileMg3(Si2O5)(OH)4
H Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
H MuscoviteKAl2(AlSi3O10)(OH)2
H Chloritoid(Fe2+,Mg,Mn2+)Al2(SiO4)O(OH)2
H Muscovite (var: Fuchsite)K(Al,Cr)3Si3O10(OH)2
H BruciteMg(OH)2
H ClinochloreMg5Al(AlSi3O10)(OH)8
H HydrotalciteMg6Al2(CO3)(OH)16 · 4H2O
H IowaiteMg6Fe23+(OH)16Cl2 · 4H2O
H LizarditeMg3(Si2O5)(OH)4
H PyroauriteMg6Fe23+(OH)16[CO3] · 4H2O
H Serpentine SubgroupD3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn
CCarbon
C MagnesiteMgCO3
C Magnesite (var: Breunnerite)(Mg,Fe)CO3
C CalciteCaCO3
C DolomiteCaMg(CO3)2
C HydrotalciteMg6Al2(CO3)(OH)16 · 4H2O
C PyroauriteMg6Fe23+(OH)16[CO3] · 4H2O
OOxygen
O TalcMg3Si4O10(OH)2
O MagnesiteMgCO3
O MagnetiteFe2+Fe23+O4
O AntigoriteMg3(Si2O5)(OH)4
O ChrysotileMg3(Si2O5)(OH)4
O ChromiteFe2+Cr23+O4
O Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
O Magnesite (var: Breunnerite)(Mg,Fe)CO3
O CalciteCaCO3
O MuscoviteKAl2(AlSi3O10)(OH)2
O QuartzSiO2
O DolomiteCaMg(CO3)2
O Chloritoid(Fe2+,Mg,Mn2+)Al2(SiO4)O(OH)2
O Muscovite (var: Fuchsite)K(Al,Cr)3Si3O10(OH)2
O BruciteMg(OH)2
O ClinochloreMg5Al(AlSi3O10)(OH)8
O HydrotalciteMg6Al2(CO3)(OH)16 · 4H2O
O IowaiteMg6Fe23+(OH)16Cl2 · 4H2O
O LizarditeMg3(Si2O5)(OH)4
O PyroauriteMg6Fe23+(OH)16[CO3] · 4H2O
O Serpentine SubgroupD3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn
MgMagnesium
Mg TalcMg3Si4O10(OH)2
Mg MagnesiteMgCO3
Mg AntigoriteMg3(Si2O5)(OH)4
Mg ChrysotileMg3(Si2O5)(OH)4
Mg Magnesite (var: Breunnerite)(Mg,Fe)CO3
Mg DolomiteCaMg(CO3)2
Mg BruciteMg(OH)2
Mg ClinochloreMg5Al(AlSi3O10)(OH)8
Mg HydrotalciteMg6Al2(CO3)(OH)16 · 4H2O
Mg IowaiteMg6Fe23+(OH)16Cl2 · 4H2O
Mg LizarditeMg3(Si2O5)(OH)4
Mg PyroauriteMg6Fe23+(OH)16[CO3] · 4H2O
Mg Serpentine SubgroupD3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn
AlAluminium
Al Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
Al MuscoviteKAl2(AlSi3O10)(OH)2
Al Chloritoid(Fe2+,Mg,Mn2+)Al2(SiO4)O(OH)2
Al Muscovite (var: Fuchsite)K(Al,Cr)3Si3O10(OH)2
Al ClinochloreMg5Al(AlSi3O10)(OH)8
Al HydrotalciteMg6Al2(CO3)(OH)16 · 4H2O
Al Serpentine SubgroupD3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn
SiSilicon
Si TalcMg3Si4O10(OH)2
Si AntigoriteMg3(Si2O5)(OH)4
Si ChrysotileMg3(Si2O5)(OH)4
Si Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
Si MuscoviteKAl2(AlSi3O10)(OH)2
Si QuartzSiO2
Si Chloritoid(Fe2+,Mg,Mn2+)Al2(SiO4)O(OH)2
Si Muscovite (var: Fuchsite)K(Al,Cr)3Si3O10(OH)2
Si ClinochloreMg5Al(AlSi3O10)(OH)8
Si LizarditeMg3(Si2O5)(OH)4
Si Serpentine SubgroupD3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn
SSulfur
S ViolariteFe2+Ni23+S4
S ChalcopyriteCuFeS2
S Pentlandite(FexNiy)Σ9S8
S VaesiteNiS2
S PolydymiteNi2+Ni23+S4
S PyriteFeS2
S MilleriteNiS
S PyrrhotiteFe7S8
S GersdorffiteNiAsS
S ArsenopyriteFeAsS
S SphaleriteZnS
S CovelliteCuS
ClChlorine
Cl IowaiteMg6Fe23+(OH)16Cl2 · 4H2O
KPotassium
K Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
K MuscoviteKAl2(AlSi3O10)(OH)2
K Muscovite (var: Fuchsite)K(Al,Cr)3Si3O10(OH)2
CaCalcium
Ca CalciteCaCO3
Ca DolomiteCaMg(CO3)2
CrChromium
Cr ChromiteFe2+Cr23+O4
Cr Muscovite (var: Fuchsite)K(Al,Cr)3Si3O10(OH)2
MnManganese
Mn Serpentine SubgroupD3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn
FeIron
Fe MagnetiteFe2+Fe23+O4
Fe ViolariteFe2+Ni23+S4
Fe ChalcopyriteCuFeS2
Fe Pentlandite(FexNiy)Σ9S8
Fe PyriteFeS2
Fe ChromiteFe2+Cr23+O4
Fe PyrrhotiteFe7S8
Fe Magnesite (var: Breunnerite)(Mg,Fe)CO3
Fe ArsenopyriteFeAsS
Fe Chloritoid(Fe2+,Mg,Mn2+)Al2(SiO4)O(OH)2
Fe IowaiteMg6Fe23+(OH)16Cl2 · 4H2O
Fe PyroauriteMg6Fe23+(OH)16[CO3] · 4H2O
Fe Serpentine SubgroupD3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn
NiNickel
Ni ViolariteFe2+Ni23+S4
Ni Pentlandite(FexNiy)Σ9S8
Ni VaesiteNiS2
Ni PolydymiteNi2+Ni23+S4
Ni MilleriteNiS
Ni GersdorffiteNiAsS
Ni Serpentine SubgroupD3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn
CuCopper
Cu ChalcopyriteCuFeS2
Cu CovelliteCuS
ZnZinc
Zn SphaleriteZnS
Zn Serpentine SubgroupD3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn
AsArsenic
As GersdorffiteNiAsS
As ArsenopyriteFeAsS
AuGold
Au GoldAu

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
Marston, R.J. (1984) Nickel Mineralization in Western Australia. Mineral Resources Bulletin 14, Geological Survey of Western Australia, 291 pages. 
Baensch, A. (2000) The Mineralogy of the Massive Sulphides in the High Grade Silver Swan Massive Nickel Sulphide Deposit. With an emphasis on the distribution of arsenic and cobalt mineralisation. BSc. thesis, Curtin University of Technology, 225 pages.
Barnes, S. J., Wells, M. A., & Verrall, M. R. (2009). Effects of magmatic processes, serpentinization, and talc-carbonate alteration on sulfide mineralogy and ore textures in the Black Swan disseminated nickel sulfide deposit, Yilgarn Craton. Economic Geology, 104(4), 539-562.

External Links



This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
 
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization. Public Relations by Blytheweigh.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2020, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: January 20, 2020 00:49:38 Page generated: August 28, 2019 11:40:28
Go to top of page