SUPPORT US. If mindat.org is important to you, click here to donate to our Fall 2019 fundraiser!
Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsBooks & Magazines
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryMineral Photography

Allegan meteorite, Thomas Hill, Allegan, Allegan Co., Michigan, USAi
Regional Level Types
Allegan meteoriteMeteorite Fall Location
Thomas HillHill
Allegan- not defined -
Allegan Co.County
MichiganState
USACountry

This page is currently not sponsored. Click here to sponsor this page.
Key
Lock Map
Latitude & Longitude (WGS84): 42° 31' 59'' North , 85° 52' 59'' West
Latitude & Longitude (decimal): 42.53333,-85.88333
GeoHash:G#: dpdcvwvwt
Locality type:Meteorite Fall Location
Meteorite Class:H5 chondrite meteorite
Meteoritical Society Class:H5
Metbull:View entry in Meteoritical Bulletin Database
Köppen climate type:Dfb : Warm-summer humid continental climate
Nearest Settlements:
PlacePopulationDistance
Allegan5,071 (2017)2.3km
Hopkins608 (2017)14.2km
Otsego3,991 (2017)17.3km
Bloomingdale442 (2017)17.8km
Fennville1,400 (2017)19.1km


Fall July 10, 1899 8am. 31.75kg
Ordinary high-iron (olivine-bronzite) chondrite [H5, S1, W0]

After detonations, a single stone fell. Total iron (28.5 wt%) and olivine composition (~Fa18) are consistent with those of ordinary H chondrites. Most of the mass has been held at the U.S. National Museum in Washington (~20 kg in 2000).

Regions containing this locality

North America PlateTectonic Plate

Select Mineral List Type

Standard Detailed Strunz Dana Chemical Elements

Mineral List


13 valid minerals.

Meteorite/Rock Types Recorded

Note: this is a very new system on mindat.org and data is currently VERY limited. Please bear with us while we work towards adding this information!

Select Rock List Type

Alphabetical List Tree Diagram

Detailed Mineral List:

'Albite-Anorthite Series'
Description: Plagioclase is albitic, but variable (An12-28)
Reference: Brearley, A.J. & Jones, R.H. (1998) Chondritic Meteorites. In: Planetary Materials, Chapter 3; Papike, J.J.-Ed.: Mineralogical Society of America: Washington, DC, USA. 398 pages.; Dunn, T.L., Cressy, G., McSween Jr, H.Y. & McCoy, T.J. (2010) Analysis of ordinary chondrites using powder X-ray diffraction: 1. Modal mineral abundances. MAPS 45(1):123-134. (Jan 2010).; Kessel, R., Beckett, J.R. & Stolper, E.M. (2007) The thermal history of equilibrated ordinary chondrites and the relationship between textural maturity and temperature: Geochimica et Cosmochimica Acta 71(7):18855-1881. (1 April 2007).
Chromite
Formula: Fe2+Cr3+2O4
Reference: Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites.Elsevier Publishing Company: Amsterdam; London: New York. 245 pages.
Copper
Formula: Cu
Reference: Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites.Elsevier Publishing Company: Amsterdam; London: New York. 245 pages.
Daubréelite
Formula: Fe2+Cr3+2S4
Reference: Mineralogy of Michigan (2004) Heinrich & Robinson
Diopside
Formula: CaMgSi2O6
Reference: Dunn, T.L., Cressy, G., McSween Jr, H.Y. & McCoy, T.J. (2010) Analysis of ordinary chondrites using powder X-ray diffraction: 1. Modal mineral abundances. MAPS 45(1):123-134. (Jan 2010).
Enstatite
Formula: MgSiO3
Reference: Mineralogy of Michigan (2004) Heinrich & Robinson
Enstatite var: Bronzite
Formula: (Mg,Fe2+)2[SiO3]2
Reference: Mineralogy of Michigan (2004) Heinrich & Robinson
'Fayalite-Forsterite Series'
Description: Composition of Olivine — Fa18 (Mason,1963), Fa17.8 (Rubin, 1990), Fa17-18. Kessel et al., 2007.
Reference: Mineralogy of Michigan (2004) Heinrich & Robinson; Mason, B.H (1963) Olivine Composition in Chondrites: Geochimica et Cosmochimica Acta 27(9): 1011-1023. (Sept 1963).; Dunn, T.L., Cressy, G., McSween Jr, H.Y. & McCoy, T.J. (2010) Analysis of ordinary chondrites using powder X-ray diffraction: 1. Modal mineral abundances. MAPS 45(1):123-134. (Jan 2010).; Kessel, R., Beckett, J.R. & Stolper, E.M. (2007) The thermal history of equilibrated ordinary chondrites and the relationship between textural maturity and temperature: Geochimica et Cosmochimica Acta 71(7):18855-1881. (1 April 2007).
Iron
Formula: Fe
Reference: Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites.Elsevier Publishing Company: Amsterdam; London: New York. 245 pages.
Iron var: Kamacite
Formula: (Fe,Ni)
Reference: Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites.Elsevier Publishing Company: Amsterdam; London: New York. 245 pages.
Isocubanite
Formula: CuFe2S3
Reference: Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites.Elsevier Publishing Company: Amsterdam; London: New York. 245 pages.
Mackinawite
Formula: (Fe,Ni)9S8
Reference: Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites.Elsevier Publishing Company: Amsterdam; London: New York. 245 pages.
Merrillite
Formula: Ca9NaMg(PO4)7
Reference: Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 797.
'Orthopyroxene Subgroup'
Reference: Dunn, T.L., Cressy, G., McSween Jr, H.Y. & McCoy, T.J. (2010) Analysis of ordinary chondrites using powder X-ray diffraction: 1. Modal mineral abundances. MAPS 45(1):123-134. (Jan 2010).
'Plessite'
Reference: Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites.Elsevier Publishing Company: Amsterdam; London: New York. 245 pages.
Spinel
Formula: MgAl2O4
Reference: Kessel, R., Beckett, J.R. & Stolper, E.M. (2007) The thermal history of equilibrated ordinary chondrites and the relationship between textural maturity and temperature: Geochimica et Cosmochimica Acta 71(7):18855-1881. (1 April 2007).
Taenite
Formula: (Fe,Ni)
Reference: Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites.Elsevier Publishing Company: Amsterdam; London: New York. 245 pages.
Tetrataenite
Formula: FeNi
Reference: Clarke Jr, R.S. & Scott, E.R.D. (1980) - Tetrataenite—Ordered Fe,Ni, a new mineral in meteorites: American Mineralogist 65 (7 & 8): 624-630. (Jul/Aug 1980).
Troilite
Formula: FeS
Reference: Mineralogy of Michigan (2004) Heinrich & Robinson; Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites.Elsevier Publishing Company: Amsterdam; London: New York. 245 pages.; Dunn, T.L., Cressy, G., McSween Jr, H.Y. & McCoy, T.J. (2010) Analysis of ordinary chondrites using powder X-ray diffraction: 1. Modal mineral abundances. MAPS 45(1):123-134. (Jan 2010).

List of minerals arranged by Strunz 10th Edition classification

Group 1 - Elements
Copper1.AA.05Cu
Iron1.AE.05Fe
var: Kamacite1.AE.05(Fe,Ni)
Taenite1.AE.10(Fe,Ni)
Tetrataenite1.AE.10FeNi
Group 2 - Sulphides and Sulfosalts
Daubréelite2.DA.05Fe2+Cr3+2S4
Isocubanite2.CB.55bCuFe2S3
Mackinawite2.CC.25(Fe,Ni)9S8
Troilite2.CC.10FeS
Group 4 - Oxides and Hydroxides
Chromite4.BB.05Fe2+Cr3+2O4
Spinel4.BB.05MgAl2O4
Group 8 - Phosphates, Arsenates and Vanadates
Merrillite8.AC.45Ca9NaMg(PO4)7
Group 9 - Silicates
Diopside9.DA.15CaMgSi2O6
Enstatite9.DA.05MgSiO3
var: Bronzite9.DA.05(Mg,Fe2+)2[SiO3]2
Unclassified Minerals, Rocks, etc.
'Albite-Anorthite Series'-
'Fayalite-Forsterite Series'-
'Orthopyroxene Subgroup'-
'Plessite'-

List of minerals arranged by Dana 8th Edition classification

Group 1 - NATIVE ELEMENTS AND ALLOYS
Metals, other than the Platinum Group
Copper1.1.1.3Cu
Iron
var: Kamacite
1.1.11.1(Fe,Ni)
Taenite1.1.11.2(Fe,Ni)
Tetrataenite1.1.11.3FeNi
Group 2 - SULFIDES
AmBnXp, with (m+n):p = 9:8
Mackinawite2.7.2.1(Fe,Ni)9S8
AmXp, with m:p = 1:1
Troilite2.8.9.1FeS
AmBnXp, with (m+n):p = 1:1
Isocubanite2.9.13.3CuFe2S3
AmBnXp, with (m+n):p = 3:4
Daubréelite2.10.1.11Fe2+Cr3+2S4
Group 7 - MULTIPLE OXIDES
AB2X4
Chromite7.2.3.3Fe2+Cr3+2O4
Spinel7.2.1.1MgAl2O4
Group 38 - ANHYDROUS NORMAL PHOSPHATES, ARSENATES, AND VANADATES
(AB)3(XO4)2
Merrillite38.3.4.4Ca9NaMg(PO4)7
Group 65 - INOSILICATES Single-Width,Unbranched Chains,(W=1)
Single-Width Unbranched Chains, W=1 with chains P=2
Diopside65.1.3a.1CaMgSi2O6
Enstatite65.1.2.1MgSiO3
Unclassified Minerals, Mixtures, etc.
'Albite-Anorthite Series'-
Enstatite
var: Bronzite
-(Mg,Fe2+)2[SiO3]2
'Fayalite-Forsterite Series'-
Iron-Fe
'Orthopyroxene Subgroup'-
'Plessite'-

List of minerals for each chemical element

OOxygen
O Enstatite (var: Bronzite)(Mg,Fe2+)2[SiO3]2
O MerrilliteCa9NaMg(PO4)7
O ChromiteFe2+Cr23+O4
O DiopsideCaMgSi2O6
O EnstatiteMgSiO3
O SpinelMgAl2O4
NaSodium
Na MerrilliteCa9NaMg(PO4)7
MgMagnesium
Mg Enstatite (var: Bronzite)(Mg,Fe2+)2[SiO3]2
Mg MerrilliteCa9NaMg(PO4)7
Mg DiopsideCaMgSi2O6
Mg EnstatiteMgSiO3
Mg SpinelMgAl2O4
AlAluminium
Al SpinelMgAl2O4
SiSilicon
Si Enstatite (var: Bronzite)(Mg,Fe2+)2[SiO3]2
Si DiopsideCaMgSi2O6
Si EnstatiteMgSiO3
PPhosphorus
P MerrilliteCa9NaMg(PO4)7
SSulfur
S DaubréeliteFe2+Cr23+S4
S TroiliteFeS
S IsocubaniteCuFe2S3
S Mackinawite(Fe,Ni)9S8
CaCalcium
Ca MerrilliteCa9NaMg(PO4)7
Ca DiopsideCaMgSi2O6
CrChromium
Cr DaubréeliteFe2+Cr23+S4
Cr ChromiteFe2+Cr23+O4
FeIron
Fe DaubréeliteFe2+Cr23+S4
Fe Enstatite (var: Bronzite)(Mg,Fe2+)2[SiO3]2
Fe TroiliteFeS
Fe ChromiteFe2+Cr23+O4
Fe IsocubaniteCuFe2S3
Fe Iron (var: Kamacite)(Fe,Ni)
Fe Mackinawite(Fe,Ni)9S8
Fe Taenite(Fe,Ni)
Fe TetrataeniteFeNi
Fe IronFe
NiNickel
Ni Iron (var: Kamacite)(Fe,Ni)
Ni Mackinawite(Fe,Ni)9S8
Ni Taenite(Fe,Ni)
Ni TetrataeniteFeNi
CuCopper
Cu CopperCu
Cu IsocubaniteCuFe2S3

Regional Geology

This geological map and associated information on rock units at or nearby to the coordinates given for this locality is based on relatively small scale geological maps provided by various national Geological Surveys. This does not necessarily represent the complete geology at this locality but it gives a background for the region in which it is found.

Click on geological units on the map for more information. Click here to view full-screen map on Macrostrat.org

Paleozoic
251.902 - 541 Ma



ID: 3187973
Paleozoic sedimentary rocks

Age: Phanerozoic (251.902 - 541 Ma)

Lithology: Sedimentary rocks

Reference: Chorlton, L.B. Generalized geology of the world: bedrock domains and major faults in GIS format: a small-scale world geology map with an extended geological attribute database. doi: 10.4095/223767. Geological Survey of Canada, Open File 5529. [154]

Mississippian
323.2 - 358.9 Ma



ID: 2944244
Coldwater Shale

Age: Mississippian (323.2 - 358.9 Ma)

Stratigraphic Name: Coldwater Shale

Description: Kinderhookian series. Secondary unit description from USGS Geologic Names lexicon (ref. MI016):Although the Coldwater has the largest outcrop area of any Mississippian formation, it is inaccessible at most localities. Its exposures are limited to portions of Branch, Calhoun, and Hillsdale Cos in the southern part of the basin and Huron and Sanilac Cos in the Michigan thumb area. The Coldwater conformably overlies the Sunbury and Ellsworth Shales and conformably underlies the Marshall Sandstone. Fossils in the uppermost portion of the Coldwater in the western part of the basin are Osagean in age, but the rest of the formation is Kinderhookian. Maximum thickness is about 366 m in Iosco and Arenac Cos just north of Saginaw Bay, but is generally 305 m in the eastern two-thirds of the basin and thins to about 168 m in the western third. Unit consists predominantly of gray to bluish gray shale. Its clay minerals are chiefly illite and kaolinite with minor chlorite. Other lithologies occur in the Coldwater and their distributions divide the formation into distinct eastern and western facies. In the eastern half of the basin, beds of silty and sandy shale, siltstone and fine-grained sandstone are common, and increase in abundance and coarseness to the west and up section. In the western half of the basin the Coldwater shales are more calcareous and beds of glauconitic, fossiliferous limestone and dolostone occur frequently especially in the middle and upper portions of the formation. Two marker beds can be traced over long distances: the Lime and the Red Rock beds. The Lime occurs throughout the western part of the basin and is commonly 6 to 1 m thick. The Red Rock is more extensive and occurs in all parts of the basin except the extreme northeast. It is typically 3 to 6 m thick and locally reaches 15 m.

Comments: Original map source: Cannon, W.F., Kress, T.H., Sutphin, D.M., Morey, G.B., Meints, Joyce, and Barber-Delach, Robert, 1997, Digital Geologic Map and mineral deposits of the Lake Superior Region, Minnesota, Wisconsin, Michigan: USGS Open-File Report 97-455 (version 3, Nov. 19

Lithology: Major:{shale}, Minor:{dolostone,limestone,siltstone,sandstone}

Reference: Horton, J.D., C.A. San Juan, and D.B. Stoeser. The State Geologic Map Compilation (SGMC) geodatabase of the conterminous United States. doi: 10.3133/ds1052. U.S. Geological Survey Data Series 1052. [133]

Data and map coding provided by Macrostrat.org, used under Creative Commons Attribution 4.0 License

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 797.
Mason, B.H (1963) Olivine Composition in Chondrites: Geochimica et Cosmochimica Acta 27(9): 1011-1023. (Sept 1963).
Keil, K. & Fredriksson, K. (1964) The Fe.Mg and Ca Distribution in Coexisting Olivines and Rhombic Pyroxenes of Chondrites. Journal of Geophysical Research Atmospheres 69 (16): 3487-3515. (August 1964).
Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites.Elsevier Publishing Company: Amsterdam; London: New York. 245 pages.
Clarke Jr, R.S. & Scott, E.R.D. (1980) - Tetrataenite—Ordered Fe,Ni, a new mineral in meteorites: American Mineralogist 65 (7 & 8): 624-630. (Jul/Aug 1980).
Brearley, A.J. & Jones, R.H. (1998) Chondritic Meteorites. In: Planetary Materials, Chapter 3; Papike, J.J.-Ed.: Mineralogical Society of America: Washington, DC, USA. 398 pages.
Dunn, T.L., Cressy, G., McSween Jr, H.Y. & McCoy, T.J. (2010) Analysis of ordinary chondrites using powder X-ray diffraction: 1. Modal mineral abundances. MAPS 45(1):123-134. (Jan 2010).

External Links



This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
 
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization. Public Relations by Blytheweigh.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2019, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: October 16, 2019 13:24:38 Page generated: March 4, 2019 02:17:14
Go to top of page