Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat Articles
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsThe ElementsUsersBooks & MagazinesMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery

New Jersey Railroad cut, Bergen Hill, Jersey City, Hudson Co., New Jersey, USA

This page is currently not sponsored. Click here to sponsor this page.
Key
Lock Map
Latitude & Longitude (WGS84): 40° 43' North , 74° 4' West
Latitude & Longitude (decimal): 40.71667,-74.06667
GeoHash:G#: dr5rds4rc
Köppen climate type:Cfa : Humid subtropical climate


The first major excavation through the Bergen Hill at Jersey City (1832-1838). The exact location is apparently lost. This cut was through Palisades Diabase.


Mineral List


12 valid minerals.

Regional Geology

This geological map and associated information on rock units at or nearby to the coordinates given for this locality is based on relatively small scale geological maps provided by various national Geological Surveys. This does not necessarily represent the complete geology at this locality but it gives a background for the region in which it is found.

Click on geological units on the map for more information. Click here to view full-screen map on Macrostrat.org

Late Jurassic
145 - 163.5 Ma



ID: 2938654
Lockatong Formation

Age: Jurassic (145 - 163.5 Ma)

Stratigraphic Name: Lockatong Formation

Description: (Kmmel, 1897) - Cyclically-deposited sequences consisting of light- to dark-gray, greenish-gray, and black, dolomitic or analcime-bearing silty argillite, laminated mudstone, silty to calcareous, argillaceous, very-fine-grained pyritic sandstone and siltstone, and minor silty limestone (Trl). Grayish-red, grayish-purple, and dark-brownish-red sequences (Trlr) common in upper half. Two types of cycles are recognized: detrital and chemical. Detrital cycles average 5.2 m (17 ft) thick and consist of basal, argillaceous, very fine grained sandstone to coarse siltstone; medial, dark-gray to black, laminated siltstone, silty mudstone, or silty limestone; and upper, light- to dark-gray, silty to dolomitic or analcime-rich mudstone, argillitic siltstone, or very-fine-grained sandstone. Chemical cycles are similar to detrital cycles, but thinner, averaging 3.2 m (10.5 ft). Cycles in northern Newark basin are thinner and have arkosic sandstone in lower and upper parts. Upper part of formation in northern basin composed mostly of light-gray to light-pinkish-gray or light-brown, coarse- to fine-grained, thick- to massive-bedded arkosic sandstone (Trla). Thermally metamorphosed into hornfels where intruded by diabase (Jd). Interfingers laterally and gradationally with quartz sandstone and conglomerate (Trls) and quartzite conglomerate (Trlcq) near Triassic border fault in southwestern area of map. Maximum thickness of Lockatong Formation about 1,070 m (3,510 ft).

Comments: Newark Supergroup, Brunswick Group (Lyttle and Epstein, 1987). The Lockatong Formation unit description on the map encompasses multiple units (TRl, TRlr, TRla, TRls, and TRlcq). The units were split into separate records and appropriate descriptions for each were used. Names for units are from digital map

Lithology: Major:{argillite}, Minor:{mudstone,siltstone,sandstone}, Incidental:{limestone}

Reference: Horton, J.D., C.A. San Juan, and D.B. Stoeser. The State Geologic Map Compilation (SGMC) geodatabase of the conterminous United States. doi: 10.3133/ds1052. U.S. Geological Survey Data Series 1052. [133]

Triassic
201.3 - 252.17 Ma



ID: 3187752
Mesozoic intrusive rocks

Age: Triassic (201.3 - 252.17 Ma)

Stratigraphic Name: Palisades Sill

Lithology: Intrusive igneous rocks

Reference: Chorlton, L.B. Generalized geology of the world: bedrock domains and major faults in GIS format: a small-scale world geology map with an extended geological attribute database. doi: 10.4095/223767. Geological Survey of Canada, Open File 5529. [154]

Data and map coding provided by Macrostrat.org, used under Creative Commons Attribution 4.0 License



This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.

References

Sort by Year (asc) | by Year (desc) | by Author (A-Z) | by Author (Z-A)
Bourne, W.O. (1841), American Journal of Science, 1st. series: 40: 69-73.
Beck, L.C. (1843), American Journal of Science, 1st. series: 44: 54-60.
Peters, Joseph J. (1984), Triassic Traprock Minerals of New Jersey, Rocks & Minerals (July-August): 59: 157-183.

Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization. Public Relations by Blytheweigh.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2019, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: May 26, 2019 20:46:45 Page generated: May 28, 2018 03:40:15
Go to top of page