SUPPORT US. If mindat.org is important to you, click here to donate to our Fall 2019 fundraiser!
Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsBooks & Magazines
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryMineral Photography

Nevada Co., California, USAi
Regional Level Types
Nevada Co.County
CaliforniaState
USACountry

This page is currently not sponsored. Click here to sponsor this page.
Key
Area:
2.0 km2
Locality type:
Largest Settlements:
PlacePopulation
Truckee16,299 (2017)
Grass Valley12,944 (2017)
Alta Sierra6,911 (2011)
Lake Wildwood4,991 (2011)
Lake of the Pines3,917 (2011)
Nevada City3,152 (2017)
Other Languages:
French:
Comté de Nevada, Californie, États-Unis
German:
Nevada County, Kalifornien, Vereinigte Staaten
Italian:
Contea di Nevada, California, Stati Uniti d'America
Russian:
Невада, Калифорния, Соединённые Штаты Америки
Simplified Chinese:
內華達縣, 加利福尼亚州, 美国
Spanish:
Condado de Nevada, California, Estados Unidos
Albanian:
Nevada County, Kalifornia, Shtetet e Bashkuara të Amerikës
Arabic:
مقاطعة نيفادا, كاليفورنيا, الولايات المتحدة
Armenian:
Նևադա շրջան, Կալիֆոռնիա, Ամերիկայի Միացյալ Նահանգներ
Basque:
Nevada konderria, Kalifornia
Bavarian:
Nevada County, Kalifornien, Vaoanigte Stootn
Bishnupriya Manipuri:
নেভাডা কাউন্টি, ক্যালিফোর্নিয়া, তিলপারাষ্ট্র
Bulgarian:
Невада, Калифорния, Съединени американски щати
Cebuano:
Nevada County, California
Czech:
Nevada County, Kalifornie, Spojené státy americké
Danish:
Nevada County, Californien, USA
Dutch:
Nevada County, Verenigde Staten
Estonian:
Nevada maakond, California, Ameerika Ühendriigid
Farsi/Persian:
شهرستان نوادا، کالیفرنیا, کالیفرنیا, ایالات متحده آمریکا
Gan:
內華達縣, 加利福尼亞州, 美國
Hungarian:
Nevada megye, Kalifornia, Amerikai Egyesült Államok
Irish Gaelic:
Contae Nevada, California, Stáit Aontaithe Mheiriceá
Japanese:
ネバダ郡, カリフォルニア州, アメリカ合衆国
Kapampangan:
Nevada County, California, Estados Unidos
Latin:
Nevada Comitatus, California, Civitates Foederatae Americae
Limburgian:
Nevada County, Californië, Vereinegde Staote vaan Amerika
Low Saxon/Low German:
Nevada County, Kalifornien, USA
Malayalam:
നെവാഡ കൗണ്ടി, കാലിഫോർണിയ
Norwegian:
Nevada County, California, USA
Polish:
Hrabstwo Nevada, Kalifornia, Stany Zjednoczone
Portuguese:
Condado de Nevada, Califórnia, Estados Unidos
Serbian:
Округ Невада, Калифорнија, Сједињене Америчке Државе
Serbo-Croatian:
Nevada County, Kalifornija, Sjedinjene Američke Države
Swedish:
Nevada County, Kalifornien, USA
Tagalog:
Nevada County, California, Estados Unidos
Turkish:
Nevada County, Kaliforniya, Amerika Birleşik Devletleri
Ukrainian:
Невада, Каліфорнія, Сполучені Штати Америки
Urdu:
نیواڈا کاؤنٹی، کیلیفورنیا, کیلیفورنیا, ریاستہائے متحدہ امریکا
Vietnamese:
Quận Nevada, California, Chủng Quốc Hoa Kỳ
Waray:
Condado han Nevada, California, Estados Unidos
Western Punjabi:
نیواڈا کاؤنٹی, کیلیفورنیا, امریکہ


THE FILES IN THIS COUNTY ARE UNDER REVISION EFFECTIVE NOVEMBER 11, 2015. PLEASE DO NOT MAKE ANY EDITS TO THE LOCALITY FILES IN NEVADA COUNTY WITHOUT PRIOR COORDINATION WITH CHET LEMANSKI, UNTIL THE REVISIONS ARE COMPLETE AND A NOTICE IS POSTED UNDER THE CALIFORNIA STATE FILE. THANK YOU!!

Nevada County was created from parts of Yuba County in 1851. It is 974 square miles (2,520 km2) in area.

Regional Setting: The northern Sierra Nevada is home to numerous important gold deposits. These include the famous lode districts of Johnsville, Alleghany, Sierra City, Grass Valley, and Nevada City as well as the famous placer districts of North Bloomfield, North Columbia, Cherokee, Foresthill, Michigan Bluff, Gold Run, and Dutch Flat. The geological and historical diversity of most of these deposits and specific mine operations are covered in numerous publications produced over the years by the U.S. Bureau of Mines, U.S. Geological Survey, California Division of Mines and Geology (now California Geological Survey), and others. The most recent geologic mapping covering the area is the 1:250,000-scale Chico Quadrangle compiled by Saucedo and Wagner (1992).

Stratigraphy: The northern Sierra Nevada basement complex has a history of both oceanic and continental margin tectonics recorded in sequences of oceanic, near continental, and continental volcanism. The complex has been divided into four lithotectonic belts: the Western Belt, Central Belt, Feather River Peridotite Belt, and Eastern Belt.

The Western Belt is composed of the Smartville Complex, an Upper Jurassic volcanic-arc complex, which consists of basaltic to intermediate pillow flows overlain by pyroclastic and volcanoclastic rock units with diabase, metagabbro, and gabbro-diorite intrusives. The Cretaceous Great Valley sequence overlies the belt to the west. To the east it is bounded by the Big Bend-Wolf Creek Fault Zone.

East of the Big Bend-Wolf Creek Fault Zone is the Central Belt, which is in turn bounded to the east by the Goodyears Creek Fault. This belt is structurally and stratigraphically complex and consists of Permian-Triassic argillite, slate, chert, ophiolite, and greenstone of marine origin.

The Feather River Peridotite Belt is also fault-bounded, separating the Central Belt from the rocks of the Eastern Belt for almost 95 miles along the northern Sierra Nevada. It consists largely of Devonian-to-Triassic serpentinized peridotite.

The Eastern Belt, or Northern Sierra Terrane, is separated from the Feather River Peridotite Belt by the Melones Fault Zone. The Northern Sierra Terrane is primarily composed of siliciclastic marine metasedimentary rocks of the Lower Paleozoic Shoo Fly Complex overlain by Devonian-to-Jurassic metavolcanic rocks. Farther east are Mesozoic granitic rocks of the Sierra Nevada Batholith.

The northern Sierra Nevada experienced a long period of Cretaceous to early Tertiary erosion followed by extensive late Oligocene to Pliocene volcanism. The oldest Tertiary deposits are Eocene auriferous gravels deposited by the predecessors of the modern Yuba and American rivers and preserved in paleochannels eroded into basement and on adjacent benches. In contrast to earlier volcanism, Tertiary volcanism was continental, with deposits placed on top of the eroded basement rocks, channel deposits, and Mesozoic intrusives. Two regionally important units are the Valley Springs and Mehrten Formations. The Oligocene-Miocene Valley Springs Formation is a widespread unit of intercalated rhyolite tuffs and intervolcanic channel gravels that blanketed and preserved the basal gravels in the valley bottoms. The younger Miocene-Pliocene Mehrten Formation consists largely of andesitic mudflows, which regionally blanketed all but the highest peaks and marked the end of Tertiary volcanism.

Pliocene-Pleistocene uplift of the Sierra Nevada caused the modern drainages to erode through the volcanic Valley Springs-Mehrten sequences and carve deep river gorges into the underlying basement rocks. During this process, the modern rivers became charged with placer-gold deposits from both newly eroded basement rocks and from the reconcentration of the eroded Tertiary placers. The discovery of these modern Quaternary placers in the American River at Sutter's Mill sparked the California Gold Rush.

Tertiary Channel Gravels: It has been estimated that 40 percent of California's gold production has come from placer deposits along the western Sierra Nevada (Clark, 1966). These placer deposits are divisible into Tertiary deposits preserved on the interstream ridges, and Quaternary deposits associated with present streams. Lindgren (1911) estimated that approximately $507 million (at $35.00/ounce) was produced from the Tertiary gravels. Almost all Tertiary gravel deposits can be divided into coarse basal Eocene gravels resting on basement, and overlying upper or "intervolcanic" gravels. While the gravels differ texturally, compositionally, and in gold values, no distinct contact exists between the two. The boundary is usually placed where pebble and cobble beds are succeeded by overlying pebble, sand, and clay beds.

Lower gravels contain most of the gold and rest on eroded bedrock that is usually smooth, grooved, and polished. Where bedrock is granitic, it is characterized by a smooth and polished surface. Where bedrock is slate, phyllite, or similar metamorphic rock, rock cleavage, joints, and fractures acted as natural riffles to trap fine to coarse gold. In many cases, miners would excavate several feet into bedrock to recover the trapped gold. The lower gravels, or "blue lead," of the early miners are well-cemented and characterized by cobbles to boulders of bluish gray - black slates and phyllites, weathered igneous rocks and quartz. Boulders may range upwards of 10 feet in diameter. In many deposits, disseminated pyrite and pyritic pebble coatings are common in the lower blue lead gravels. Adjacent to the bedrock channels, broad gently sloping benches received shallow but extensive accumulations of auriferous overbank gravels sometimes 1 to 2 miles (1.6 to 3.2 meters) wide.

The lower unit is also compositionally immature relative to the upper gravel unit as evidenced by their heavy mineral suites. Chlorite, amphibole, and epidote are common constituents in the basal gravels, but are conspicuously absent in upper gravels.

The upper gravels compose the bulk of most deposits, with a maximum measured thickness of 400 feet in the North Columbia District. These gravels carry much lower gold values (rarely more than a few cents per cubic yard) than the deeper sands and are often barren. Upper gravels are finer grained, with clasts seldom larger than cobble size, and contain abundant silt and clay interbeds. Cross-bedding and cut-and-fill sedimentary structures are abundant as well as pronounced bedding and relatively fair to good sorting. Compositionally they are much more mature, with quartz prevailing, and more stable heavy mineral components consisting almost exclusively of zircon, illmenite, and magnetite. Oxidation is common and often imparts a reddish hue to the gravels.

During the Cretaceous, the Sierra Nevada was eroded and its sediments transported westward by river systems to a Cretaceous marine basin. By the Eocene, low gradients and a high sediment load allowed the valleys to accumulate thick gravel deposits as the drainages meandered over flood plains up to several miles wide developed on the bedrock surface. The major rivers were similar in location, direction of flow, and drainage area to the modern Yuba, American, Mokelumne, Calaveras, Stanislaus, and Tuolumne Rivers. Their auriferous gravels deposits are scattered throughout a belt 40 - 50 miles wide and 150 miles long from Plumas County to Tuolumne County. In the northern counties, continuous lengths of the channels can be traced for as much as 10 miles with interpolated lengths of over 30 miles. The ancient Yuba River was the largest and trended southwest from headwaters in Plumas County. Its gravels are responsible for the placer deposits in the North Bloomfield, San Juan Ridge/North Columbia, Moore's Flat, and French Corral districts. Tributaries to the ancestral Yuba River were responsible for most of the other auriferous gravels in Nevada County.

Bedrock erosion degraded the rich gold-bearing veins and auriferous schists and slates as the rivers crossed the metamorphic belts of the Sierra Nevada. Upstream of the gold belts on the granitic Sierra Nevada batholith, channels are largely barren, but become progressively richer as they cross the metamorphic belt and the Mother Lode trend. They become especially enriched after crossing the gold-bearing "serpentine belt" (Feather River Peridotite Belt) upstream of many Tertiary placer districts. While the most gold is contained in the lower sand and gravel, the majority of rich material is within only a few feet of bedrock. Generally, in drift mines only these lower gravels were exploited; however, in hydraulic mines the whole gravel bed was washed. Lindgren (1911) estimated that on average, the hydraulic washing of thick gravel banks up to 300 feet, including both basal and upper gravels, yielded approximately $0.10 to $0.40 (period values)/cubic yard. Upper gravels alone might average $0.02 to $0.10 (period values)/cubic yard and lower gavels from $0.50 to $15 (period values)/cubic yard or more.

The bulk of the gold in the deposits was derived from gold-bearing quartz veins within the low-grade metamorphic rocks of the Sierra Nevada. Gravels that have the highest gold values contain abundant white quartz vein detritus and clasts of blue-gray siliceous phyllite and slate common to the gold-quartz vein-bearing bedrock of the region. Unusually high gold concentrations have also been documented immediately downstream of eroded qold quartz veins exposed in the scoured bedrock.

Most of the gold found in the gravels of the North Bloomfield and Moore's Flat districts is thought to have originated from the famous lode veins of the Alleghany Mining District. The veins in the Nevada City and Grass Valley districts have been proposed as possible sources for the gold in the gravels of the Sailor Flat and Blue Tent diggings.

Gold particles tend to be flat or rounded, shiny and rough, and range from fine and coarse gold to nuggets of 100 or more ounces. Large nuggets were especially prevalent in the Alleghany, North Columbia, Downieville, and Sierra City Districts. The gold particles are almost everywhere associated with black sands composed of magnetite, ilmenite, chromite, zircon, garnet, pyrite, and in some places platinum. Fine flour gold is not abundant in any of the Tertiary gravels. Lindgren (1911) and others have suggested that most of the flour gold was swept westward to be deposited in the thick sediments of the Great Valley.

Valley Springs Formation: After deposition of the Eocene channel gravels, Oligocene-Miocene volcanic activity in the upper Sierra Nevada radically changed drainage patterns and sedimentation. The first of many eruptive rhyolite flows filled the depressions of most river courses covering the Eocene gravels and diverting the rivers. Many tributaries were dammed, but they eventually breached the barriers and carved their own channels within the rhyolite fill. Ensuing intermittent volcanism caused recurrent rhyolite flows to fill and refill the younger channels resulting in a thick sequence of intercalated intervolcanic channel gravels and volcanic flows. In the Scotts Flat District, very little of the Valley Springs Formation remains, having been lost to erosion.

Mehrten Formation: Volcanism continued through the Oligocene to the Pliocene, with a change from rhyolitic to andesitic composition and a successively greater number of flows. During the Miocene and Pliocene, volcanism was so extensive that thick beds of andesitic tuffs and mudflows of the Mehrten Formation blanketed the Valley Springs. Thicknesses ranged from a few hundred to a few thousand feet. Pleistocene erosion removed much of these deposits, but remnants cap the axes of many existing ridges at mid-elevations.

Continued uplift during the Pliocene-early Pleistocene increased gradients allowing the modern drainages to cut through the volcanic mantle and auriferous gravel deposits and deeply into basement. The once-buried Tertiary river gravels were left exposed in outcrops high on the flanks of the modern drainage divides.

Structure: Most Upper Jurassic and younger basement rocks of the northern Sierra Nevada were metamorphosed and deformed during the Jurassic-Cretaceous Nevadan Orogeny. The dominant northwest-trending structural grain is a result of this period of compressive deformation, which produced thrust faults, major northwest-trending folds, and regional greenschist facies metamorphism. This episode also resulted in intrusions of granitic plutons that formed the Sierra Nevada.

Nevadan deformation structures within and between the northern Sierra Nevada lithotectonic blocks are steeply dipping northwesterly trending faults and northwesterly trending folds. These features are best developed in the Eastern, Central, and Feather River Peridotite Belts, where the faults have been collectively described as the "Foothills Fault System" (Clark, 1960). Where the attitude can be determined, most of the bounding faults dip steeply east and display reverse displacement.

The regional northwest-trending structural grain is also at approximately right angles to the prevailing direction of stream flow of both the ancient and modern channels. This grain, expressed in the form of foliation and cleavage in the metamorphic bedrock, served as a good trapping mechanism for the gold particles.

Select Mineral List Type

Standard Detailed Strunz Dana Chemical Elements

Commodity List

This is a list of exploitable or exploited mineral commodities recorded from this region.


Mineral List

Mineral list contains entries from the region specified including sub-localities

103 valid minerals. 1 (TL) - type locality of valid minerals.

Rock Types Recorded

Note: this is a very new system on mindat.org and data is currently VERY limited. Please bear with us while we work towards adding this information!

Rock list contains entries from the region specified including sub-localities

Select Rock List Type

Alphabetical List Tree Diagram

Detailed Mineral List:

''
Localities:
Acanthite
Formula: Ag2S
Albite
Formula: Na(AlSi3O8)
Reference: Doebrich, J. L.; Garside, L. J.; Shawe, D. R. (1996) Characterization of mineral deposits in rocks of the Triassic to Jurassic magmatic arc of western Nevada and eastern California. USGS Open File report 96-6
Altaite
Formula: PbTe
Alunogen
Formula: Al2(SO4)3 · 17H2O
Colour: Blue
Reference: Lindgren, Waldemar (1896a), The gold-quartz veins of Nevada City and Grass Valley districts, California: USGS 17th. Annual Report, part 2: 120; Murdoch, Joseph & Robert W. Webb (1966), Minerals of California, Centennial Volume (1866-1966): California Division Mines & Geology Bulletin 189: 62.
'Amphibole Supergroup'
Formula: AX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Localities: Reported from at least 8 localities in this region.
Anatase
Formula: TiO2
Description: Occurs as crystals in placer gravels.
Reference: Murdoch, Joseph & Robert W. Webb (1966), Minerals of California, Centennial Volume (1866-1966): California Division Mines & Geology Bulletin 189: 72.
Andalusite
Formula: Al2(SiO4)O
Reference: Lindgren, Waldemar (1896a), The gold-quartz veins of Nevada City and Grass Valley districts, California: USGS 17th. Annual Report, part 2: 92; Murdoch, Joseph & Robert W. Webb (1966), Minerals of California, Centennial Volume (1866-1966): California Division Mines & Geology Bulletin 189: 74.
Andradite
Formula: Ca3Fe3+2(SiO4)3
Reference: Van King
Ankerite
Formula: Ca(Fe2+,Mg)(CO3)2
Localities: Reported from at least 14 localities in this region.
Anorthite
Formula: Ca(Al2Si2O8)
Description: Occurs in olivine norites.
Reference: Kracek, Frank Charles & Kalle J. Neuvonen (1952), Thermochemistry of plagioclase and alkali feldspars: American Journal of Science: 230 (Bowen volume) 1952, (suppl.): 293-318; Pemberton, H. Earl (1983), Minerals of California; Van Nostrand Reinholt Press: 361.
'Apatite'
Formula: Ca5(PO4)3(Cl/F/OH)
Reference: Doebrich, J. L.; Garside, L. J.; Shawe, D. R. (1996) Characterization of mineral deposits in rocks of the Triassic to Jurassic magmatic arc of western Nevada and eastern California. USGS Open File report 96-6
Arsenic
Formula: As
Arsenopyrite
Formula: FeAsS
Localities: Reported from at least 16 localities in this region.
Arsenopyrite var: Danaite
Formula: (Fe0.90Co0.10)AsS - (Fe0.65Co0.35)AsS
Description: Occurs as well-formed, brilliant crystals to ¼ inch (0.7 cm) diameter.
Reference: Blake, Wm. P. (1867b), Mineralogical notices II: American Journal of Science, 2nd. series: 43: 298; Murdoch, Joseph & Robert W. Webb (1966), Minerals of California, Centennial Volume (1866-1966): California Division Mines & Geology Bulletin 189: 87.
'Asbestos'
Azurite
Formula: Cu3(CO3)2(OH)2
Baryte
Formula: BaSO4
Localities: Reported from at least 9 localities in this region.
Bementite
Formula: Mn7Si6O15(OH)8
Reference: Hewett, Donnel Foster, Charles Wesley Chesterman & Bennie Wyatt Troxel (1961), Tephroite in California manganese deposits: Economic Geology: 56: 39-58; Pemberton, H. Earl (1983), Minerals of California; Van Nostrand Reinholt Press: 413.
Bieberite
Formula: CoSO4 · 7H2O
Reference: J.F. Cooper, P.C.
'Biotite'
Formula: K(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
Reference: Doebrich, J. L.; Garside, L. J.; Shawe, D. R. (1996) Characterization of mineral deposits in rocks of the Triassic to Jurassic magmatic arc of western Nevada and eastern California. USGS Open File report 96-6
Bismuth
Formula: Bi
Description: Detected in ore concentrates.
Reference: Lindgren, Waldemar (1896a), The gold-quartz veins of Nevada City and Grass Valley districts, California: USGS 17th. Annual Report, part 2: 117; Murdoch, Joseph & Robert W. Webb (1966), Minerals of California, Centennial Volume (1866-1966): California Division Mines & Geology Bulletin 189: 106; Pemberton, H. Earl (1983), Minerals of California; Van Nostrand Reinholt Press: 51, 105.
Bornite
Formula: Cu5FeS4
Localities: Reported from at least 9 localities in this region.
Calcite
Formula: CaCO3
Localities: Reported from at least 24 localities in this region.
Calcite var: Manganoan Calcite
Formula: (Ca,Mn)CO3
Reference: Econ Geol (1992) 87:2023-2040
Carnotite
Formula: K2(UO2)2(VO4)2 · 3H2O
Description: Represented by CAlifornia Division of Mines and Geology specimen #21657.
Reference: Murdoch, Joseph & Robert W. Webb (1966), Minerals of California, Centennial Volume (1866-1966): California Division Mines & Geology Bulletin 189: 120; Pemberton, H. Earl (1983), Minerals of California; Van Nostrand Reinholt Press: 326.
Caryopilite
Formula: Mn2+3Si2O5(OH)4
'Chabazite'
Colour: Colorless
Description: Occurs as crystals several mm diameter forming coatings of fissures in diabase.
Reference: Lindgren, Waldemar (1896a), The gold-quartz veins of Nevada City and Grass Valley districts, California: USGS 17th. Annual Report, part 2: 120; Murdoch, Joseph & Robert W. Webb (1966), Minerals of California, Centennial Volume (1866-1966): California Division Mines & Geology Bulletin 189: 127.
Chalcanthite
Formula: CuSO4 · 5H2O
Reference: Mining and Scientific Press (1861), Summary of mining news, California [selected counties]: Mining and Scientific Press: 3(13): 5; Hanks, Henry Garber (1884), Fourth report of the State Mineralogist: California Mining Bureau. Report 4, 410 pp.: 124; Murdoch, Joseph & Robert W. Webb (1966), Minerals of California, Centennial Volume (1866-1966): California Division Mines & Geology Bulletin 189: 128.
Chalcocite
Formula: Cu2S
Chalcopyrite
Formula: CuFeS2
Localities: Reported from at least 55 localities in this region.
'Chlorite Group'
Localities: Reported from at least 16 localities in this region.
Chromite
Formula: Fe2+Cr3+2O4
Localities: Reported from at least 45 localities in this region.
Cinnabar
Formula: HgS
Description: Occurs in small quantities.
Reference: Lindgren, Waldemar (1911), The Tertiary gravels of the Sierra Nevada of California: USGS pp 73, 226 pp.: 75; Murdoch, Joseph & Robert W. Webb (1966), Minerals of California, Centennial Volume (1866-1966): California Division Mines & Geology Bulletin 189: 149.
'Clays'
Reference: U.S. Geological Survey, 2005, Mineral Resources Data System: U.S. Geological Survey, Reston, Virginia.
Clinochlore
Formula: Mg5Al(AlSi3O10)(OH)8
Description: Abundant. Associated with calcite crystals.
Reference: MacBoyle, Errol (1919), Mines and mineral resources of Nevada County: California Mining Bureau. Report 16, 270 pp. (published as separate chapter): 77; Melhase, John (1935c), Some garnet localities of California: Mineralogist: 3(11): 23; Rynearson, Garn Arthur (1953), Geological investigations of chromite in California: Chromite deposits in the northern Sierra Nevada, California. California Division of Mines and Geology Bulletin 134, part 3 chapter 5: 239; Pemberton, H. Earl (1983), Minerals of California; Van Nostrand Reinholt Press: 434.
Clinochlore var: Chromian Clinochlore
Formula: Mg5(Al,Cr)2Si3O10(OH)8
Description: Abundant. Associated with calcite crystals.
Reference: MacBoyle, Errol (1919), Mines and mineral resources of Nevada County: California Mining Bureau. Report 16, 270 pp. (published as separate chapter): 77; Melhase, John (1935c), Some garnet localities of California: Mineralogist: 3(11): 23; Rynearson, Garn Arthur (1953), Geological investigations of chromite in California: Chromite deposits in the northern Sierra Nevada, California. California Division of Mines and Geology Bulletin 134, part 3 chapter 5: 239; Pemberton, H. Earl (1983), Minerals of California; Van Nostrand Reinholt Press: 434.
Cobaltite
Formula: CoAsS
Copper
Formula: Cu
Covellite
Formula: CuS
Description: Occurs in an enriched zone.
Reference: Forstner, William (1908), Copper deposits in the western foothills of the Sierra Nevada: Mining and Scientific Press: 96: 745; Murdoch, Joseph & Robert W. Webb (1966), Minerals of California, Centennial Volume (1866-1966): California Division Mines & Geology Bulletin 189: 130.
Cristobalite
Formula: SiO2
Reference: Murdoch, Joseph & Robert W. Webb (1966), Minerals of California, Centennial Volume (1866-1966): California Division Mines & Geology Bulletin 189: 163.
Cuprite
Formula: Cu2O
Diamond
Formula: C
Description: Largest diamond from the state was found here at 7¼ carets. Found sometime before 1867.
Reference: Hanks, Henry Garber (1882b), Diamonds in California: California Mining Bureau. Report 2: 251; Hanks, Henry Garber (1884), Fourth report of the State Mineralogist: California Mining Bureau. Report 4, 410 pp.: 169; Kunz, George Frederick (1905a), Gems, jewelers’ materials, and ornamental stones of California: California Division Mines Bulletin 37, 171 pp.: 44; Pemberton, H. Earl (1983), Minerals of California; Van Nostrand Reinholt Press: 54.
Diopside
Formula: CaMgSi2O6
Reference: Lindgren, Waldemar (1896a), The gold-quartz veins of Nevada City and Grass Valley districts, California: USGS 17th. Annual Report, part 2: 52; Murdoch, Joseph & Robert W. Webb (1966), Minerals of California, Centennial Volume (1866-1966): California Division Mines & Geology Bulletin 189: 308.
Diopside var: Diallage
Formula: CaMgSi2O6
Reference: Lindgren, Waldemar (1896a), The gold-quartz veins of Nevada City and Grass Valley districts, California: USGS 17th. Annual Report, part 2: 52; Murdoch, Joseph & Robert W. Webb (1966), Minerals of California, Centennial Volume (1866-1966): California Division Mines & Geology Bulletin 189: 308.
Dolomite
Formula: CaMg(CO3)2
Enstatite
Formula: MgSiO3
Description: An important constituent of gabbro.
Reference: Lindgren, Waldemar (1896a), The gold-quartz veins of Nevada City and Grass Valley districts, California: USGS 17th. Annual Report, part 2: 53; Murdoch, Joseph & Robert W. Webb (1966), Minerals of California, Centennial Volume (1866-1966): California Division Mines & Geology Bulletin 189: 307; Pemberton, H. Earl (1983), Minerals of California; Van Nostrand Reinholt Press: 386.
Epidote
Formula: {Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Localities: Reported from at least 14 localities in this region.
'Fayalite-Forsterite Series'
Ferrimolybdite
Formula: Fe2(MoO4)3 · nH2O
Freibergite
Formula: (Ag,Cu,◻)10Fe2+2Sb4S12
Reference: USGS (2005), Mineral Resources Data System (MRDS): U.S. Geological Survey, Reston, Virginia, loc. file ID #10310707.
Galena
Formula: PbS
Localities: Reported from at least 67 localities in this region.
'Garnet Group'
Formula: X3Z2(SiO4)3
Gold
Formula: Au
Localities: Reported from at least 750 localities in this region.
'Gold Amalgam'
Reference: Lindgren, Waldemar (1896a), The gold-quartz veins of Nevada City and Grass Valley districts, California: USGS 17th. Annual Report, part 2: 1-262: 116; Lindgren, Waldemar (1911), The Tertiary gravels of the Sierra Nevada of California: USGS pp 73, 226 pp.: 75; Murdoch, Joseph & Robert W. Webb (1966), Minerals of California, Centennial Volume (1866-1966): California Division Mines & Geology Bulletin 189: 149, 205
Graphite
Formula: C
Gypsum
Formula: CaSO4 · 2H2O
Hausmannite
Formula: Mn2+Mn3+2O4
Hematite
Formula: Fe2O3
Localities: Reported from at least 6 localities in this region.
Hessite
Formula: Ag2Te
Hollingworthite
Formula: (Rh,Pt,Pd)AsS
Reference: Sjoberg, J. and Gomes, J.M. (1980) Platinum-group minerals in California alluvial deposits. US Bureau of Mines, Reno Research Center, unpublished manuscript: 15, figure 1; Pemberton, H. Earl (1983), Minerals of California; Van Nostrand Reinholt Press: 63-64.
'Hornblende'
Reference: USGS (2005), Mineral Resources Data System (MRDS): U.S. Geological Survey, Reston, Virginia, loc. file ID #10007577.
Ilmenite
Formula: Fe2+TiO3
Localities: Reported from at least 9 localities in this region.
Iridium
Formula: (Ir,Os,Ru)
Reference: Sjoberg, J. and Gomes, J.M. (1980) Platinum-group minerals in California alluvial deposits. US Bureau of Mines, Reno Research Center, unpublished manuscript: 15, figure 1; Pemberton, H. Earl (1983), Minerals of California; Van Nostrand Reinholt Press: 45.
Iridium var: Osmiridium
Formula: (Ir,Os,Ru)
Reference: Sjoberg, J. and Gomes, J.M. (1980) Platinum-group minerals in California alluvial deposits. US Bureau of Mines, Reno Research Center, unpublished manuscript: 15, figure 1; Pemberton, H. Earl (1983), Minerals of California; Van Nostrand Reinholt Press: 45.
Iridium var: Ruthenosmiridium
Formula: (Ir,Os,Ru)
Reference: Sjoberg, J. and Gomes, J.M. (1980) Platinum-group minerals in California alluvial deposits. US Bureau of Mines, Reno Research Center, unpublished manuscript: 15, figure 1; Pemberton, H. Earl (1983), Minerals of California; Van Nostrand Reinholt Press: 45.
Jacobsite
Formula: Mn2+Fe3+2O4
Reference: Econ Geol (1992) 87:2023-2040
Kaolinite
Formula: Al2(Si2O5)(OH)4
Reference: USGS (2005), Mineral Resources Data System (MRDS): U.S. Geological Survey, Reston, Virginia, loc. file ID #10007226.
Knorringite
Formula: Mg3Cr2(SiO4)3
Reference: Handbook of Mineralogy
Kotulskite
Formula: Pd(Te,Bi)
Reference: Sjoberg, J. and Gomes, J.M. (1980) Platinum-group minerals in California alluvial deposits. US Bureau of Mines, Reno Research Center, unpublished manuscript: 15, figure 1; Pemberton, H. Earl (1983), Minerals of California; Van Nostrand Reinholt Press: 63-64.
Laurite
Formula: RuS2
Reference: Sjoberg, J. and Gomes, J.M. (1980) Platinum-group minerals in California alluvial deposits. US Bureau of Mines, Reno Research Center, unpublished manuscript: 15, figure 1; Pemberton, H. Earl (1983), Minerals of California; Van Nostrand Reinholt Press: 63-64.
'Limonite'
Formula: (Fe,O,OH,H2O)
Localities: Reported from at least 6 localities in this region.
Magnesiochromite
Formula: MgCr2O4
Reference: www.mineralsocal.org
Magnesite
Formula: MgCO3
Magnetite
Formula: Fe2+Fe3+2O4
Localities: Reported from at least 18 localities in this region.
Magnetite var: Lodestone
Formula: Fe2+Fe3+2O4
Reference: Browne, J.R. (1869), Report of J. Ross Browne on the mineral resources of the states and territories west of the Rocky Mountains (US Treasury Department), 674 pp., H.H. Bancroft and Co., San Francisco [reprint of 2]: 224; Murdoch, Joseph & Robert W. Webb (1966), Minerals of California, Centennial Volume (1866-1966): California Division Mines & Geology Bulletin 189: 251.
Malachite
Formula: Cu2(CO3)(OH)2
Localities: Reported from at least 10 localities in this region.
'Manganese Oxides'
Manganite
Formula: Mn3+O(OH)
Reference: U.S. Geological Survey, 2005, Mineral Resources Data System: U.S. Geological Survey, Reston, Virginia.
Marcasite
Formula: FeS2
'Mariposite'
Formula: K(Al,Cr)2(Al,Si)4O10(OH)2
Metazeunerite ?
Formula: Cu(UO2)2(AsO4)2 · 8H2O
Description: Occurs as minute cavity fillings in a shear zone.
Reference: Walker, G.W., Lovering, T.G., and Stephens, H.G. (1956), Radioactive Deposits in California: Special Report 49 of the California Division of Mines & Geology: 28; Murdoch, Joseph & Robert W. Webb (1966), Minerals of California, Centennial Volume (1866-1966): California Division Mines & Geology Bulletin 189: 264; USGS (2005), Mineral Resources Data System (MRDS): U.S. Geological Survey, Reston, Virginia, loc. file ID #10092486.
Molybdenite
Formula: MoS2
Localities: Reported from at least 9 localities in this region.
Muscovite
Formula: KAl2(AlSi3O10)(OH)2
Localities: Reported from at least 14 localities in this region.
Muscovite var: Phengite
Formula: KAl1.5(Mg,Fe)0.5(Al0.5Si3.5O10)(OH)2
Muscovite var: Sericite
Formula: KAl2(AlSi3O10)(OH)2
Localities: Reported from at least 11 localities in this region.
Naumannite
Formula: Ag2Se
Neotocite
Formula: (Mn,Fe,Mg)SiO3 · H2O
Reference: USGS (2005), Mineral Resources Data System (MRDS): U.S. Geological Survey, Reston, Virginia, loc. file ID #10031697.
Nontronite
Formula: Na0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Reference: Murdoch, Joseph & Robert W. Webb (1966), Minerals of California, Centennial Volume (1866-1966): California Division Mines & Geology Bulletin 189: 280.
Opal
Formula: SiO2 · nH2O
Reference: U.S. Geological Survey, 2005, Mineral Resources Data System: U.S. Geological Survey, Reston, Virginia.
Osmium
Formula: (Os,Ir,Ru)
Reference: Sjoberg, J. and Gomes, J.M. (1980) Platinum-group minerals in California alluvial deposits. US Bureau of Mines, Reno Research Center, unpublished manuscript: 15, figure 1; Pemberton, H. Earl (1983), Minerals of California; Van Nostrand Reinholt Press: 45.
Osmium var: Iridosmine
Formula: (Os,Ir)
Reference: Sjoberg, J. and Gomes, J.M. (1980) Platinum-group minerals in California alluvial deposits. US Bureau of Mines, Reno Research Center, unpublished manuscript: 15, figure 1; Pemberton, H. Earl (1983), Minerals of California; Van Nostrand Reinholt Press: 45.
Palladium
Formula: (Pd,Pt)
Reference: Sjoberg, J. and Gomes, J.M. (1980) Platinum-group minerals in California alluvial deposits. US Bureau of Mines, Reno Research Center, unpublished manuscript: 15, figure 1; Pemberton, H. Earl (1983), Minerals of California; Van Nostrand Reinholt Press: 45.
'Petrified Wood'
Reference: Murdoch, Joseph & Robert W. Webb (1966), Minerals of California, Centennial Volume (1866-1966): California Division Mines & Geology Bulletin 189: 282.
Petzite
Formula: Ag3AuTe2
Platinum
Formula: Pt
Reference: USGS (2005), Mineral Resources Data System (MRDS): U.S. Geological Survey, Reston, Virginia, loc. file ID #10109519.
Powellite
Formula: Ca(MoO4)
Reference: Doebrich, J. L.; Garside, L. J.; Shawe, D. R. (1996) Characterization of mineral deposits in rocks of the Triassic to Jurassic magmatic arc of western Nevada and eastern California. USGS Open File report 96-6
'Psilomelane'
Formula: Mn, O
Localities: Reported from at least 7 localities in this region.
Pyrargyrite
Formula: Ag3SbS3
Pyrite
Formula: FeS2
Localities: Reported from at least 109 localities in this region.
Pyrolusite
Formula: Mn4+O2
Pyromorphite
Formula: Pb5(PO4)3Cl
Reference: Irelan, William, Jr. (1890a), Ninth annual report of the State Mineralogist: California Mining Bureau. Report 9, 352 pp.: 47; Murdoch, Joseph & Robert W. Webb (1966), Minerals of California, Centennial Volume (1866-1966): California Division Mines & Geology Bulletin 189: 305; Pemberton, H. Earl (1983), Minerals of California; Van Nostrand Reinholt Press: 324.
Pyrophanite
Formula: Mn2+TiO3
Description: Identified in a polished section.
Reference: Hewett, Donnel Foster, Charles Wesley Chesterman & Bennie Wyatt Troxel (1961), Tephroite in California manganese deposits: Economic Geology: 56: 41; Pemberton, H. Earl (1983), Minerals of California: 173.
'Pyroxene Group'
Pyrrhotite
Formula: Fe7S8
Localities: Reported from at least 11 localities in this region.
Quartz
Formula: SiO2
Localities: Reported from at least 621 localities in this region.
Quartz var: Chalcedony
Formula: SiO2
Quartz var: Milky Quartz
Formula: SiO2
Quartz var: Rock Crystal
Formula: SiO2
Reference: Van King
Redledgeite (TL)
Formula: Ba(Ti4+6Cr3+2)O16
Type Locality:
Colour: Black
Description: Small, brilliant crystals with chromian clinochlore on chromite.
Reference: Gordon, Samuel G. & E.V. Shannon (1928), Chromrutile a new mineral from California: American Mineralogist: 13: 69; Bradley, W.W. (1940), Thirty-sixth report of the State Mineralogist: California Division Mines Report 36: 69; Palache, Charles, Harry Berman & Clifford Frondel (1944), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana Yale University 1837-1892, Seventh edition, Volume I, John Wiley & Sons, New York: 560; Strunz, Hugo (1961), “Chromrutil” von der Red Ledge mine ist kein rutil. Redledgeite: Neues Jahrb. Mineral., Monatsh.: 107; Strunz, Hugo (1963), Redledgeite, eine TiO2-einlagerungestruktur analog kryptomelan: Neues. Jahrb. Min. mh. 5: 116; Pemberton, H. Earl (1983), Minerals of California; Van Nostrand Reinholt Press: 174.
Rhodochrosite
Formula: MnCO3
Rhodonite
Formula: Mn2+SiO3
Rutheniridosmine
Formula: (Ir,Os,Ru)
Reference: Sjoberg, J. and Gomes, J.M. (1980) Platinum-group minerals in California alluvial deposits. US Bureau of Mines, Reno Research Center, unpublished manuscript: 15, figure 1; Pemberton, H. Earl (1983), Minerals of California; Van Nostrand Reinholt Press: 45.
Ruthenium
Formula: (Ru,Ir)
Reference: Sjoberg, J. and Gomes, J.M. (1980) Platinum-group minerals in California alluvial deposits. US Bureau of Mines, Reno Research Center, unpublished manuscript: 15, figure 1; Pemberton, H. Earl (1983), Minerals of California; Van Nostrand Reinholt Press: 45.
Rutile
Formula: TiO2
Description: Chromian variety.
Reference: Dana 7:I:559.
Scheelite
Formula: Ca(WO4)
Localities: Reported from at least 7 localities in this region.
Scorodite
Formula: Fe3+AsO4 · 2H2O
'Serpentine Subgroup'
Formula: D3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn
Localities: Reported from at least 12 localities in this region.
'Serpentine Subgroup var: Picrolite'
Formula: D3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
Reference: Murdoch, Joseph & Robert W. Webb (1966), Minerals of California, Centennial Volume (1866-1966): California Division Mines & Geology Bulletin 189: 335.
Siderite
Formula: FeCO3
Localities: Reported from at least 9 localities in this region.
Silver
Formula: Ag
Skutterudite
Formula: CoAs3
Reference: Murdoch, Joseph & Robert W. Webb (1966), Minerals of California, Centennial Volume (1866-1966): California Division Mines & Geology Bulletin 189: 340.
'Sodium Amphibole Subgroup'
Formula: An(Na2)(Z5)(Si8-mAlmO22)(OH,F,Cl)2
Reference: USGS (2005), Mineral Resources Data System (MRDS): U.S. Geological Survey, Reston, Virginia, loc. file ID #10092486.
Sonolite
Formula: Mn2+9(SiO4)4(OH)2
Reference: Huebner, J. Stephen; Flohr, Marta J. (1990) Microbanded manganese formations; protoliths in the Franciscan Complex, California; USGS Professional Paper 1502.
Spessartine
Formula: Mn2+3Al2(SiO4)3
Reference: Huebner, J. Stephen; Flohr, Marta J. (1990) Microbanded manganese formations; protoliths in the Franciscan Complex, California; USGS Professional Paper 1502.
Sphalerite
Formula: ZnS
Localities: Reported from at least 43 localities in this region.
Stephanite
Formula: Ag5SbS4
Reference: Lindgren, Waldemar (1896a), The gold-quartz veins of Nevada City and Grass Valley districts, California: USGS 17th. Annual Report, part 2: 119; Murdoch, Joseph & Robert W. Webb (1966), Minerals of California, Centennial Volume (1866-1966): California Division Mines & Geology Bulletin 189: 84, 347; Pemberton, H. Earl (1983), Minerals of California; Van Nostrand Reinholt Press: 26 (map 2-14), 108, 140.
Stibnite
Formula: Sb2S3
Stilpnomelane ?
Formula: (K,Ca,Na)(Fe2+,Mg,Al)8(Si,Al)12(O,OH)36 · nH2O
Reference: Doebrich, J. L.; Garside, L. J.; Shawe, D. R. (1996) Characterization of mineral deposits in rocks of the Triassic to Jurassic magmatic arc of western Nevada and eastern California. USGS Open File report 96-6
Talc
Formula: Mg3Si4O10(OH)2
Tephroite
Formula: Mn2+2SiO4
Tetradymite
Formula: Bi2Te2S
Reference: Hanks, Henry Garber (1884), Fourth report of the State Mineralogist: California Mining Bureau. Report 4, 410 pp.: 388; Murdoch, Joseph & Robert W. Webb (1966), Minerals of California, Centennial Volume (1866-1966): California Division Mines & Geology Bulletin 189: 362; Pemberton, H. Earl (1983), Minerals of California; Van Nostrand Reinholt Press: 125.
Tetrahedrite
Formula: Cu6Cu4(Fe2+,Zn)2Sb4S13
Localities:
Tetrahedrite var: Argentian Tetrahedrite
Formula: (Cu,Ag)6[Cu4(Fe,Zn)2]Sb4S13
Reference: Johnston, William Drumm (1938), Vein filling in Nevada City, California: Geol Society of America Bulletin: 49: 216; Murdoch, Joseph & Robert W. Webb (1966), Minerals of California, Centennial Volume (1866-1966): California Division Mines & Geology Bulletin 189: 364; Pemberton, H. Earl (1983), Minerals of California: 134.
'Tourmaline'
Formula: A(D3)G6(Si6O18)(BO3)3X3Z
Uvarovite
Formula: Ca3Cr2(SiO4)3
Colour: Green
Description: Occurs as fine crystals coating chromite.
Reference: MacBoyle, Errol (1919), Mines and mineral resources of Nevada County: California Mining Bureau. Report 16, 270 pp. (published as separate chapter): 77; Melhase, John (1935c), Some garnet localities of California: Mineralogist: 3(11): 23; Rynearson, Garn Arthur (1953), Geological investigations of chromite in California: Chromite deposits in the northern Sierra Nevada, California. California Division of Mines and Geology Bulletin 134, part 3 chapter 5: 239; Pemberton, H. Earl (1983), Minerals of California; Van Nostrand Reinholt Press: 497; www.mineralsocal.org
Vysotskite
Formula: (Pd,Ni)S
Reference: Sjoberg, J. and Gomes, J.M. (1980) Platinum-group minerals in California alluvial deposits. US Bureau of Mines, Reno Research Center, unpublished manuscript: 15, figure 1; Pemberton, H. Earl (1983), Minerals of California; Van Nostrand Reinholt Press: 63-64; Anthony, Bideaux, Bladh, Nichols: "Handbook of Mineralogy", Vol. 1, 1990
'Wad'
Wollastonite
Formula: CaSiO3
Zircon
Formula: Zr(SiO4)
Localities: Reported from at least 9 localities in this region.

List of minerals arranged by Strunz 10th Edition classification

Group 1 - Elements
Arsenic1.CA.05As
Bismuth1.CA.05Bi
Copper1.AA.05Cu
Diamond1.CB.10aC
Gold1.AA.05Au
Graphite1.CB.05aC
Iridium1.AF.10(Ir,Os,Ru)
var: Osmiridium1.AF.10(Ir,Os,Ru)
var: Ruthenosmiridium1.AF.10(Ir,Os,Ru)
Osmium1.AF.05(Os,Ir,Ru)
var: Iridosmine1.AF.05(Os,Ir)
Palladium1.AF.10(Pd,Pt)
Platinum1.AF.10Pt
Rutheniridosmine1.AF.05(Ir,Os,Ru)
Ruthenium1.AF.05(Ru,Ir)
Silver1.AA.05Ag
Group 2 - Sulphides and Sulfosalts
Acanthite2.BA.35Ag2S
Altaite2.CD.10PbTe
Arsenopyrite2.EB.20FeAsS
var: Danaite2.EB.20(Fe0.90Co0.10)AsS - (Fe0.65Co0.35)AsS
Bornite2.BA.15Cu5FeS4
Chalcocite2.BA.05Cu2S
Chalcopyrite2.CB.10aCuFeS2
Cinnabar2.CD.15aHgS
Cobaltite2.EB.25CoAsS
Covellite2.CA.05aCuS
Freibergite2.GB.05(Ag,Cu,◻)10Fe2+2Sb4S12
Galena2.CD.10PbS
Hessite2.BA.60Ag2Te
Hollingworthite2.EB.25(Rh,Pt,Pd)AsS
Kotulskite2.CC.05Pd(Te,Bi)
Laurite2.EB.05aRuS2
Marcasite2.EB.10aFeS2
Molybdenite2.EA.30MoS2
Naumannite2.BA.55Ag2Se
Petzite2.BA.75Ag3AuTe2
Pyrargyrite2.GA.05Ag3SbS3
Pyrite2.EB.05aFeS2
Pyrrhotite2.CC.10Fe7S8
Skutterudite2.EC.05CoAs3
Sphalerite2.CB.05aZnS
Stephanite2.GB.10Ag5SbS4
Stibnite2.DB.05Sb2S3
Tetradymite2.DC.05Bi2Te2S
Tetrahedrite2.GB.05Cu6Cu4(Fe2+,Zn)2Sb4S13
var: Argentian Tetrahedrite2.GB.05(Cu,Ag)6[Cu4(Fe,Zn)2]Sb4S13
Vysotskite2.CC.35a(Pd,Ni)S
Group 4 - Oxides and Hydroxides
Anatase4.DD.05TiO2
Carnotite4.HB.05K2(UO2)2(VO4)2 · 3H2O
Chromite4.BB.05Fe2+Cr3+2O4
Cristobalite4.DA.15SiO2
Cuprite4.AA.10Cu2O
Hausmannite4.BB.10Mn2+Mn3+2O4
Hematite4.CB.05Fe2O3
Ilmenite4.CB.05Fe2+TiO3
Jacobsite4.BB.05Mn2+Fe3+2O4
Magnesiochromite4.BB.05MgCr2O4
Magnetite4.BB.05Fe2+Fe3+2O4
var: Lodestone4.BB.05Fe2+Fe3+2O4
Manganite4.FD.15Mn3+O(OH)
Opal4.DA.10SiO2 · nH2O
Pyrolusite4.DB.05Mn4+O2
Pyrophanite4.CB.05Mn2+TiO3
Quartz4.DA.05SiO2
var: Chalcedony4.DA.05SiO2
var: Milky Quartz4.DA.05SiO2
var: Rock Crystal4.DA.05SiO2
Redledgeite (TL)4.DK.05bBa(Ti4+6Cr3+2)O16
Rutile4.DB.05TiO2
Group 5 - Nitrates and Carbonates
Ankerite5.AB.10Ca(Fe2+,Mg)(CO3)2
Azurite5.BA.05Cu3(CO3)2(OH)2
Calcite5.AB.05CaCO3
var: Manganoan Calcite5.AB.05(Ca,Mn)CO3
Dolomite5.AB.10CaMg(CO3)2
Magnesite5.AB.05MgCO3
Malachite5.BA.10Cu2(CO3)(OH)2
Rhodochrosite5.AB.05MnCO3
Siderite5.AB.05FeCO3
Group 7 - Sulphates, Chromates, Molybdates and Tungstates
Alunogen7.CB.45Al2(SO4)3 · 17H2O
Baryte7.AD.35BaSO4
Bieberite7.CB.35CoSO4 · 7H2O
Chalcanthite7.CB.20CuSO4 · 5H2O
Ferrimolybdite7.GB.30Fe2(MoO4)3 · nH2O
Gypsum7.CD.40CaSO4 · 2H2O
Powellite7.GA.05Ca(MoO4)
Scheelite7.GA.05Ca(WO4)
Group 8 - Phosphates, Arsenates and Vanadates
Metazeunerite ?8.EB.10Cu(UO2)2(AsO4)2 · 8H2O
Pyromorphite8.BN.05Pb5(PO4)3Cl
Scorodite8.CD.10Fe3+AsO4 · 2H2O
Group 9 - Silicates
Albite9.FA.35Na(AlSi3O8)
Andalusite9.AF.10Al2(SiO4)O
Andradite9.AD.25Ca3Fe3+2(SiO4)3
Anorthite9.FA.35Ca(Al2Si2O8)
Bementite9.EE.05Mn7Si6O15(OH)8
Caryopilite9.ED.15Mn2+3Si2O5(OH)4
Clinochlore9.EC.55Mg5Al(AlSi3O10)(OH)8
var: Chromian Clinochlore9.EC.55Mg5(Al,Cr)2Si3O10(OH)8
Diopside9.DA.15CaMgSi2O6
var: Diallage9.DA.15CaMgSi2O6
Enstatite9.DA.05MgSiO3
Epidote9.BG.05a{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Kaolinite9.ED.05Al2(Si2O5)(OH)4
Knorringite9.AD.25Mg3Cr2(SiO4)3
Muscovite9.EC.15KAl2(AlSi3O10)(OH)2
var: Phengite9.EC.15KAl1.5(Mg,Fe)0.5(Al0.5Si3.5O10)(OH)2
var: Sericite9.EC.15KAl2(AlSi3O10)(OH)2
Neotocite9.ED.20(Mn,Fe,Mg)SiO3 · H2O
Nontronite9.EC.40Na0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Rhodonite9.DK.05Mn2+SiO3
Sonolite9.AF.55Mn2+9(SiO4)4(OH)2
Spessartine9.AD.25Mn2+3Al2(SiO4)3
Stilpnomelane ?9.EG.40(K,Ca,Na)(Fe2+,Mg,Al)8(Si,Al)12(O,OH)36 · nH2O
Talc9.EC.05Mg3Si4O10(OH)2
Tephroite9.AC.05Mn2+2SiO4
Uvarovite9.AD.25Ca3Cr2(SiO4)3
Wollastonite9.DG.05CaSiO3
Zircon9.AD.30Zr(SiO4)
Unclassified Minerals, Rocks, etc.
''-
'Amphibole Supergroup'-AX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
'Apatite'-Ca5(PO4)3(Cl/F/OH)
'Asbestos'-
'Biotite'-K(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
'Chabazite'-
'Chlorite Group'-
'Clays'-
'Fayalite-Forsterite Series'-
'Garnet Group'-X3Z2(SiO4)3
'Gold Amalgam'-
'Hornblende'-
'Limonite'-(Fe,O,OH,H2O)
'Manganese Oxides'-
'Mariposite'-K(Al,Cr)2(Al,Si)4O10(OH)2
'Petrified Wood'-
'Psilomelane'-Mn, O
'Pyroxene Group'-
'Serpentine Subgroup'-D3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn
'var: Picrolite'-D3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
'Sodium Amphibole Subgroup'-An(Na2)(Z5)(Si8-mAlmO22)(OH,F,Cl)2
'Tourmaline'-A(D3)G6(Si6O18)(BO3)3X3Z
'Wad'-

List of minerals arranged by Dana 8th Edition classification

Group 1 - NATIVE ELEMENTS AND ALLOYS
Metals, other than the Platinum Group
Copper1.1.1.3Cu
Gold1.1.1.1Au
Silver1.1.1.2Ag
Platinum Group Metals and Alloys
Iridium1.2.1.2(Ir,Os,Ru)
Osmium1.2.2.1(Os,Ir,Ru)
Palladium1.2.1.4(Pd,Pt)
Platinum1.2.1.1Pt
Rutheniridosmine1.2.2.3(Ir,Os,Ru)
Ruthenium1.2.2.2(Ru,Ir)
Semi-metals and non-metals
Arsenic1.3.1.1As
Bismuth1.3.1.4Bi
Diamond1.3.6.1C
Graphite1.3.6.2C
Group 2 - SULFIDES
AmBnXp, with (m+n):p = 2:1
Acanthite2.4.1.1Ag2S
Chalcocite2.4.7.1Cu2S
Hessite2.4.2.1Ag2Te
Naumannite2.4.1.2Ag2Se
Petzite2.4.3.3Ag3AuTe2
AmBnXp, with (m+n):p = 3:2
Bornite2.5.2.1Cu5FeS4
AmXp, with m:p = 1:1
Altaite2.8.1.3PbTe
Cinnabar2.8.14.1HgS
Covellite2.8.12.1CuS
Galena2.8.1.1PbS
Pyrrhotite2.8.10.1Fe7S8
Sphalerite2.8.2.1ZnS
Vysotskite2.8.5.2(Pd,Ni)S
AmBnXp, with (m+n):p = 1:1
Chalcopyrite2.9.1.1CuFeS2
AmBnXp, with (m+n):p = 2:3
Stibnite2.11.2.1Sb2S3
Tetradymite2.11.7.1Bi2Te2S
AmBnXp, with (m+n):p = 1:2
Arsenopyrite2.12.4.1FeAsS
Cobaltite2.12.3.1CoAsS
Hollingworthite2.12.3.8(Rh,Pt,Pd)AsS
Laurite2.12.1.10RuS2
Marcasite2.12.2.1FeS2
Molybdenite2.12.10.1MoS2
Pyrite2.12.1.1FeS2
Skutterudite2.12.17.1CoAs3
Group 3 - SULFOSALTS
ø = 4
Stephanite3.2.4.1Ag5SbS4
3 <ø < 4
Freibergite3.3.6.3(Ag,Cu,◻)10Fe2+2Sb4S12
Tetrahedrite3.3.6.1Cu6Cu4(Fe2+,Zn)2Sb4S13
ø = 3
Pyrargyrite3.4.1.2Ag3SbS3
Group 4 - SIMPLE OXIDES
A2X
Cuprite4.1.1.1Cu2O
A2X3
Hematite4.3.1.2Fe2O3
Ilmenite4.3.5.1Fe2+TiO3
Pyrophanite4.3.5.3Mn2+TiO3
AX2
Anatase4.4.4.1TiO2
Pyrolusite4.4.1.4Mn4+O2
Rutile4.4.1.1TiO2
Group 6 - HYDROXIDES AND OXIDES CONTAINING HYDROXYL
XO(OH)
Manganite6.1.3.1Mn3+O(OH)
Group 7 - MULTIPLE OXIDES
AB2X4
Chromite7.2.3.3Fe2+Cr3+2O4
Hausmannite7.2.7.1Mn2+Mn3+2O4
Jacobsite7.2.2.2Mn2+Fe3+2O4
Magnesiochromite7.2.3.1MgCr2O4
Magnetite7.2.2.3Fe2+Fe3+2O4
AB8X16
Redledgeite (TL)7.9.5.2Ba(Ti4+6Cr3+2)O16
Group 14 - ANHYDROUS NORMAL CARBONATES
A(XO3)
Calcite14.1.1.1CaCO3
Magnesite14.1.1.2MgCO3
Rhodochrosite14.1.1.4MnCO3
Siderite14.1.1.3FeCO3
AB(XO3)2
Ankerite14.2.1.2Ca(Fe2+,Mg)(CO3)2
Dolomite14.2.1.1CaMg(CO3)2
Group 16a - ANHYDROUS CARBONATES CONTAINING HYDROXYL OR HALOGEN
Azurite16a.2.1.1Cu3(CO3)2(OH)2
Malachite16a.3.1.1Cu2(CO3)(OH)2
Group 28 - ANHYDROUS ACID AND NORMAL SULFATES
AXO4
Baryte28.3.1.1BaSO4
Group 29 - HYDRATED ACID AND NORMAL SULFATES
AXO4·xH2O
Bieberite29.6.10.4CoSO4 · 7H2O
Chalcanthite29.6.7.1CuSO4 · 5H2O
Gypsum29.6.3.1CaSO4 · 2H2O
A2(XO4)3·H2O
Alunogen29.8.6.1Al2(SO4)3 · 17H2O
Group 40 - HYDRATED NORMAL PHOSPHATES,ARSENATES AND VANADATES
AB2(XO4)2·xH2O, containing (UO2)2+
Carnotite40.2a.28.1K2(UO2)2(VO4)2 · 3H2O
Metazeunerite ?40.2a.14.2Cu(UO2)2(AsO4)2 · 8H2O
(AB)5(XO4)2·xH2O
Scorodite40.4.1.3Fe3+AsO4 · 2H2O
Group 41 - ANHYDROUS PHOSPHATES, ETC.CONTAINING HYDROXYL OR HALOGEN
A5(XO4)3Zq
Pyromorphite41.8.4.1Pb5(PO4)3Cl
Group 48 - ANHYDROUS MOLYBDATES AND TUNGSTATES
AXO4
Powellite48.1.2.2Ca(MoO4)
Scheelite48.1.2.1Ca(WO4)
Group 49 - HYDRATED MOLYBDATES AND TUNGSTATES
Hydrated Normal Molybdates and Tungstates
Ferrimolybdite49.2.1.1Fe2(MoO4)3 · nH2O
Group 51 - NESOSILICATES Insular SiO4 Groups Only
Insular SiO4 Groups Only with all cations in octahedral [6] coordination
Tephroite51.3.1.4Mn2+2SiO4
Insular SiO4 Groups Only with cations in [6] and >[6] coordination
Andradite51.4.3b.1Ca3Fe3+2(SiO4)3
Knorringite51.4.3a.4Mg3Cr2(SiO4)3
Spessartine51.4.3a.3Mn2+3Al2(SiO4)3
Uvarovite51.4.3b.3Ca3Cr2(SiO4)3
Insular SiO4 Groups Only with cations in >[6] coordination
Zircon51.5.2.1Zr(SiO4)
Group 52 - NESOSILICATES Insular SiO4 Groups and O,OH,F,H2O
Insular SiO4 Groups and O, OH, F, and H2O with cations in [4] and >[4] coordination
Andalusite52.2.2b.1Al2(SiO4)O
Insular SiO4 Groups and O, OH, F, and H2O with cations in [6] coordination only
Sonolite52.3.2d.3Mn2+9(SiO4)4(OH)2
Group 58 - SOROSILICATES Insular, Mixed, Single, and Larger Tetrahedral Groups
Insular, Mixed, Single, and Larger Tetrahedral Groups with cations in [6] and higher coordination; single and double groups (n = 1, 2)
Epidote58.2.1a.7{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Group 65 - INOSILICATES Single-Width,Unbranched Chains,(W=1)
Single-Width Unbranched Chains, W=1 with chains P=2
Diopside65.1.3a.1CaMgSi2O6
Enstatite65.1.2.1MgSiO3
Single-Width Unbranched Chains, W=1 with chains P=3
Wollastonite65.2.1.1cCaSiO3
Single-Width Unbranched Chains, W=1 with chains P=5
Rhodonite65.4.1.1Mn2+SiO3
Group 71 - PHYLLOSILICATES Sheets of Six-Membered Rings
Sheets of 6-membered rings with 1:1 layers
Caryopilite71.1.2b.1Mn2+3Si2O5(OH)4
Neotocite71.1.5.4(Mn,Fe,Mg)SiO3 · H2O
Sheets of 6-membered rings with 2:1 layers
Muscovite71.2.2a.1KAl2(AlSi3O10)(OH)2
Talc71.2.1.3Mg3Si4O10(OH)2
Sheets of 6-membered rings with 2:1 clays
Nontronite71.3.1a.3Na0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Sheets of 6-membered rings interlayered 1:1, 2:1, and octahedra
Clinochlore71.4.1.4Mg5Al(AlSi3O10)(OH)8
Group 74 - PHYLLOSILICATES Modulated Layers
Modulated Layers with joined islands
Stilpnomelane ?74.1.1.1(K,Ca,Na)(Fe2+,Mg,Al)8(Si,Al)12(O,OH)36 · nH2O
Group 75 - TECTOSILICATES Si Tetrahedral Frameworks
Si Tetrahedral Frameworks - SiO2 with [4] coordinated Si
Cristobalite75.1.1.1SiO2
Quartz75.1.3.1SiO2
Si Tetrahedral Frameworks - SiO2 with H2O and organics
Opal75.2.1.1SiO2 · nH2O
Group 76 - TECTOSILICATES Al-Si Framework
Al-Si Framework with Al-Si frameworks
Albite76.1.3.1Na(AlSi3O8)
Group 78 - Unclassified Silicates
Bementite78.5.2.1Mn7Si6O15(OH)8
Unclassified Minerals, Mixtures, etc.
''-
'Amphibole Supergroup'-AX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Anorthite-Ca(Al2Si2O8)
'Apatite'-Ca5(PO4)3(Cl/F/OH)
Arsenopyrite
var: Danaite
-(Fe0.90Co0.10)AsS - (Fe0.65Co0.35)AsS
'Asbestos'-
'Biotite'-K(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
Calcite
var: Manganoan Calcite
-(Ca,Mn)CO3
'Chabazite'-
'Chlorite Group'-
'Clays'-
Clinochlore
var: Chromian Clinochlore
-Mg5(Al,Cr)2Si3O10(OH)8
Diopside
var: Diallage
-CaMgSi2O6
'Fayalite-Forsterite Series'-
'Garnet Group'-X3Z2(SiO4)3
'Gold Amalgam'-
'Hornblende'-
Iridium
var: Osmiridium
-(Ir,Os,Ru)
var: Ruthenosmiridium-(Ir,Os,Ru)
Kaolinite-Al2(Si2O5)(OH)4
Kotulskite-Pd(Te,Bi)
'Limonite'-(Fe,O,OH,H2O)
Magnetite
var: Lodestone
-Fe2+Fe3+2O4
'Manganese Oxides'-
'Mariposite'-K(Al,Cr)2(Al,Si)4O10(OH)2
Muscovite
var: Phengite
-KAl1.5(Mg,Fe)0.5(Al0.5Si3.5O10)(OH)2
var: Sericite-KAl2(AlSi3O10)(OH)2
Osmium
var: Iridosmine
-(Os,Ir)
'Petrified Wood'-
'Psilomelane'-Mn, O
'Pyroxene Group'-
Quartz
var: Chalcedony
-SiO2
var: Milky Quartz-SiO2
var: Rock Crystal-SiO2
'Serpentine Subgroup'-D3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn
'var: Picrolite'-D3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
'Sodium Amphibole Subgroup'-An(Na2)(Z5)(Si8-mAlmO22)(OH,F,Cl)2
Tetrahedrite
var: Argentian Tetrahedrite
-(Cu,Ag)6[Cu4(Fe,Zn)2]Sb4S13
'Tourmaline'-A(D3)G6(Si6O18)(BO3)3X3Z
'Wad'-

List of minerals for each chemical element

HHydrogen
H Clinochlore (var: Chromian Clinochlore)Mg5(Al,Cr)2Si3O10(OH)8
H BieberiteCoSO4 · 7H2O
H ScoroditeFe3+AsO4 · 2H2O
H ChalcanthiteCuSO4 · 5H2O
H Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
H MalachiteCu2(CO3)(OH)2
H OpalSiO2 · nH2O
H ManganiteMn3+O(OH)
H Limonite(Fe,O,OH,H2O)
H FerrimolybditeFe2(MoO4)3 · nH2O
H CaryopiliteMn32+Si2O5(OH)4
H Serpentine Subgroup (var: Picrolite)D3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
H AlunogenAl2(SO4)3 · 17H2O
H NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
H CarnotiteK2(UO2)2(VO4)2 · 3H2O
H GypsumCaSO4 · 2H2O
H Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
H Serpentine SubgroupD3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn
H MaripositeK(Al,Cr)2(Al,Si)4O10(OH)2
H BementiteMn7Si6O15(OH)8
H AzuriteCu3(CO3)2(OH)2
H SonoliteMn92+(SiO4)4(OH)2
H ApatiteCa5(PO4)3(Cl/F/OH)
H MuscoviteKAl2(AlSi3O10)(OH)2
H BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
H Amphibole SupergroupAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
H TalcMg3Si4O10(OH)2
H Sodium Amphibole SubgroupAn(Na2)(Z5)(Si8-mAlmO22)(OH,F,Cl)2
H Neotocite(Mn,Fe,Mg)SiO3 · H2O
H KaoliniteAl2(Si2O5)(OH)4
H ClinochloreMg5Al(AlSi3O10)(OH)8
H Muscovite (var: Phengite)KAl1.5(Mg,Fe)0.5(Al0.5Si3.5O10)(OH)2
H MetazeuneriteCu(UO2)2(AsO4)2 · 8H2O
H Stilpnomelane(K,Ca,Na)(Fe2+,Mg,Al)8(Si,Al)12(O,OH)36 · nH2O
BBoron
B TourmalineA(D3)G6(Si6O18)(BO3)3X3Z
CCarbon
C DolomiteCaMg(CO3)2
C CalciteCaCO3
C MalachiteCu2(CO3)(OH)2
C RhodochrositeMnCO3
C SideriteFeCO3
C AnkeriteCa(Fe2+,Mg)(CO3)2
C MagnesiteMgCO3
C Calcite (var: Manganoan Calcite)(Ca,Mn)CO3
C GraphiteC
C DiamondC
C AzuriteCu3(CO3)2(OH)2
OOxygen
O RedledgeiteBa(Ti64+Cr23+)O16
O TephroiteMn22+SiO4
O BaryteBaSO4
O ChromiteFe2+Cr23+O4
O RutileTiO2
O Clinochlore (var: Chromian Clinochlore)Mg5(Al,Cr)2Si3O10(OH)8
O KnorringiteMg3Cr2(SiO4)3
O MagnesiochromiteMgCr2O4
O QuartzSiO2
O UvaroviteCa3Cr2(SiO4)3
O BieberiteCoSO4 · 7H2O
O ScoroditeFe3+AsO4 · 2H2O
O ChalcanthiteCuSO4 · 5H2O
O DolomiteCaMg(CO3)2
O ScheeliteCa(WO4)
O Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
O CalciteCaCO3
O PsilomelaneMn, O
O RhodoniteMn2+SiO3
O MalachiteCu2(CO3)(OH)2
O Magnetite (var: Lodestone)Fe2+Fe23+O4
O OpalSiO2 · nH2O
O MagnetiteFe2+Fe23+O4
O PyrolusiteMn4+O2
O ManganiteMn3+O(OH)
O RhodochrositeMnCO3
O HematiteFe2O3
O Limonite(Fe,O,OH,H2O)
O SideriteFeCO3
O AnkeriteCa(Fe2+,Mg)(CO3)2
O IlmeniteFe2+TiO3
O PyromorphitePb5(PO4)3Cl
O Quartz (var: Milky Quartz)SiO2
O MagnesiteMgCO3
O TourmalineA(D3)G6(Si6O18)(BO3)3X3Z
O WollastoniteCaSiO3
O FerrimolybditeFe2(MoO4)3 · nH2O
O Calcite (var: Manganoan Calcite)(Ca,Mn)CO3
O JacobsiteMn2+Fe23+O4
O HausmanniteMn2+Mn23+O4
O CaryopiliteMn32+Si2O5(OH)4
O PyrophaniteMn2+TiO3
O Serpentine Subgroup (var: Picrolite)D3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
O EnstatiteMgSiO3
O Diopside (var: Diallage)CaMgSi2O6
O ZirconZr(SiO4)
O AnataseTiO2
O AlunogenAl2(SO4)3 · 17H2O
O NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
O CristobaliteSiO2
O CarnotiteK2(UO2)2(VO4)2 · 3H2O
O AndalusiteAl2(SiO4)O
O GypsumCaSO4 · 2H2O
O AnorthiteCa(Al2Si2O8)
O Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
O Serpentine SubgroupD3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn
O MaripositeK(Al,Cr)2(Al,Si)4O10(OH)2
O BementiteMn7Si6O15(OH)8
O AzuriteCu