IMPORTANT MESSAGE. We need your support now to keep mindat.org running. Click here to find out why.
Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat Articles
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsThe ElementsUsersBooks & MagazinesMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery

Pegmatite no. 31 (Xikeng Mine; Xiyuantou), Nanping pegmatite field (Xikeng pegmatite field), Yanping District, Nanping Prefecture, Fujian Province, China

This page is currently not sponsored. Click here to sponsor this page.
Key
Lock Map
Latitude & Longitude (WGS84): 26° 39' 25'' North , 118° 6' 7'' East
Latitude & Longitude (decimal): 26.65722,118.10222
GeoHash:G#: wsezxkz3t
Köppen climate type:Cfa : Humid subtropical climate
Name(s) in local language(s):31伟晶岩 (西坑矿; 溪源头), 南平伟晶岩矿田 (西坑伟晶岩矿田), 延平区, 南平市, 福建省, 中国


Muscovite-albite-spodumene pegmatite with economically significant cesium and rare metal (niobium, tantalum) contents.


Notes:
(1) Xiyuantou (which translates to "river source"), which was given as the locality for the discovery of kulanite (Yang et al., 1986) is the closest place indicated on the map. The pegmatite is situated on the upper end of a steep valley.
(2) Mining of this pegmatite started soon after its discovery. A plan view in the paper by Yang et al. (Mineral Deposits, 1987) indicates an adit with crosscuts to at least three galleries.

Select Mineral List Type

Standard Detailed Strunz Dana Chemical Elements

Mineral List


62 valid minerals. 3 (TL) - type locality of valid minerals.

Rock Types Recorded

Note: this is a very new system on mindat.org and data is currently VERY limited. Please bear with us while we work towards adding this information!

Select Rock List Type

Alphabetical List Tree Diagram

Detailed Mineral List:

Albite
Formula: Na(AlSi3O8)
Reference: Yueqing Yang, Yunxiang Ni, Yongquan Guo, Yaping Zhang, and Jiapin Liu (1986): Acta Petrologica et Mineralogica 5(2), 119–127; Yueqing Yang, Yunxiang Ni, Yongquang Guo, Nianming Qiu, Chenghu Chen, Chaofa Cai, Yaping Zhang, Jiabin Liu, and Yuexian Chen (1988): Geochemistry 7(2), 120-135; Can Rao, Rucheng Wang, and Huan Hu (2009): Geological Journal of China Universities 15(4), 496-505; Rao, C., Wang, R. C., Hatert, F., & Baijot, M. (2014). Hydrothermal transformations of triphylite from the Nanping No. 31 pegmatite dyke, southeastern China. European Journal of Mineralogy, 26(1), 179-188.; Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.
Albite var: Cleavelandite
Formula: Na(AlSi3O8)
Reference: Can Rao, Rucheng Wang, and Huan Hu (2009): Geological Journal of China Universities 15(4), 496-505.; Rao, C., Wang, R. C., Hatert, F., & Baijot, M. (2014). Hydrothermal transformations of triphylite from the Nanping No. 31 pegmatite dyke, southeastern China. European Journal of Mineralogy, 26(1), 179-188.
Amblygonite
Formula: LiAl(PO4)F
Reference: Can Rao, Rucheng Wang, and Huan Hu (2009): Geological Journal of China Universities 15(4), 496-505
Anapaite
Formula: Ca2Fe2+(PO4)2 · 4H2O
Reference: Rao, C., Wang, R. C., Hatert, F., & Baijot, M. (2014). Hydrothermal transformations of triphylite from the Nanping No. 31 pegmatite dyke, southeastern China. European Journal of Mineralogy, 26(1), 179-188.; Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.
'Apatite'
Reference: Yueqing Yang, Yunxiang Ni, Yongquan Guo, Yaping Zhang, and Jiapin Liu (1986): Acta Petrologica et Mineralogica 5(2), 119–127; Can Rao, Rucheng Wang, and Huan Hu (2009): Geological Journal of China Universities 15(4), 496-505; Rao, C., Wang, R. C., Hatert, F., & Baijot, M. (2014). Hydrothermal transformations of triphylite from the Nanping No. 31 pegmatite dyke, southeastern China. European Journal of Mineralogy, 26(1), 179-188.; Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.
Arrojadite-(KFe)
Formula: {KNa}{Fe2+◻}{Ca}{Na2◻}{Fe2+13}{Al}(PO4)11(HPO4)(OH)2
Description: fluorarrojadite-(BaNa)
Reference: Rao, C., Wang, R. C., Hatert, F., & Baijot, M. (2014). Hydrothermal transformations of triphylite from the Nanping No. 31 pegmatite dyke, southeastern China. European Journal of Mineralogy, 26(1), 179-188.
Augelite
Formula: Al2(PO4)(OH)3
Reference: Yueqing Yang, Yunxiang Ni, Yongquan Guo, Yaping Zhang, and Jiapin Liu (1986): Acta Petrologica et Mineralogica 5(2), 119–127; Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.
Autunite
Formula: Ca(UO2)2(PO4)2 · 11H2O
Reference: Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.
Bertossaite
Formula: (Li,Na)2(Ca,Fe2+,Mn2+)Al4(PO4)4(OH,F)4
Reference: Rao, C., Wang, R. C., Hatert, F., & Baijot, M. (2014). Hydrothermal transformations of triphylite from the Nanping No. 31 pegmatite dyke, southeastern China. European Journal of Mineralogy, 26(1), 179-188.; Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.
Bertrandite
Formula: Be4(Si2O7)(OH)2
Reference: Yueqing Yang, Yunxiang Ni, Yongquan Guo, Nianming Qiu, Chenghu Chen, Chaofa Cai, Yaping Zhang, Jiabing Liu, and Yuexian Chen (1987): Mineral Deposits 6(3), 10-21; Yueqing Yang, Wenying Wang, Yunxiang Ni, Chenghu Chen, and Jinghuang Zhu (1998): Geology of Fujian 17(2), 68-78
Beryl
Formula: Be3Al2(Si6O18)
Reference: Yueqing Yang, Yunxiang Ni, Yongquan Guo, Nianming Qiu, Chenghu Chen, Chaofa Cai, Yaping Zhang, Jiabing Liu, and Yuexian Chen (1987): Mineral Deposits 6(3), 10-21; Yunxiang Ni and Yueqing Yang (1992): Acta Petrologica et Mineralogica 11(3), 252-257; Can Rao, Rucheng Wang, and Huan Hu (2009): Geological Journal of China Universities 15(4), 496-505; Rao, C., Wang, R. C., Hatert, F., & Baijot, M. (2014). Hydrothermal transformations of triphylite from the Nanping No. 31 pegmatite dyke, southeastern China. European Journal of Mineralogy, 26(1), 179-188.; Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.
Beryllonite
Formula: NaBePO4
Reference: Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.
Cassiterite
Formula: SnO2
Reference: Yueqing Yang, Yunxiang Ni, Yongquan Guo, Nianming Qiu, Chenghu Chen, Chaofa Cai, Yaping Zhang, Jiabing Liu, and Yuexian Chen (1987): Mineral Deposits 6(3), 10-21; Yueqing Yang, Yunxiang Ni, Yongquang Guo, Nianming Qiu, Chenghu Chen, Chaofa Cai, Yaping Zhang, Jiabin Liu, and Yuexian Chen (1988): Geochemistry 7(2), 120-135; Can Rao, Rucheng Wang, Huan Hu, and Wenlan Zhan (2009): Canadian Mineralogist 47(5), 1195-1212; Rao, C., Wang, R. C., Hatert, F., & Baijot, M. (2014). Hydrothermal transformations of triphylite from the Nanping No. 31 pegmatite dyke, southeastern China. European Journal of Mineralogy, 26(1), 179-188.; Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.
Childrenite
Formula: Fe2+Al(PO4)(OH)2 · H2O
Reference: Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.
Columbite-(Fe)
Formula: FeNb2O6
Reference: Can Rao, Rucheng Wang, Huan Hu, and Wenlan Zhan (2009): Canadian Mineralogist 47(5), 1195-1212.
'Columbite-(Fe)-Columbite-(Mn) Series'
Reference: Rao, C., Wang, R. C., Hatert, F., & Baijot, M. (2014). Hydrothermal transformations of triphylite from the Nanping No. 31 pegmatite dyke, southeastern China. European Journal of Mineralogy, 26(1), 179-188.; Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.
'Columbite-Tantalite'
Reference: Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.
Crandallite
Formula: CaAl3(PO4)(PO3OH)(OH)6
Reference: Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.
Dravite
Formula: Na(Mg3)Al6(Si6O18)(BO3)3(OH)3(OH)
Reference: Yueqing Yang, Yunxiang Ni, Yongquan Guo, Nianming Qiu, Chenghu Chen, Chaofa Cai, Yaping Zhang, Jiabing Liu, and Yuexian Chen (1987): Mineral Deposits 6(3), 10-21
Elbaite
Formula: Na(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
Reference: Yueqing Yang, Yunxiang Ni, Yongquan Guo, Nianming Qiu, Chenghu Chen, Chaofa Cai, Yaping Zhang, Jiabing Liu, and Yuexian Chen (1987): Mineral Deposits 6(3), 10-21
Eosphorite
Formula: Mn2+Al(PO4)(OH)2 · H2O
Reference: Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.
Euclase
Formula: BeAl(SiO4)(OH)
Reference: Can Rao, Ru Cheng Wang, and Huan Hu (2011): Paragenetic assemblages of beryllium silicates and phosphates from the Nanping No. 31 granitic pegmatite dyke, Fujian province, southestern China. Canadian Mineralogist. 49, 1175-1187; Rao, C., Wang, R. C., Hatert, F., & Baijot, M. (2014). Hydrothermal transformations of triphylite from the Nanping No. 31 pegmatite dyke, southeastern China. European Journal of Mineralogy, 26(1), 179-188.; Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.
Ferrisicklerite
Formula: Li1-x(Fe3+xFe2+1-x)PO4
Reference: Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.
Fluorapatite
Formula: Ca5(PO4)3F
Reference: Rao, C., Wang, R. C., Hatert, F., & Baijot, M. (2014). Hydrothermal transformations of triphylite from the Nanping No. 31 pegmatite dyke, southeastern China. European Journal of Mineralogy, 26(1), 179-188.; Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.
Fluorarrojadite-(BaNa)
Formula: BaNa4CaFe13Al(PO4)11(PO3OH)F2
Reference: Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.
Fluorite
Formula: CaF2
Reference: Zhaolin Li, Jinzhang Zhang, Qizhi Wu, and Zhonghui Ouyang (1983): Mineral Deposits 2(2), 49-58
Goyazite
Formula: SrAl3(PO4)(PO3OH)(OH)6
Reference: Yueqing Yang, Yunxiang Ni, Yongquan Guo, Yaping Zhang, and Jiapin Liu (1986): Acta Petrologica et Mineralogica 5(2), 119–127; Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.
Herderite
Formula: CaBePO4(F,OH)
Reference: Yueqing Yang, Wenying Wang, Yunxiang Ni, Chenghu Chen, and Jinghuang Zhu (1998): Geology of Fujian 17(2), 68-78
Hurlbutite
Formula: CaBe2(PO4)2
Reference: Can Rao, Ru Cheng Wang, and Huan Hu (2011): Paragenetic assemblages of beryllium silicates and phosphates from the Nanping No. 31 granitic pegmatite dyke, Fujian province, southestern China. Canadian Mineralogist. 49, 1175-1187; Rao, C., Wang, R. C., Hatert, F., & Baijot, M. (2014). Hydrothermal transformations of triphylite from the Nanping No. 31 pegmatite dyke, southeastern China. European Journal of Mineralogy, 26(1), 179-188.; Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.
Hydroxylapatite
Formula: Ca5(PO4)3(OH)
Reference: Can Rao, Rucheng Wang, Huan Hu, and Wenlan Zhan (2009): Complex internal textures in oxide minerals from the Nanping No. 31 dyke of granitic pegmatite, Fujian Province, southeastern China. Canadian Mineralogist 47(5), 1195-1212.; Rao, C., Wang, R. C., Hatert, F., & Baijot, M. (2014). Hydrothermal transformations of triphylite from the Nanping No. 31 pegmatite dyke, southeastern China. European Journal of Mineralogy, 26(1), 179-188.; Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.
Hydroxylherderite
Formula: CaBe(PO4)(OH,F)
Reference: Can Rao, Ru Cheng Wang, and Huan Hu (2011): Paragenetic assemblages of beryllium silicates and phosphates from the Nanping No. 31 granitic pegmatite dyke, Fujian province, southestern China. Canadian Mineralogist. 49, 1175-1187; Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.
Kaolinite
Formula: Al2(Si2O5)(OH)4
Reference: Yueqing Yang, Wenying Wang, Yunxiang Ni, Chenghu Chen, and Jinghuang Zhu (1998): Geology of Fujian 17(2), 68-78
'K Feldspar'
Reference: Rao, C., Wang, R. C., Hatert, F., & Baijot, M. (2014). Hydrothermal transformations of triphylite from the Nanping No. 31 pegmatite dyke, southeastern China. European Journal of Mineralogy, 26(1), 179-188.; Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.
Kulanite
Formula: Ba(Fe2+,Mn2+,Mg)2(Al,Fe3+)2(PO4)3(OH)3
Reference: Yueqing Yang, Yunxiang Ni, Yongquan Guo, Yaping Zhang, and Jiapin Liu (1986): Acta Petrologica et Mineralogica 5(2), 119–127; Rao, C., Wang, R. C., Hatert, F., & Baijot, M. (2014). Hydrothermal transformations of triphylite from the Nanping No. 31 pegmatite dyke, southeastern China. European Journal of Mineralogy, 26(1), 179-188.; Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.
Lazulite
Formula: MgAl2(PO4)2(OH)2
Reference: Yueqing Yang, Yunxiang Ni, Yongquan Guo, Yaping Zhang, and Jiapin Liu (1986): Acta Petrologica et Mineralogica 5(2), 119–127; Rao, C., Wang, R. C., Hatert, F., & Baijot, M. (2014). Hydrothermal transformations of triphylite from the Nanping No. 31 pegmatite dyke, southeastern China. European Journal of Mineralogy, 26(1), 179-188.; Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.
Ludlamite
Formula: Fe2+3(PO4)2 · 4H2O
Reference: Rao, C., Wang, R. C., Hatert, F., & Baijot, M. (2014). Hydrothermal transformations of triphylite from the Nanping No. 31 pegmatite dyke, southeastern China. European Journal of Mineralogy, 26(1), 179-188.; Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.
Microcline
Formula: K(AlSi3O8)
Reference: Yueqing Yang, Wenying Wang, Yunxiang Ni, Chenghu Chen, and Jinghuang Zhu (1998): Geology of Fujian 17(2), 68-78
'Microlite Group'
Formula: A2-mTa2X6-wZ-n
Reference: Zhaolin Li, Jinzhang Zhang, Qizhi Wu, and Zhonghui Ouyang (1983): Mineral Deposits 2(2), 49-58; Can Rao, Rucheng Wang, Huan Hu, and Wenlan Zhan (2009): Canadian Mineralogist 47(5), 1195-1212; Rao, C., Wang, R. C., Hatert, F., & Baijot, M. (2014). Hydrothermal transformations of triphylite from the Nanping No. 31 pegmatite dyke, southeastern China. European Journal of Mineralogy, 26(1), 179-188.; Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.
Minjiangite (TL)
Formula: Ba[Be2P2O8]
Reference: Rao, C., Hatert, F., Wang, R.C., Gu, X.P., Dal, B.F. and Dong, C.W. (2013) Minjiangite, IMA 2013-021. CNMNC Newsletter No. 16, August 2013, page 2705; Mineralogical Magazine, 77, 2695-2709; Rao, C., Hatert, F., Wang, R.C., Gu, X.P., Dal Bo, F., Dong, C.W. (2015): Minjiangite, BaBe2(PO4)2, a new mineral from Nanping No. 31 pegmatite, Fujian Province, southeastern China. Mineralogical Magazine, 79, 1195-1202. ; Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.
Monazite-(Ce)
Formula: Ce(PO4)
Reference: Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.
Montebrasite
Formula: LiAl(PO4)(OH)
Reference: Yueqing Yang, Yunxiang Ni, Yongquan Guo, Yaping Zhang, and Jiapin Liu (1986): Acta Petrologica et Mineralogica 5(2), 119–127; Yang Yueqing, Ni Yunxiang, Wang Liben, Wang Wenying, Zhang Yaping, and Chen Chenghu (1988): Acta Petrologica et Mineralogica 7(1), 49-58; Rao, C., Wang, R. C., Hatert, F., & Baijot, M. (2014). Hydrothermal transformations of triphylite from the Nanping No. 31 pegmatite dyke, southeastern China. European Journal of Mineralogy, 26(1), 179-188.; Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.
Muscovite
Formula: KAl2(AlSi3O10)(OH)2
Reference: Yueqing Yang, Yunxiang Ni, Yongquan Guo, Yaping Zhang, and Jiapin Liu (1986): Acta Petrologica et Mineralogica 5(2), 119–127; Yueqing Yang, Yunxiang Ni, Yongquang Guo, Nianming Qiu, Chenghu Chen, Chaofa Cai, Yaping Zhang, Jiabin Liu, and Yuexian Chen (1988): Geochemistry 7(2), 120-135; Yunxiang Ni and Yueqing Yang (1992): Acta Petrologica et Mineralogica 11(3), 252-257; Can Rao, Rucheng Wang, and Huan Hu (2009): Geological Journal of China Universities 15(4), 496-505; Rao, C., Wang, R. C., Hatert, F., & Baijot, M. (2014). Hydrothermal transformations of triphylite from the Nanping No. 31 pegmatite dyke, southeastern China. European Journal of Mineralogy, 26(1), 179-188.; Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.
Muscovite var: Damourite
Formula: KAl2(AlSi3O10)(OH)2
Reference: Yueqing Yang, Yunxiang Ni, Yongquan Guo, Nianming Qiu, Chenghu Chen, Chaofa Cai, Yaping Zhang, Jiabing Liu, and Yuexian Chen (1987): Mineral Deposits 6(3), 10-21
Muscovite var: Sericite
Formula: KAl2(AlSi3O10)(OH)2
Reference: Yueqing Yang, Yunxiang Ni, Yongquan Guo, Yaping Zhang, and Jiapin Liu (1986): Acta Petrologica et Mineralogica 5(2), 119–127; Yueqing Yang, Wenying Wang, Yunxiang Ni, Chenghu Chen, and Jinghuang Zhu (1998): Geology of Fujian 17(2), 68-78
Nanpingite (TL)
Formula: CsAl2(AlSi3O10)(OH,F)2
Reference: Yang Yueqing, Ni Yunxiang, Wang Liben, Wang Wenying, Zhang Yaping, and Chen Chenghu (1988): Acta Petrologica et Mineralogica 7(1), 49-58.
'Natromontebrasite'
Reference: Yueqing Yang, Yunxiang Ni, Yongquan Guo, Nianming Qiu, Chenghu Chen, Chaofa Cai, Yaping Zhang, Jiabing Liu, and Yuexian Chen (1987): Mineral Deposits 6(3), 10-21
Orthoclase
Formula: K(AlSi3O8)
Reference: Yueqing Yang, Yunxiang Ni, Yongquang Guo, Nianming Qiu, Chenghu Chen, Chaofa Cai, Yaping Zhang, Jiabin Liu, and Yuexian Chen (1988): Geochemistry 7(2), 120-135.
Palermoite
Formula: (Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
Reference: Yueqing Yang, Yunxiang Ni, Yongquan Guo, Yaping Zhang, and Jiapin Liu (1986): Acta Petrologica et Mineralogica 5(2), 119–127; Rao, C., Wang, R. C., Hatert, F., & Baijot, M. (2014). Hydrothermal transformations of triphylite from the Nanping No. 31 pegmatite dyke, southeastern China. European Journal of Mineralogy, 26(1), 179-188.; Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.
'Pegmatite'
Reference: Automatically generated from locality name; Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.
Phenakite
Formula: Be2SiO4
Reference: Yueqing Yang, Yunxiang Ni, Yongquan Guo, Nianming Qiu, Chenghu Chen, Chaofa Cai, Yaping Zhang, Jiabing Liu, and Yuexian Chen (1987): Mineral Deposits 6(3), 10-21; Can Rao, Ru Cheng Wang, and Huan Hu (2011): Canadian Mineralogist 49, 1175-1187; Rao, C., Wang, R. C., Hatert, F., & Baijot, M. (2014). Hydrothermal transformations of triphylite from the Nanping No. 31 pegmatite dyke, southeastern China. European Journal of Mineralogy, 26(1), 179-188.; Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.
Phosphoferrite
Formula: (Fe2+,Mn2+)3(PO4)2 · 3H2O
Reference: Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.
Pollucite
Formula: (Cs,Na)2(Al2Si4O12) · 2H2O
Reference: Yueqing Yang, Yunxiang Ni, Yongquan Guo, Nianming Qiu, Chenghu Chen, Chaofa Cai, Yaping Zhang, Jiabing Liu, and Yuexian Chen (1987): Mineral Deposits 6(3), 10-21; Can Rao, Rucheng Wang, and Huan Hu (2009): Geological Journal of China Universities 15(4), 496-505; Rao, C., Wang, R. C., Hatert, F., & Baijot, M. (2014). Hydrothermal transformations of triphylite from the Nanping No. 31 pegmatite dyke, southeastern China. European Journal of Mineralogy, 26(1), 179-188.; Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.
'Protolithionite'
Reference: Yueqing Yang, Yunxiang Ni, Yongquan Guo, Nianming Qiu, Chenghu Chen, Chaofa Cai, Yaping Zhang, Jiabing Liu, and Yuexian Chen (1987): Mineral Deposits 6(3), 10-21
Quartz
Formula: SiO2
Reference: Yueqing Yang, Yunxiang Ni, Yongquan Guo, Yaping Zhang, and Jiapin Liu (1986): Acta Petrologica et Mineralogica 5(2), 119–127; Yunxiang Ni and Yueqing Yang (1992): Acta Petrologica et Mineralogica 11(3), 252-257; Can Rao, Rucheng Wang, and Huan Hu (2009): Geological Journal of China Universities 15(4), 496-505; Rao, C., Wang, R. C., Hatert, F., & Baijot, M. (2014). Hydrothermal transformations of triphylite from the Nanping No. 31 pegmatite dyke, southeastern China. European Journal of Mineralogy, 26(1), 179-188.; Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.
Schorl
Formula: Na(Fe2+3)Al6(Si6O18)(BO3)3(OH)3(OH)
Reference: Yueqing Yang, Yunxiang Ni, Yongquan Guo, Nianming Qiu, Chenghu Chen, Chaofa Cai, Yaping Zhang, Jiabing Liu, and Yuexian Chen (1987): Mineral Deposits 6(3), 10-21
Scorzalite
Formula: Fe2+Al2(PO4)2(OH)2
Reference: Rao, C., Wang, R. C., Hatert, F., & Baijot, M. (2014). Hydrothermal transformations of triphylite from the Nanping No. 31 pegmatite dyke, southeastern China. European Journal of Mineralogy, 26(1), 179-188.
Sicklerite
Formula: Li1-x(Mn3+xMn2+1-x)PO4
Reference: Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.
Simferite
Formula: Li(Mg,Fe3+,Mn3+)2(PO4)2
Reference: Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.
Spessartine
Formula: Mn2+3Al2(SiO4)3
Reference: Can Rao, Ru Cheng Wang, and Huan Hu (2011): Paragenetic assemblages of beryllium silicates and phosphates from the Nanping No. 31 granitic pegmatite dyke, Fujian province, southestern China. Canadian Mineralogist. 49, 1175-1187
Spodumene
Formula: LiAlSi2O6
Reference: Yueqing Yang, Yunxiang Ni, Yongquan Guo, Yaping Zhang, and Jiapin Liu (1986): Acta Petrologica et Mineralogica 5(2), 119–127; Yueqing Yang, Yunxiang Ni, Yongquang Guo, Nianming Qiu, Chenghu Chen, Chaofa Cai, Yaping Zhang, Jiabin Liu, and Yuexian Chen (1988): Geochemistry 7(2), 120-135; Yunxiang Ni and Yueqing Yang (1992): Acta Petrologica et Mineralogica 11(3), 252-257; Can Rao, Rucheng Wang, Huan Hu, and Wenlan Zhan (2009): Canadian Mineralogist 47(5), 1195-1212; Rao, C., Wang, R. C., Hatert, F., & Baijot, M. (2014). Hydrothermal transformations of triphylite from the Nanping No. 31 pegmatite dyke, southeastern China. European Journal of Mineralogy, 26(1), 179-188.; Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.
Strontiohurlbutite (TL)
Formula: SrBe2(PO4)2
Reference: Rao, C., Wang, R., Gu, X., Hu, H.and Dong, C. (2012): Strontiohurlbutite, IMA 2012-032. CNMNC Newsletter No. 14, October 2012, page 1285; Mineralogical Magazine, 76, 1281-1288.; Rao, C., Wang, R. C., Hatert, F., & Baijot, M. (2014). Hydrothermal transformations of triphylite from the Nanping No. 31 pegmatite dyke, southeastern China. European Journal of Mineralogy, 26(1), 179-188.; Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.
'Tantalite'
Formula: (Mn,Fe)(Ta,Nb)2O6
Reference: Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.
Tantalite-(Fe)
Formula: FeTa2O6
Reference: Can Rao, Rucheng Wang, Huan Hu, and Wenlan Zhan (2009): Canadian Mineralogist 47(5), 1195-1212.
Tantalite-(Mn)
Formula: MnTa2O6
Reference: Can Rao, Rucheng Wang, Huan Hu, and Wenlan Zhan (2009): Canadian Mineralogist 47(5), 1195-1212.
Tapiolite-(Fe)
Formula: (Fe,Mn)(Ta,Nb)2O6
Reference: Can Rao, Rucheng Wang, Huan Hu, and Wenlan Zhan (2009): Canadian Mineralogist 47(5), 1195-1212.; Rao, C., Wang, R. C., Hatert, F., & Baijot, M. (2014). Hydrothermal transformations of triphylite from the Nanping No. 31 pegmatite dyke, southeastern China. European Journal of Mineralogy, 26(1), 179-188.; Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.
Topaz
Formula: Al2(SiO4)(F,OH)2
Reference: Zhaolin Li, Jinzhang Zhang, Qizhi Wu, and Zhonghui Ouyang (1983): Mineral Deposits 2(2), 49-58
Triphylite
Formula: LiFe2+PO4
Reference: Yueqing Yang, Yunxiang Ni, Yongquan Guo, Yaping Zhang, and Jiapin Liu (1986): Acta Petrologica et Mineralogica 5(2), 119–127; Rao, C., Wang, R. C., Hatert, F., & Baijot, M. (2014). Hydrothermal transformations of triphylite from the Nanping No. 31 pegmatite dyke, southeastern China. European Journal of Mineralogy, 26(1), 179-188.; Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.
Triploidite
Formula: (Mn2+,Fe2+)2(PO4)(OH)
Reference: Rao, C., Wang, R. C., Hatert, F., & Baijot, M. (2014). Hydrothermal transformations of triphylite from the Nanping No. 31 pegmatite dyke, southeastern China. European Journal of Mineralogy, 26(1), 179-188.
Väyrynenite
Formula: Mn2+Be(PO4)(OH,F)
Reference: Yueqing Yang, Yunxiang Ni, Yongquan Guo, Nianming Qiu, Chenghu Chen, Chaofa Cai, Yaping Zhang, Jiabing Liu, and Yuexian Chen (1987): Mineral Deposits 6(3), 10-21; Yunxiang Ni and Yueqing Yang (1992): Acta Petrologica et Mineralogica 11(3), 252-257; Yueqing Yang, Wenying Wang, Yunxiang Ni, Chenghu Chen, and Jinghuang Zhu (1998): Geology of Fujian 17(2), 68-78; Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.
Vivianite
Formula: Fe2+3(PO4)2 · 8H2O
Reference: Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.
Wagnerite
Formula: (Mg,Fe2+)2(PO4)F
Reference: Rao, C., Wang, R. C., Hatert, F., & Baijot, M. (2014). Hydrothermal transformations of triphylite from the Nanping No. 31 pegmatite dyke, southeastern China. European Journal of Mineralogy, 26(1), 179-188.; Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.
Wodginite
Formula: Mn2+Sn4+Ta2O8
Reference: Can Rao, Rucheng Wang, Huan Hu, and Wenlan Zhan (2009): Canadian Mineralogist 47(5), 1195-1212.; Rao, C., Wang, R. C., Hatert, F., & Baijot, M. (2014). Hydrothermal transformations of triphylite from the Nanping No. 31 pegmatite dyke, southeastern China. European Journal of Mineralogy, 26(1), 179-188.; Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.
Wolfeite
Formula: (Fe2+,Mn2+)2(PO4)(OH)
Reference: Rao, C., Wang, R. C., Hatert, F., & Baijot, M. (2014). Hydrothermal transformations of triphylite from the Nanping No. 31 pegmatite dyke, southeastern China. European Journal of Mineralogy, 26(1), 179-188.
'Xenotime'
Reference: Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.
Zircon
Formula: Zr(SiO4)
Reference: Can Rao, Rucheng Wang, Huan Hu, and Wenlan Zhan (2009): Complex internal textures in oxide minerals from the Nanping No. 31 dyke of granitic pegmatite, Fujian Province, southeastern China. Canadian Mineralogist 47(5), 1195-1212.; Rao, C., Wang, R. C., Hatert, F., & Baijot, M. (2014). Hydrothermal transformations of triphylite from the Nanping No. 31 pegmatite dyke, southeastern China. European Journal of Mineralogy, 26(1), 179-188.; Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.

List of minerals arranged by Strunz 10th Edition classification

Group 3 - Halides
Fluorite3.AB.25CaF2
Group 4 - Oxides and Hydroxides
'Cassiterite'4.DB.05SnO2
Columbite-(Fe)4.DB.35FeNb2O6
Microlite Group4.00.A2-mTa2X6-wZ-n
Quartz4.DA.05SiO2
Tantalite-(Fe)4.DB.35FeTa2O6
Tantalite-(Mn)4.DB.35MnTa2O6
Tapiolite-(Fe)4.DB.10(Fe,Mn)(Ta,Nb)2O6
Wodginite4.DB.40Mn2+Sn4+Ta2O8
Group 8 - Phosphates, Arsenates and Vanadates
'Amblygonite'8.BB.05LiAl(PO4)F
'Anapaite'8.CH.10Ca2Fe2+(PO4)2 · 4H2O
'Arrojadite-(KFe)'8.BF.05{KNa}{Fe2+◻}{Ca}{Na2◻}{Fe2+13}{Al}(PO4)11(HPO4)(OH)2
'Augelite'8.BE.05Al2(PO4)(OH)3
'Autunite'8.EB.05Ca(UO2)2(PO4)2 · 11H2O
'Bertossaite'8.BH.25(Li,Na)2(Ca,Fe2+,Mn2+)Al4(PO4)4(OH,F)4
'Beryllonite'8.AA.10NaBePO4
'Childrenite'8.DD.20Fe2+Al(PO4)(OH)2 · H2O
Crandallite8.BL.10CaAl3(PO4)(PO3OH)(OH)6
Eosphorite8.DD.20Mn2+Al(PO4)(OH)2 · H2O
Ferrisicklerite8.AB.10Li1-x(Fe3+xFe2+1-x)PO4
Fluorapatite8.BN.05Ca5(PO4)3F
Goyazite8.BL.10SrAl3(PO4)(PO3OH)(OH)6
Herderite8.BA.10CaBePO4(F,OH)
Hurlbutite8.AA.15CaBe2(PO4)2
Hydroxylapatite8.BN.05Ca5(PO4)3(OH)
Hydroxylherderite8.BA.10CaBe(PO4)(OH,F)
Kulanite8.BH.20Ba(Fe2+,Mn2+,Mg)2(Al,Fe3+)2(PO4)3(OH)3
Lazulite8.BB.40MgAl2(PO4)2(OH)2
Ludlamite8.CD.20Fe2+3(PO4)2 · 4H2O
Monazite-(Ce)8.AD.50Ce(PO4)
Montebrasite8.BB.05LiAl(PO4)(OH)
Palermoite8.BH.25(Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
Phosphoferrite8.CC.05(Fe2+,Mn2+)3(PO4)2 · 3H2O
Scorzalite8.BB.40Fe2+Al2(PO4)2(OH)2
Sicklerite8.AB.10Li1-x(Mn3+xMn2+1-x)PO4
Simferite8.AB.10Li(Mg,Fe3+,Mn3+)2(PO4)2
Strontiohurlbutite (TL)8.00.SrBe2(PO4)2
Triphylite8.AB.10LiFe2+PO4
Triploidite8.BB.15(Mn2+,Fe2+)2(PO4)(OH)
Vivianite8.CE.40Fe2+3(PO4)2 · 8H2O
Väyrynenite8.BA.05Mn2+Be(PO4)(OH,F)
Wagnerite8.BB.15(Mg,Fe2+)2(PO4)F
Wolfeite8.BB.15(Fe2+,Mn2+)2(PO4)(OH)
Group 9 - Silicates
'Albite'9.FA.35Na(AlSi3O8)
var: Cleavelandite9.FA.35Na(AlSi3O8)
'Bertrandite'9.BD.05Be4(Si2O7)(OH)2
'Beryl'9.CJ.05Be3Al2(Si6O18)
Dravite9.CK.05Na(Mg3)Al6(Si6O18)(BO3)3(OH)3(OH)
Elbaite9.CK.05Na(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
Euclase9.AE.10BeAl(SiO4)(OH)
Kaolinite9.ED.05Al2(Si2O5)(OH)4
Microcline9.FA.30K(AlSi3O8)
Muscovite9.EC.15KAl2(AlSi3O10)(OH)2
var: Damourite9.EC.15KAl2(AlSi3O10)(OH)2
var: Sericite9.EC.15KAl2(AlSi3O10)(OH)2
Nanpingite (TL)9.EC.15CsAl2(AlSi3O10)(OH,F)2
Orthoclase9.FA.30K(AlSi3O8)
Phenakite9.AA.05Be2SiO4
Pollucite9.GB.05(Cs,Na)2(Al2Si4O12) · 2H2O
Schorl9.CK.05Na(Fe2+3)Al6(Si6O18)(BO3)3(OH)3(OH)
Spessartine9.AD.25Mn2+3Al2(SiO4)3
Spodumene9.DA.30LiAlSi2O6
Topaz9.AF.35Al2(SiO4)(F,OH)2
Zircon9.AD.30Zr(SiO4)
Unclassified Minerals, Rocks, etc.
'Apatite'-
Columbite-(Fe)-Columbite-(Mn) Series-
Columbite-Tantalite-
Fluorarrojadite-(BaNa)-BaNa4CaFe13Al(PO4)11(PO3OH)F2
K Feldspar-
Minjiangite (TL)-Ba[Be2P2O8]
Natromontebrasite-
Pegmatite-
Protolithionite-
Tantalite-(Mn,Fe)(Ta,Nb)2O6
Xenotime-

List of minerals arranged by Dana 8th Edition classification

Group 4 - SIMPLE OXIDES
AX2
Cassiterite4.4.1.5SnO2
Group 8 - MULTIPLE OXIDES CONTAINING NIOBIUM,TANTALUM OR TITANIUM
ABO4
Wodginite8.1.8.1Mn2+Sn4+Ta2O8
A2B2O6(O,OH,F)
'Microlite Group'8.2.2.1A2-mTa2X6-wZ-n
AB2O6
Columbite-(Fe)8.3.2.2FeNb2O6
Tantalite-(Fe)8.3.2.1FeTa2O6
Tantalite-(Mn)8.3.2.3MnTa2O6
Tapiolite-(Fe)8.3.1.1(Fe,Mn)(Ta,Nb)2O6
Group 9 - NORMAL HALIDES
AX2
Fluorite9.2.1.1CaF2
Group 38 - ANHYDROUS NORMAL PHOSPHATES, ARSENATES, AND VANADATES
ABXO4
Beryllonite38.1.5.1NaBePO4
Ferrisicklerite38.1.4.1Li1-x(Fe3+xFe2+1-x)PO4
Sicklerite38.1.4.2Li1-x(Mn3+xMn2+1-x)PO4
Triphylite38.1.1.1LiFe2+PO4
(AB)3(XO4)2
Hurlbutite38.3.6.1CaBe2(PO4)2
AXO4
Monazite-(Ce)38.4.3.1Ce(PO4)
Miscellaneous
Simferite38.5.7.1Li(Mg,Fe3+,Mn3+)2(PO4)2
Group 40 - HYDRATED NORMAL PHOSPHATES,ARSENATES AND VANADATES
AB2(XO4)2·xH2O
Anapaite40.2.1.1Ca2Fe2+(PO4)2 · 4H2O
Autunite40.2a.1.1Ca(UO2)2(PO4)2 · 11H2O
A3(XO4)2·xH2O
Ludlamite40.3.5.1Fe2+3(PO4)2 · 4H2O
Phosphoferrite40.3.2.1(Fe2+,Mn2+)3(PO4)2 · 3H2O
Vivianite40.3.6.1Fe2+3(PO4)2 · 8H2O
Group 41 - ANHYDROUS PHOSPHATES, ETC.CONTAINING HYDROXYL OR HALOGEN
(AB)2(XO4)Zq
Amblygonite41.5.8.1LiAl(PO4)F
Herderite41.5.4.1CaBePO4(F,OH)
Hydroxylherderite41.5.4.2CaBe(PO4)(OH,F)
Montebrasite41.5.8.2LiAl(PO4)(OH)
'Natromontebrasite'41.5.8.3
Väyrynenite41.5.4.3Mn2+Be(PO4)(OH,F)
A2(XO4)Zq
Augelite41.6.8.1Al2(PO4)(OH)3
Triploidite41.6.3.2(Mn2+,Fe2+)2(PO4)(OH)
Wagnerite41.6.2.1(Mg,Fe2+)2(PO4)F
Wolfeite41.6.3.1(Fe2+,Mn2+)2(PO4)(OH)
(AB)7(XO4)4Zq
Arrojadite-(KFe)41.7.2.1{KNa}{Fe2+◻}{Ca}{Na2◻}{Fe2+13}{Al}(PO4)11(HPO4)(OH)2
Bertossaite41.7.1.2(Li,Na)2(Ca,Fe2+,Mn2+)Al4(PO4)4(OH,F)4
Palermoite41.7.1.1(Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
A5(XO4)3Zq
Fluorapatite41.8.1.1Ca5(PO4)3F
Hydroxylapatite41.8.1.3Ca5(PO4)3(OH)
(AB)5(XO4)3Zq
Kulanite41.9.1.1Ba(Fe2+,Mn2+,Mg)2(Al,Fe3+)2(PO4)3(OH)3
(AB)3(XO4)2Zq
Lazulite41.10.1.1MgAl2(PO4)2(OH)2
Scorzalite41.10.1.2Fe2+Al2(PO4)2(OH)2
Group 42 - HYDRATED PHOSPHATES, ETC.CONTAINING HYDROXYL OR HALOGEN
(AB)2(XO4)Zq·xH2O
Childrenite42.7.1.1Fe2+Al(PO4)(OH)2 · H2O
Crandallite42.7.3.1CaAl3(PO4)(PO3OH)(OH)6
Eosphorite42.7.1.2Mn2+Al(PO4)(OH)2 · H2O
Goyazite42.7.3.3SrAl3(PO4)(PO3OH)(OH)6
Group 51 - NESOSILICATES Insular SiO4 Groups Only
Insular SiO4 Groups Only with cations in [4] coordination
Phenakite51.1.1.1Be2SiO4
Insular SiO4 Groups Only with cations in [6] and >[6] coordination
Spessartine51.4.3a.3Mn2+3Al2(SiO4)3
Insular SiO4 Groups Only with cations in >[6] coordination
Zircon51.5.2.1Zr(SiO4)
Group 52 - NESOSILICATES Insular SiO4 Groups and O,OH,F,H2O
Insular SiO4 Groups and O, OH, F, and H2O with cations in [4] and >[4] coordination
Euclase52.2.1.1BeAl(SiO4)(OH)
Insular SiO4 Groups and O, OH, F, and H2O with cations in [6] coordination only
Topaz52.3.1.1Al2(SiO4)(F,OH)2
Group 56 - SOROSILICATES Si2O7 Groups, With Additional O, OH, F and H2O
Si2O7 Groups and O, OH, F, and H2O with cations in [4] coordination
Bertrandite56.1.1.1Be4(Si2O7)(OH)2
Group 61 - CYCLOSILICATES Six-Membered Rings
Six-Membered Rings with [Si6O18] rings; possible (OH) and Al substitution
Beryl61.1.1.1Be3Al2(Si6O18)
Six-Membered Rings with borate groups
Dravite61.3.1.9Na(Mg3)Al6(Si6O18)(BO3)3(OH)3(OH)
Elbaite61.3.1.8Na(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
Schorl61.3.1.10Na(Fe2+3)Al6(Si6O18)(BO3)3(OH)3(OH)
Group 65 - INOSILICATES Single-Width,Unbranched Chains,(W=1)
Single-Width Unbranched Chains, W=1 with chains P=2
Spodumene65.1.4.1LiAlSi2O6
Group 71 - PHYLLOSILICATES Sheets of Six-Membered Rings
Sheets of 6-membered rings with 2:1 layers
Muscovite71.2.2a.1KAl2(AlSi3O10)(OH)2
Nanpingite (TL)71.2.2a.8CsAl2(AlSi3O10)(OH,F)2
Group 75 - TECTOSILICATES Si Tetrahedral Frameworks
Si Tetrahedral Frameworks - SiO2 with [4] coordinated Si
Quartz75.1.3.1SiO2
Group 76 - TECTOSILICATES Al-Si Framework
Al-Si Framework with Al-Si frameworks
Albite76.1.3.1Na(AlSi3O8)
Microcline76.1.1.5K(AlSi3O8)
Orthoclase76.1.1.1K(AlSi3O8)
Group 77 - TECTOSILICATES Zeolites
Zeolite group - True zeolites
Pollucite77.1.1.2(Cs,Na)2(Al2Si4O12) · 2H2O
Unclassified Minerals, Rocks, etc.
Albite
var: Cleavelandite
-Na(AlSi3O8)
'Apatite'-
'Columbite-(Fe)-Columbite-(Mn) Series'-
'Columbite-Tantalite'-
Fluorarrojadite-(BaNa)-BaNa4CaFe13Al(PO4)11(PO3OH)F2
'K Feldspar'-
Kaolinite-Al2(Si2O5)(OH)4
Minjiangite (TL)-Ba[Be2P2O8]
Muscovite
var: Damourite
-KAl2(AlSi3O10)(OH)2
var: Sericite-KAl2(AlSi3O10)(OH)2
'Pegmatite'-
'Protolithionite'-
Strontiohurlbutite (TL)-SrBe2(PO4)2
'Tantalite'-(Mn,Fe)(Ta,Nb)2O6
'Xenotime'-

List of minerals for each chemical element

HHydrogen
H AnapaiteCa2Fe2+(PO4)2 · 4H2O
H Arrojadite-(KFe){KNa}{Fe2+◻}{Ca}{Na2◻}{Fe132+}{Al}(PO4)11(HPO4)(OH)2
H AugeliteAl2(PO4)(OH)3
H AutuniteCa(UO2)2(PO4)2 · 11H2O
H Bertossaite(Li,Na)2(Ca,Fe2+,Mn2+)Al4(PO4)4(OH,F)4
H BertranditeBe4(Si2O7)(OH)2
H ChildreniteFe2+Al(PO4)(OH)2 · H2O
H CrandalliteCaAl3(PO4)(PO3OH)(OH)6
H Muscovite (var: Damourite)KAl2(AlSi3O10)(OH)2
H DraviteNa(Mg3)Al6(Si6O18)(BO3)3(OH)3(OH)
H ElbaiteNa(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
H EosphoriteMn2+Al(PO4)(OH)2 · H2O
H EuclaseBeAl(SiO4)(OH)
H Fluorarrojadite-(BaNa)BaNa4CaFe13Al(PO4)11(PO3OH)F2
H GoyaziteSrAl3(PO4)(PO3OH)(OH)6
H HydroxylapatiteCa5(PO4)3(OH)
H HydroxylherderiteCaBe(PO4)(OH,F)
H KaoliniteAl2(Si2O5)(OH)4
H KulaniteBa(Fe2+,Mn2+,Mg)2(Al,Fe3+)2(PO4)3(OH)3
H LazuliteMgAl2(PO4)2(OH)2
H LudlamiteFe32+(PO4)2 · 4H2O
H MontebrasiteLiAl(PO4)(OH)
H MuscoviteKAl2(AlSi3O10)(OH)2
H NanpingiteCsAl2(AlSi3O10)(OH,F)2
H Palermoite(Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
H Phosphoferrite(Fe2+,Mn2+)3(PO4)2 · 3H2O
H Pollucite(Cs,Na)2(Al2Si4O12) · 2H2O
H SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
H ScorzaliteFe2+Al2(PO4)2(OH)2
H Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
H TopazAl2(SiO4)(F,OH)2
H Triploidite(Mn2+,Fe2+)2(PO4)(OH)
H VäyryneniteMn2+Be(PO4)(OH,F)
H VivianiteFe32+(PO4)2 · 8H2O
H Wolfeite(Fe2+,Mn2+)2(PO4)(OH)
LiLithium
Li AmblygoniteLiAl(PO4)F
Li Bertossaite(Li,Na)2(Ca,Fe2+,Mn2+)Al4(PO4)4(OH,F)4
Li ElbaiteNa(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
Li FerrisickleriteLi1-x(Fex3+Fe2+1-x)PO4
Li MontebrasiteLiAl(PO4)(OH)
Li Palermoite(Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
Li SickleriteLi1-x(Mnx3+Mn2+1-x)PO4
Li SimferiteLi(Mg,Fe3+,Mn3+)2(PO4)2
Li SpodumeneLiAlSi2O6
Li TriphyliteLiFe2+PO4
BeBeryllium
Be BertranditeBe4(Si2O7)(OH)2
Be BerylBe3Al2(Si6O18)
Be BerylloniteNaBePO4
Be EuclaseBeAl(SiO4)(OH)
Be HerderiteCaBePO4(F,OH)
Be HurlbutiteCaBe2(PO4)2
Be HydroxylherderiteCaBe(PO4)(OH,F)
Be MinjiangiteBa[Be2P2O8]
Be PhenakiteBe2SiO4
Be StrontiohurlbutiteSrBe2(PO4)2
Be VäyryneniteMn2+Be(PO4)(OH,F)
BBoron
B DraviteNa(Mg3)Al6(Si6O18)(BO3)3(OH)3(OH)
B ElbaiteNa(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
B SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
OOxygen
O AlbiteNa(AlSi3O8)
O AmblygoniteLiAl(PO4)F
O AnapaiteCa2Fe2+(PO4)2 · 4H2O
O Arrojadite-(KFe){KNa}{Fe2+◻}{Ca}{Na2◻}{Fe132+}{Al}(PO4)11(HPO4)(OH)2
O AugeliteAl2(PO4)(OH)3
O AutuniteCa(UO2)2(PO4)2 · 11H2O
O Bertossaite(Li,Na)2(Ca,Fe2+,Mn2+)Al4(PO4)4(OH,F)4
O BertranditeBe4(Si2O7)(OH)2
O BerylBe3Al2(Si6O18)
O BerylloniteNaBePO4
O CassiteriteSnO2
O ChildreniteFe2+Al(PO4)(OH)2 · H2O
O Albite (var: Cleavelandite)Na(AlSi3O8)
O Columbite-(Fe)FeNb2O6
O CrandalliteCaAl3(PO4)(PO3OH)(OH)6
O Muscovite (var: Damourite)KAl2(AlSi3O10)(OH)2
O DraviteNa(Mg3)Al6(Si6O18)(BO3)3(OH)3(OH)
O ElbaiteNa(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
O EosphoriteMn2+Al(PO4)(OH)2 · H2O
O EuclaseBeAl(SiO4)(OH)
O FerrisickleriteLi1-x(Fex3+Fe2+1-x)PO4
O FluorapatiteCa5(PO4)3F
O Fluorarrojadite-(BaNa)BaNa4CaFe13Al(PO4)11(PO3OH)F2
O GoyaziteSrAl3(PO4)(PO3OH)(OH)6
O HerderiteCaBePO4(F,OH)
O HurlbutiteCaBe2(PO4)2
O HydroxylapatiteCa5(PO4)3(OH)
O HydroxylherderiteCaBe(PO4)(OH,F)
O KaoliniteAl2(Si2O5)(OH)4
O KulaniteBa(Fe2+,Mn2+,Mg)2(Al,Fe3+)2(PO4)3(OH)3
O LazuliteMgAl2(PO4)2(OH)2
O LudlamiteFe32+(PO4)2 · 4H2O
O MicroclineK(AlSi3O8)
O MinjiangiteBa[Be2P2O8]
O Monazite-(Ce)Ce(PO4)
O MontebrasiteLiAl(PO4)(OH)
O MuscoviteKAl2(AlSi3O10)(OH)2
O NanpingiteCsAl2(AlSi3O10)(OH,F)2
O OrthoclaseK(AlSi3O8)
O Palermoite(Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
O PhenakiteBe2SiO4
O Phosphoferrite(Fe2+,Mn2+)3(PO4)2 · 3H2O
O Pollucite(Cs,Na)2(Al2Si4O12) · 2H2O
O QuartzSiO2
O SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
O ScorzaliteFe2+Al2(PO4)2(OH)2
O Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
O SickleriteLi1-x(Mnx3+Mn2+1-x)PO4
O SimferiteLi(Mg,Fe3+,Mn3+)2(PO4)2
O SpessartineMn32+Al2(SiO4)3
O SpodumeneLiAlSi2O6
O StrontiohurlbutiteSrBe2(PO4)2
O Tantalite(Mn,Fe)(Ta,Nb)2O6
O Tantalite-(Fe)FeTa2O6
O Tantalite-(Mn)MnTa2O6
O Tapiolite-(Fe)(Fe,Mn)(Ta,Nb)2O6
O TopazAl2(SiO4)(F,OH)2
O TriphyliteLiFe2+PO4
O Triploidite(Mn2+,Fe2+)2(PO4)(OH)
O VäyryneniteMn2+Be(PO4)(OH,F)
O VivianiteFe32+(PO4)2 · 8H2O
O Wagnerite(Mg,Fe2+)2(PO4)F
O WodginiteMn2+Sn4+Ta2O8
O Wolfeite(Fe2+,Mn2+)2(PO4)(OH)
O ZirconZr(SiO4)
FFluorine
F AmblygoniteLiAl(PO4)F
F Bertossaite(Li,Na)2(Ca,Fe2+,Mn2+)Al4(PO4)4(OH,F)4
F FluorapatiteCa5(PO4)3F
F Fluorarrojadite-(BaNa)BaNa4CaFe13Al(PO4)11(PO3OH)F2
F FluoriteCaF2
F HerderiteCaBePO4(F,OH)
F NanpingiteCsAl2(AlSi3O10)(OH,F)2
F TopazAl2(SiO4)(F,OH)2
F VäyryneniteMn2+Be(PO4)(OH,F)
F Wagnerite(Mg,Fe2+)2(PO4)F
NaSodium
Na AlbiteNa(AlSi3O8)
Na Arrojadite-(KFe){KNa}{Fe2+◻}{Ca}{Na2◻}{Fe132+}{Al}(PO4)11(HPO4)(OH)2
Na Bertossaite(Li,Na)2(Ca,Fe2+,Mn2+)Al4(PO4)4(OH,F)4
Na BerylloniteNaBePO4
Na Albite (var: Cleavelandite)Na(AlSi3O8)
Na DraviteNa(Mg3)Al6(Si6O18)(BO3)3(OH)3(OH)
Na ElbaiteNa(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
Na Fluorarrojadite-(BaNa)BaNa4CaFe13Al(PO4)11(PO3OH)F2
Na Palermoite(Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
Na Pollucite(Cs,Na)2(Al2Si4O12) · 2H2O
Na SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
MgMagnesium
Mg DraviteNa(Mg3)Al6(Si6O18)(BO3)3(OH)3(OH)
Mg LazuliteMgAl2(PO4)2(OH)2
Mg SimferiteLi(Mg,Fe3+,Mn3+)2(PO4)2
Mg Wagnerite(Mg,Fe2+)2(PO4)F
AlAluminium
Al AlbiteNa(AlSi3O8)
Al AmblygoniteLiAl(PO4)F
Al Arrojadite-(KFe){KNa}{Fe2+◻}{Ca}{Na2◻}{Fe132+}{Al}(PO4)11(HPO4)(OH)2
Al AugeliteAl2(PO4)(OH)3
Al Bertossaite(Li,Na)2(Ca,Fe2+,Mn2+)Al4(PO4)4(OH,F)4
Al BerylBe3Al2(Si6O18)
Al ChildreniteFe2+Al(PO4)(OH)2 · H2O
Al Albite (var: Cleavelandite)Na(AlSi3O8)
Al CrandalliteCaAl3(PO4)(PO3OH)(OH)6
Al Muscovite (var: Damourite)KAl2(AlSi3O10)(OH)2
Al DraviteNa(Mg3)Al6(Si6O18)(BO3)3(OH)3(OH)
Al ElbaiteNa(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
Al EosphoriteMn2+Al(PO4)(OH)2 · H2O
Al EuclaseBeAl(SiO4)(OH)
Al Fluorarrojadite-(BaNa)BaNa4CaFe13Al(PO4)11(PO3OH)F2
Al GoyaziteSrAl3(PO4)(PO3OH)(OH)6
Al KaoliniteAl2(Si2O5)(OH)4
Al KulaniteBa(Fe2+,Mn2+,Mg)2(Al,Fe3+)2(PO4)3(OH)3
Al LazuliteMgAl2(PO4)2(OH)2
Al MicroclineK(AlSi3O8)
Al MontebrasiteLiAl(PO4)(OH)
Al MuscoviteKAl2(AlSi3O10)(OH)2
Al NanpingiteCsAl2(AlSi3O10)(OH,F)2
Al OrthoclaseK(AlSi3O8)
Al Palermoite(Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
Al Pollucite(Cs,Na)2(Al2Si4O12) · 2H2O
Al SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
Al ScorzaliteFe2+Al2(PO4)2(OH)2
Al Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
Al SpessartineMn32+Al2(SiO4)3
Al SpodumeneLiAlSi2O6
Al TopazAl2(SiO4)(F,OH)2
SiSilicon
Si AlbiteNa(AlSi3O8)
Si BertranditeBe4(Si2O7)(OH)2
Si BerylBe3Al2(Si6O18)
Si Albite (var: Cleavelandite)Na(AlSi3O8)
Si Muscovite (var: Damourite)KAl2(AlSi3O10)(OH)2
Si DraviteNa(Mg3)Al6(Si6O18)(BO3)3(OH)3(OH)
Si ElbaiteNa(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
Si EuclaseBeAl(SiO4)(OH)
Si KaoliniteAl2(Si2O5)(OH)4
Si MicroclineK(AlSi3O8)
Si MuscoviteKAl2(AlSi3O10)(OH)2
Si NanpingiteCsAl2(AlSi3O10)(OH,F)2
Si OrthoclaseK(AlSi3O8)
Si PhenakiteBe2SiO4
Si Pollucite(Cs,Na)2(Al2Si4O12) · 2H2O
Si QuartzSiO2
Si SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
Si Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
Si SpessartineMn32+Al2(SiO4)3
Si SpodumeneLiAlSi2O6
Si TopazAl2(SiO4)(F,OH)2
Si ZirconZr(SiO4)
PPhosphorus
P AmblygoniteLiAl(PO4)F
P AnapaiteCa2Fe2+(PO4)2 · 4H2O
P Arrojadite-(KFe){KNa}{Fe2+◻}{Ca}{Na2◻}{Fe132+}{Al}(PO4)11(HPO4)(OH)2
P AugeliteAl2(PO4)(OH)3
P AutuniteCa(UO2)2(PO4)2 · 11H2O
P Bertossaite(Li,Na)2(Ca,Fe2+,Mn2+)Al4(PO4)4(OH,F)4
P BerylloniteNaBePO4
P ChildreniteFe2+Al(PO4)(OH)2 · H2O
P CrandalliteCaAl3(PO4)(PO3OH)(OH)6
P EosphoriteMn2+Al(PO4)(OH)2 · H2O
P FerrisickleriteLi1-x(Fex3+Fe2+1-x)PO4
P FluorapatiteCa5(PO4)3F
P Fluorarrojadite-(BaNa)BaNa4CaFe13Al(PO4)11(PO3OH)F2
P GoyaziteSrAl3(PO4)(PO3OH)(OH)6
P HerderiteCaBePO4(F,OH)
P HurlbutiteCaBe2(PO4)2
P HydroxylapatiteCa5(PO4)3(OH)
P HydroxylherderiteCaBe(PO4)(OH,F)
P KulaniteBa(Fe2+,Mn2+,Mg)2(Al,Fe3+)2(PO4)3(OH)3
P LazuliteMgAl2(PO4)2(OH)2
P LudlamiteFe32+(PO4)2 · 4H2O
P MinjiangiteBa[Be2P2O8]
P Monazite-(Ce)Ce(PO4)
P MontebrasiteLiAl(PO4)(OH)
P Palermoite(Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
P Phosphoferrite(Fe2+,Mn2+)3(PO4)2 · 3H2O
P ScorzaliteFe2+Al2(PO4)2(OH)2
P SickleriteLi1-x(Mnx3+Mn2+1-x)PO4
P SimferiteLi(Mg,Fe3+,Mn3+)2(PO4)2
P StrontiohurlbutiteSrBe2(PO4)2
P TriphyliteLiFe2+PO4
P Triploidite(Mn2+,Fe2+)2(PO4)(OH)
P VäyryneniteMn2+Be(PO4)(OH,F)
P VivianiteFe32+(PO4)2 · 8H2O
P Wagnerite(Mg,Fe2+)2(PO4)F
P Wolfeite(Fe2+,Mn2+)2(PO4)(OH)
KPotassium
K Arrojadite-(KFe){KNa}{Fe2+◻}{Ca}{Na2◻}{Fe132+}{Al}(PO4)11(HPO4)(OH)2
K Muscovite (var: Damourite)KAl2(AlSi3O10)(OH)2
K MicroclineK(AlSi3O8)
K MuscoviteKAl2(AlSi3O10)(OH)2
K OrthoclaseK(AlSi3O8)
K Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
CaCalcium
Ca AnapaiteCa2Fe2+(PO4)2 · 4H2O
Ca Arrojadite-(KFe){KNa}{Fe2+◻}{Ca}{Na2◻}{Fe132+}{Al}(PO4)11(HPO4)(OH)2
Ca AutuniteCa(UO2)2(PO4)2 · 11H2O
Ca Bertossaite(Li,Na)2(Ca,Fe2+,Mn2+)Al4(PO4)4(OH,F)4
Ca CrandalliteCaAl3(PO4)(PO3OH)(OH)6
Ca FluorapatiteCa5(PO4)3F
Ca Fluorarrojadite-(BaNa)BaNa4CaFe13Al(PO4)11(PO3OH)F2
Ca FluoriteCaF2
Ca HerderiteCaBePO4(F,OH)
Ca HurlbutiteCaBe2(PO4)2
Ca HydroxylapatiteCa5(PO4)3(OH)
Ca HydroxylherderiteCaBe(PO4)(OH,F)
Ca Palermoite(Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
MnManganese
Mn Bertossaite(Li,Na)2(Ca,Fe2+,Mn2+)Al4(PO4)4(OH,F)4
Mn EosphoriteMn2+Al(PO4)(OH)2 · H2O
Mn SickleriteLi1-x(Mnx3+Mn2+1-x)PO4
Mn SimferiteLi(Mg,Fe3+,Mn3+)2(PO4)2
Mn SpessartineMn32+Al2(SiO4)3
Mn Tantalite(Mn,Fe)(Ta,Nb)2O6
Mn Tantalite-(Mn)MnTa2O6
Mn Triploidite(Mn2+,Fe2+)2(PO4)(OH)
Mn VäyryneniteMn2+Be(PO4)(OH,F)
Mn WodginiteMn2+Sn4+Ta2O8
FeIron
Fe AnapaiteCa2Fe2+(PO4)2 · 4H2O
Fe Arrojadite-(KFe){KNa}{Fe2+◻}{Ca}{Na2◻}{Fe132+}{Al}(PO4)11(HPO4)(OH)2
Fe Bertossaite(Li,Na)2(Ca,Fe2+,Mn2+)Al4(PO4)4(OH,F)4
Fe ChildreniteFe2+Al(PO4)(OH)2 · H2O
Fe Columbite-(Fe)FeNb2O6
Fe FerrisickleriteLi1-x(Fex3+Fe2+1-x)PO4
Fe Fluorarrojadite-(BaNa)BaNa4CaFe13Al(PO4)11(PO3OH)F2
Fe KulaniteBa(Fe2+,Mn2+,Mg)2(Al,Fe3+)2(PO4)3(OH)3
Fe LudlamiteFe32+(PO4)2 · 4H2O
Fe Phosphoferrite(Fe2+,Mn2+)3(PO4)2 · 3H2O
Fe SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
Fe ScorzaliteFe2+Al2(PO4)2(OH)2
Fe SimferiteLi(Mg,Fe3+,Mn3+)2(PO4)2
Fe Tantalite(Mn,Fe)(Ta,Nb)2O6
Fe Tantalite-(Fe)FeTa2O6
Fe Tapiolite-(Fe)(Fe,Mn)(Ta,Nb)2O6
Fe TriphyliteLiFe2+PO4
Fe VivianiteFe32+(PO4)2 · 8H2O
Fe Wolfeite(Fe2+,Mn2+)2(PO4)(OH)
SrStrontium
Sr GoyaziteSrAl3(PO4)(PO3OH)(OH)6
Sr Palermoite(Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
Sr StrontiohurlbutiteSrBe2(PO4)2
ZrZirconium
Zr ZirconZr(SiO4)
NbNiobium
Nb Columbite-(Fe)FeNb2O6
Nb Tantalite(Mn,Fe)(Ta,Nb)2O6
SnTin
Sn CassiteriteSnO2
Sn WodginiteMn2+Sn4+Ta2O8
CsCaesium
Cs NanpingiteCsAl2(AlSi3O10)(OH,F)2
Cs Pollucite(Cs,Na)2(Al2Si4O12) · 2H2O
BaBarium
Ba Fluorarrojadite-(BaNa)BaNa4CaFe13Al(PO4)11(PO3OH)F2
Ba KulaniteBa(Fe2+,Mn2+,Mg)2(Al,Fe3+)2(PO4)3(OH)3
Ba MinjiangiteBa[Be2P2O8]
CeCerium
Ce Monazite-(Ce)Ce(PO4)
TaTantalum
Ta Microlite GroupA2-mTa2X6-wZ-n
Ta Tantalite(Mn,Fe)(Ta,Nb)2O6
Ta Tantalite-(Fe)FeTa2O6
Ta Tantalite-(Mn)MnTa2O6
Ta Tapiolite-(Fe)(Fe,Mn)(Ta,Nb)2O6
Ta WodginiteMn2+Sn4+Ta2O8
UUranium
U AutuniteCa(UO2)2(PO4)2 · 11H2O

Regional Geology

This geological map and associated information on rock units at or nearby to the coordinates given for this locality is based on relatively small scale geological maps provided by various national Geological Surveys. This does not necessarily represent the complete geology at this locality but it gives a background for the region in which it is found.

Click on geological units on the map for more information. Click here to view full-screen map on Macrostrat.org

Cretaceous - Jurassic
66 - 201.3 Ma



ID: 3187045
Mesozoic intrusive rocks

Age: Mesozoic (66 - 201.3 Ma)

Lithology: Intrusive igneous rocks

Reference: Chorlton, L.B. Generalized geology of the world: bedrock domains and major faults in GIS format: a small-scale world geology map with an extended geological attribute database. doi: 10.4095/223767. Geological Survey of Canada, Open File 5529. [154]

Data and map coding provided by Macrostrat.org, used under Creative Commons Attribution 4.0 License

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
Yueqing Yang, Yunxiang Ni, Yongquan Guo, Yaping Zhang, and Jiapin Liu (1986): First discovery of kulanite in China. Acta Petrologica et Mineralogica [Yanshi Kuangwuxue Zashi] 5(2), 119–127 (in Chinese with English abstract).
Yueqing Yang, Yunxiang Ni, Yongquan Guo, Nianming Qiu, Chenghu Chen, Chaofa Cai, Yaping Zhang, Jiabing Liu, and Yuexian Chen (1987): Rock-forming and ore-forming characteristics of the Xikeng granitic pegmatites in Fujian Province. Mineral Deposits 6(3), 10-21 (in Chinese with English abstract).
Yueqing Yang, Yunxiang Ni, Yongquang Guo, Nianming Qiu, Chenghu Chen, Chaofa Cai, Yaping Zhang, Jiabin Liu, and Yuexian Chen (1988): Petrogenetic and metallogenetic characteristics of the Xikeng granitic pegmatites, Fujian Province. Geochemistry 7(2), 120-135.
Yueqing Yang, Yunxiang Ni, Liben Wang, Wenying Wang, Yaping Zhang, and Chenghu Chen (1988): Nanpingite - A New Cesium Mineral. Acta Petrologica et Mineralogica 7(1), 49-58.
Yunxiang Ni, Yueqing Yang, and Yaping Zhang (1990): Augelite discovered for the first time in China. Acta Mineralogica Sinica 10(1), 85-90 (in Chinese with English abstract) - [Note: The same authors already reported augelite in 1986 in the paper on kulanite]
Jambor, J.L. and Grew, E.S. (1990): New Mineral Names. American Mineralogist 75, 240-246.
Yueqing Yang, Wenying Wang, Yunxiang Ni, Chenghu Chen, and Jinghuang Zhu (1998): Mineralogical study of beryl in the granitic pegmatite from Nanping, Fujian Province. Geology of Fujian 17(2), 68-78 (in Chinese with English abstract).
Can Rao, Rucheng Wang, and Huan Hu (2009): Electron-Microprobe Compositions and Genesis of Beryls from the Nanping No. 31 Granitic Pegmatite (Fujian Province, Southeastern China). Geological Journal of China Universities 15(4), 496-505 (in Chinese with English abstract).
Can Rao, Rucheng Wang, Huan Hu, and Wenlan Zhan (2009): Complex internal textures in oxide minerals from the Nanping No. 31 dyke of granitic pegmatite, Fujian Province, southeastern China. Canadian Mineralogist 47(5), 1195-1212.
Can Rao, Rucheng Wang, and Huan Hu (2011): Paragenetic assemblages of beryllium silicates and phosphates from the Nanping No. 31 granitic pegmatite dyke, Fujian province, southeastern China. Canadian Mineralogist 49, 1175-1187.
Rao, C., Wang, R. C., Hatert, F., & Baijot, M. (2014). Hydrothermal transformations of triphylite from the Nanping No. 31 pegmatite dyke, southeastern China. European Journal of Mineralogy, 26(1), 179-188.
Rao, C., Hatert, F., Wang, R.C., Gu, X.P., Dal Bo, F., Dong, C.W. (2015): Minjiangite, BaBe2(PO4)2, a new mineral from Nanping No. 31 pegmatite, Fujian Province, southeastern China. Mineralogical Magazine, 79, 1195-1202.
Rao, C., Wang, R., Yang, Y., Hatert, F., Xia, Q., Yue, X., & Wang, W. (2017). Insights into post-magmatic metasomatism and Li circulation in granitic systems from phosphate minerals of the Nanping No. 31 pegmatite (SE China). Ore Geology Reviews, 91, 864-876.


This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2018, except where stated. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: November 21, 2018 10:45:19 Page generated: October 13, 2018 19:49:53
Go to top of page