Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat Articles
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsThe ElementsUsersBooks & MagazinesMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery

Cannington Mine (South32 Cannington), McKinlay, McKinlay Shire, Queensland, Australiai
Regional Level Types
Cannington Mine (South32 Cannington)Mine
McKinlay- not defined -
McKinlay ShireShire
QueenslandState
AustraliaCountry

This page is currently not sponsored. Click here to sponsor this page.
Key
Lock Map
Latitude & Longitude (WGS84): 21° 51' 45'' South , 140° 54' 58'' East
Latitude & Longitude (decimal): -21.86269,140.91623
GeoHash:G#: rhh5wsh0d
Locality type:Mine
Köppen climate type:BWh : Hot deserts climate


The Cannington silver-rich lead-zinc Mine is an underground mine located in north-west Queensland, in the Shire of McKinlay, about 200 kilometres (124 miles) southeast of Mount Isa, near the township of McKinlay.

The Broken Hill-type deposit was discovered by BHP Minerals in 1990 and the mine was commissioned in 1997 at a cost of some AUS$450m. Full production was achieved in early 1999, since then capacity has been expanded from 1.5Mt/y of ore to over 3Mt/y.

The deposit was discovered by Broken Hill Proprietary Company (BHP) in 1990. Although sitework and underground mining began in 1997, full production was not achieved until early 1999, with 1.5 million tons of ore processed in 1999. Production since has reached 3 million tons of ore per year. As of 2010 it was the largest and lowest cost silver and lead mine in the world. The expected life of the Cannington mine is 25 years.

On August 19, 2014, the mine's owner BHP Billiton announced it was splitting the company in two. A newly formed entity called South32 now houses BHP Billiton's non-core businesses including the Cannington Mine.

Cannington is the world's largest single silver producer, representing about 6% of the world's primary silver production, while its lead production represents about 7% of the world's primary lead output. The lead concentrate contains 70% lead and over 3,000g/t silver with low levels of impurities. Cannington is an underground mine accessed via a 5,250m-long, 5.2m-high by 5.5m-wide decline. The main, thicker hanging-wall orebodies of the deposit are mined by transverse, longhole open sloping.

Cannington lies in the south-east corner of the proterozoic Mount Isa Block, within the metamorphics of the lower middle proterozoic eastern succession and overlain by 60m of younger sediments. It is divided by faulting into a shallow, low-grade Northern Zone and a deeper, higher grade Southern Zone. Cannington’s major economic sulphides are galena and sphalerite. The silver occurs mainly as freibergite but is also present in solid solution within galena.

At the end of 2005, the orebody contained proved sulphide ore reserves of 18.0Mt grading 477g/t silver, 10.7% lead and 3.9% zinc. Measured resources totalled 2.3Mt at 536g/t Ag, 11.94% Pb and 4.49% Zn. The metallurgical recovery rates for zinc, lead and silver were 66%, 88% and 84% respectively.

Synchronous deformation and metamorphism at the Cannington Ag–Pb–Zn deposit involved a phase of Ca and Mn mobilization that accounts for the distribution of pyroxene-bearing and garnet-bearing rocks, which were selectively overprinted by sulfide mineralization. Garnet composition and its textural association in relation to three generations of planar fabric (S1 to S3) show that skarn-related grossular-rich garnet formed in the last garnet-stable event, D3. The D3 Cl-rich biotite in the gneiss is intergrown with garnet in veins, and within skarn rocks is continuous along strike with veins of garnet ± pyroxmangite, hedenbergite or amphibole, which indicates a period of anhydrous through to hydrous metasomatism. Compositional maps show that infiltration extended from alteration fronts through fractures, which indicates the high permeability of S3; these maps and XGrt profiles across skarn–gneiss contacts show that there was large-scale transport of mass by infiltration and varying degrees of hydrodynamic dispersion. Precipitation of oscillatory Ca- and Mn-zoned grossular-rich garnet in veins parallel to veins filled with Cl-rich biotite, in conjunction with the distribution of biotite-filled veins across the deposit, suggest that the mass transfer during D3 may be responsible for deposit-scale Ca–Mn skarn-like zoning.

The deposit is in Paleoproterozoic to Mesoproterozoic (2500–1000 mya) metamorphosed sedimentary rocks, known as the "Soldier's Cap Group", and is overlain by approximately 60 metres (197 ft) of Cretaceous and more recent overburden. The deposit was discovered as result of an aeromagnetic survey of the Soldiers Cap Group in the eastern Mount Isa inlier. The area was selected for survey based upon extrapolations from known prospects and associated lithostratigraphy. In other words, the rocks were the same as other known prospects, only slightly more deeply buried. The aeromagnetic survey pinpointed Cannington as a potential site and subsequent drilling proved it out.

The theory of formation of the Cannington deposit, and the related deposits at McArthur River, Century, Mt Isa, Hilton, and George Fisher, is explored in a 2005 paper by Large, et al.

The major ore minerals are galena and sphalerite. The silver occurs mainly as freibergite but is also present in solid solution within the galena.

Regions containing this locality

North Australian Element, Australia

Craton - 769 mineral species & varietal names listed

Eromanga Basin, Australia

Basin - 213 mineral species & varietal names listed

Mount Isa Orogen, Queensland, Australia

Orogen - 370 mineral species & varietal names listed

Kuridala-Selwyn Domain, Mount Isa Orogen, Queensland, Australia

Domain - 138 mineral species & varietal names listed

Select Mineral List Type

Standard Detailed Strunz Dana Chemical Elements

Mineral List


42 valid minerals.

Detailed Mineral List:

Acanthite
Formula: Ag2S
Reference: USGS Open-File Report 2009-1252 Sediment-hosted zinc-lead deposits of the world - Database and grade and tonnage models
Allargentum
Formula: (Ag1-xSbx)
Reference: USGS Open-File Report 2009-1252 Sediment-hosted zinc-lead deposits of the world - Database and grade and tonnage models
Almandine
Formula: Fe2+3Al2(SiO4)3
Reference: Walters, S., & Bailey, A. (1998). Geology and mineralization of the Cannington Ag-Pb-Zn deposit; an example of Broken Hill-type mineralization in the eastern succession, Mount Isa Inlier, Australia. Economic Geology, 93(8), 1307-1329.
'Amphibole Supergroup'
Formula: AX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Reference: USGS Open-File Report 2009-1252 Sediment-hosted zinc-lead deposits of the world - Database and grade and tonnage models; Walters, S., & Bailey, A. (1998). Geology and mineralization of the Cannington Ag-Pb-Zn deposit; an example of Broken Hill-type mineralization in the eastern succession, Mount Isa Inlier, Australia. Economic Geology, 93(8), 1307-1329.
'Apatite'
Reference: USGS Open-File Report 2009-1252 Sediment-hosted zinc-lead deposits of the world - Database and grade and tonnage models
Arsenopyrite
Formula: FeAsS
Reference: USGS Open-File Report 2009-1252 Sediment-hosted zinc-lead deposits of the world - Database and grade and tonnage models; Walters, S., & Bailey, A. (1998). Geology and mineralization of the Cannington Ag-Pb-Zn deposit; an example of Broken Hill-type mineralization in the eastern succession, Mount Isa Inlier, Australia. Economic Geology, 93(8), 1307-1329.
'Biotite'
Reference: www.aig.asn.au/roache_a.htm.; USGS Open-File Report 2009-1252 Sediment-hosted zinc-lead deposits of the world - Database and grade and tonnage models
Bismuthinite
Formula: Bi2S3
Reference: USGS Open-File Report 2009-1252 Sediment-hosted zinc-lead deposits of the world - Database and grade and tonnage models
Chalcopyrite
Formula: CuFeS2
Reference: USGS Open-File Report 2009-1252 Sediment-hosted zinc-lead deposits of the world - Database and grade and tonnage models; Walters, S., & Bailey, A. (1998). Geology and mineralization of the Cannington Ag-Pb-Zn deposit; an example of Broken Hill-type mineralization in the eastern succession, Mount Isa Inlier, Australia. Economic Geology, 93(8), 1307-1329.
'Chlorite Group'
Reference: USGS Open-File Report 2009-1252 Sediment-hosted zinc-lead deposits of the world - Database and grade and tonnage models
Chrysocolla
Formula: Cu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Dyscrasite
Formula: Ag3Sb
Reference: USGS Open-File Report 2009-1252 Sediment-hosted zinc-lead deposits of the world - Database and grade and tonnage models
Fayalite
Formula: Fe2+2SiO4
Reference: USGS Open-File Report 2009-1252 Sediment-hosted zinc-lead deposits of the world - Database and grade and tonnage models
'Fayalite-Forsterite Series'
Reference: www.geodiscovery.com.au/download/Cannington%20Abstract.pdf.; Walters, S., & Bailey, A. (1998). Geology and mineralization of the Cannington Ag-Pb-Zn deposit; an example of Broken Hill-type mineralization in the eastern succession, Mount Isa Inlier, Australia. Economic Geology, 93(8), 1307-1329.
Fluorite
Formula: CaF2
Reference: www.geodiscovery.com.au/download/Cannington%20Abstract.pdf.; USGS Open-File Report 2009-1252 Sediment-hosted zinc-lead deposits of the world - Database and grade and tonnage models; Walters, S., & Bailey, A. (1998). Geology and mineralization of the Cannington Ag-Pb-Zn deposit; an example of Broken Hill-type mineralization in the eastern succession, Mount Isa Inlier, Australia. Economic Geology, 93(8), 1307-1329.
Freibergite
Formula: Ag6[Cu4Fe2]Sb4S13-x
Reference: BHP Billiton; USGS Open-File Report 2009-1252 Sediment-hosted zinc-lead deposits of the world - Database and grade and tonnage models; Walters, S., & Bailey, A. (1998). Geology and mineralization of the Cannington Ag-Pb-Zn deposit; an example of Broken Hill-type mineralization in the eastern succession, Mount Isa Inlier, Australia. Economic Geology, 93(8), 1307-1329.
Gahnite
Formula: ZnAl2O4
Reference: USGS Open-File Report 2009-1252 Sediment-hosted zinc-lead deposits of the world - Database and grade and tonnage models
Galena
Formula: PbS
Reference: BHP Billiton; USGS Open-File Report 2009-1252 Sediment-hosted zinc-lead deposits of the world - Database and grade and tonnage models; Walters, S., & Bailey, A. (1998). Geology and mineralization of the Cannington Ag-Pb-Zn deposit; an example of Broken Hill-type mineralization in the eastern succession, Mount Isa Inlier, Australia. Economic Geology, 93(8), 1307-1329.
'Garnet Group'
Formula: X3Z2(SiO4)3
Description: Grossular-rich.
Reference: www.geodiscovery.com.au/download/Cannington%20Abstract.pdf.; USGS Open-File Report 2009-1252 Sediment-hosted zinc-lead deposits of the world - Database and grade and tonnage models
Graphite
Formula: C
Reference: USGS Open-File Report 2009-1252 Sediment-hosted zinc-lead deposits of the world - Database and grade and tonnage models
Grunerite
Formula: ☐{Fe2+2}{Fe2+5}(Si8O22)(OH)2
Reference: USGS Open-File Report 2009-1252 Sediment-hosted zinc-lead deposits of the world - Database and grade and tonnage models
Gudmundite
Formula: FeSbS
Reference: USGS Open-File Report 2009-1252 Sediment-hosted zinc-lead deposits of the world - Database and grade and tonnage models
Hedenbergite
Formula: CaFe2+Si2O6
Reference: www.geodiscovery.com.au/download/Cannington%20Abstract.pdf.; USGS Open-File Report 2009-1252 Sediment-hosted zinc-lead deposits of the world - Database and grade and tonnage models; Walters, S., & Bailey, A. (1998). Geology and mineralization of the Cannington Ag-Pb-Zn deposit; an example of Broken Hill-type mineralization in the eastern succession, Mount Isa Inlier, Australia. Economic Geology, 93(8), 1307-1329.
Ilmenite
Formula: Fe2+TiO3
Reference: USGS Open-File Report 2009-1252 Sediment-hosted zinc-lead deposits of the world - Database and grade and tonnage models
Ilvaite
Formula: CaFe3+Fe2+2(Si2O7)O(OH)
Reference: Walters, S., & Bailey, A. (1998). Geology and mineralization of the Cannington Ag-Pb-Zn deposit; an example of Broken Hill-type mineralization in the eastern succession, Mount Isa Inlier, Australia. Economic Geology, 93(8), 1307-1329.
Jamesonite
Formula: Pb4FeSb6S14
Reference: USGS Open-File Report 2009-1252 Sediment-hosted zinc-lead deposits of the world - Database and grade and tonnage models
'K Feldspar'
Reference: www.aig.asn.au/roache_a.htm.; USGS Open-File Report 2009-1252 Sediment-hosted zinc-lead deposits of the world - Database and grade and tonnage models
Launayite
Formula: CuPb10(Sb,As)12S20
Reference: Bodon, S, 2018 Geology and genesis of the Cannington Ag-Pb-Zn deposit: Unravelling BHT complexity. Garry Davidson symposium. CODES, University of Tasmania.
Löllingite
Formula: FeAs2
Reference: USGS Open-File Report 2009-1252 Sediment-hosted zinc-lead deposits of the world - Database and grade and tonnage models; Walters, S., & Bailey, A. (1998). Geology and mineralization of the Cannington Ag-Pb-Zn deposit; an example of Broken Hill-type mineralization in the eastern succession, Mount Isa Inlier, Australia. Economic Geology, 93(8), 1307-1329.
Magnetite
Formula: Fe2+Fe3+2O4
Reference: www.geodiscovery.com.au/download/Cannington%20Abstract.pdf.; USGS Open-File Report 2009-1252 Sediment-hosted zinc-lead deposits of the world - Database and grade and tonnage models; Walters, S., & Bailey, A. (1998). Geology and mineralization of the Cannington Ag-Pb-Zn deposit; an example of Broken Hill-type mineralization in the eastern succession, Mount Isa Inlier, Australia. Economic Geology, 93(8), 1307-1329.
Marcasite
Formula: FeS2
Reference: USGS Open-File Report 2009-1252 Sediment-hosted zinc-lead deposits of the world - Database and grade and tonnage models
Muscovite
Formula: KAl2(AlSi3O10)(OH)2
Reference: www.aig.asn.au/roache_a.htm.; USGS Open-File Report 2009-1252 Sediment-hosted zinc-lead deposits of the world - Database and grade and tonnage models
Muscovite var: Sericite
Formula: KAl2(AlSi3O10)(OH)2
Reference: USGS Open-File Report 2009-1252 Sediment-hosted zinc-lead deposits of the world - Database and grade and tonnage models
Opal
Formula: SiO2 · nH2O
Proustite
Formula: Ag3AsS3
Reference: USGS Open-File Report 2009-1252 Sediment-hosted zinc-lead deposits of the world - Database and grade and tonnage models
Pyrargyrite
Formula: Ag3SbS3
Reference: USGS Open-File Report 2009-1252 Sediment-hosted zinc-lead deposits of the world - Database and grade and tonnage models
Pyrite
Formula: FeS2
Reference: USGS Open-File Report 2009-1252 Sediment-hosted zinc-lead deposits of the world - Database and grade and tonnage models; Walters, S., & Bailey, A. (1998). Geology and mineralization of the Cannington Ag-Pb-Zn deposit; an example of Broken Hill-type mineralization in the eastern succession, Mount Isa Inlier, Australia. Economic Geology, 93(8), 1307-1329.
Pyrosmalite-(Fe)
Formula: Fe2+8Si6O15(OH,Cl)10
Reference: G. Dong & P. J. Pollard (1997): Identification of ferropyrosmalite by Laser Raman microprobe in fluid inclusions from metalliferous deposits in the Cloncurry District, NW Queensland, Australia. Mineralogical Magazine, 61(2), 291–293.; USGS Open-File Report 2009-1252 Sediment-hosted zinc-lead deposits of the world - Database and grade and tonnage models
'Pyrosmalite-(Fe)-Pyrosmalite-(Mn) Series'
Reference: USGS Open-File Report 2009-1252 Sediment-hosted zinc-lead deposits of the world - Database and grade and tonnage models; Walters, S., & Bailey, A. (1998). Geology and mineralization of the Cannington Ag-Pb-Zn deposit; an example of Broken Hill-type mineralization in the eastern succession, Mount Isa Inlier, Australia. Economic Geology, 93(8), 1307-1329.
Pyroxferroite
Formula: (Fe,Mn,Ca)SiO3
Reference: USGS Open-File Report 2009-1252 Sediment-hosted zinc-lead deposits of the world - Database and grade and tonnage models
Pyroxmangite
Formula: MnSiO3
Reference: www.geodiscovery.com.au/download/Cannington%20Abstract.pdf.; USGS Open-File Report 2009-1252 Sediment-hosted zinc-lead deposits of the world - Database and grade and tonnage models
Pyrrhotite
Formula: Fe7S8
Reference: USGS Open-File Report 2009-1252 Sediment-hosted zinc-lead deposits of the world - Database and grade and tonnage models; Walters, S., & Bailey, A. (1998). Geology and mineralization of the Cannington Ag-Pb-Zn deposit; an example of Broken Hill-type mineralization in the eastern succession, Mount Isa Inlier, Australia. Economic Geology, 93(8), 1307-1329.
Siderite
Formula: FeCO3
Reference: USGS Open-File Report 2009-1252 Sediment-hosted zinc-lead deposits of the world - Database and grade and tonnage models
Sillimanite
Formula: Al2(SiO4)O
Reference: www.aig.asn.au/roache_a.htm.
Silver
Formula: Ag
Reference: BHP Billiton; USGS Open-File Report 2009-1252 Sediment-hosted zinc-lead deposits of the world - Database and grade and tonnage models
Silver var: Antimonial Silver
Formula: (Ag,Sb), Sb < 5%
Reference: USGS Open-File Report 2009-1252 Sediment-hosted zinc-lead deposits of the world - Database and grade and tonnage models
Sphalerite
Formula: ZnS
Reference: BHP Billiton; USGS Open-File Report 2009-1252 Sediment-hosted zinc-lead deposits of the world - Database and grade and tonnage models; Walters, S., & Bailey, A. (1998). Geology and mineralization of the Cannington Ag-Pb-Zn deposit; an example of Broken Hill-type mineralization in the eastern succession, Mount Isa Inlier, Australia. Economic Geology, 93(8), 1307-1329.
Stephanite
Formula: Ag5SbS4
Reference: USGS Open-File Report 2009-1252 Sediment-hosted zinc-lead deposits of the world - Database and grade and tonnage models
Sternbergite
Formula: AgFe2S3
Reference: USGS Open-File Report 2009-1252 Sediment-hosted zinc-lead deposits of the world - Database and grade and tonnage models
Talc
Formula: Mg3Si4O10(OH)2
Reference: USGS Open-File Report 2009-1252 Sediment-hosted zinc-lead deposits of the world - Database and grade and tonnage models
Titanite
Formula: CaTi(SiO4)O
Reference: USGS Open-File Report 2009-1252 Sediment-hosted zinc-lead deposits of the world - Database and grade and tonnage models
Veenite
Formula: Pb2(Sb,As)2S5
Reference: USGS Open-File Report 2009-1252 Sediment-hosted zinc-lead deposits of the world - Database and grade and tonnage models

List of minerals arranged by Strunz 10th Edition classification

Group 1 - Elements
Graphite1.CB.05aC
Silver1.AA.05Ag
var: Antimonial Silver1.AA.05(Ag,Sb), Sb < 5%
Group 2 - Sulphides and Sulfosalts
'Acanthite'2.BA.35Ag2S
'Allargentum'2.AA.30(Ag1-xSbx)
Arsenopyrite2.EB.20FeAsS
Bismuthinite2.DB.05Bi2S3
Chalcopyrite2.CB.10aCuFeS2
Dyscrasite2.AA.35Ag3Sb
Freibergite2.GB.05Ag6[Cu4Fe2]Sb4S13-x
Galena2.CD.10PbS
Gudmundite2.EB.20FeSbS
Jamesonite2.HB.15Pb4FeSb6S14
Launayite2.LB.30CuPb10(Sb,As)12S20
Löllingite2.EB.15aFeAs2
Marcasite2.EB.10aFeS2
Proustite2.GA.05Ag3AsS3
Pyrargyrite2.GA.05Ag3SbS3
Pyrite2.EB.05aFeS2
Pyrrhotite2.CC.10Fe7S8
Sphalerite2.CB.05aZnS
Stephanite2.GB.10Ag5SbS4
Sternbergite2.CB.65AgFe2S3
Veenite2.HC.05dPb2(Sb,As)2S5
Group 3 - Halides
Fluorite3.AB.25CaF2
Group 4 - Oxides and Hydroxides
Gahnite4.BB.05ZnAl2O4
Ilmenite4.CB.05Fe2+TiO3
Magnetite4.BB.05Fe2+Fe3+2O4
Opal4.DA.10SiO2 · nH2O
Group 5 - Nitrates and Carbonates
Siderite5.AB.05FeCO3
Group 9 - Silicates
'Almandine'9.AD.25Fe2+3Al2(SiO4)3
Chrysocolla9.ED.20Cu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Fayalite9.AC.05Fe2+2SiO4
Grunerite9.DE.05☐{Fe2+2}{Fe2+5}(Si8O22)(OH)2
Hedenbergite9.DA.15CaFe2+Si2O6
Ilvaite9.BE.07CaFe3+Fe2+2(Si2O7)O(OH)
Muscovite9.EC.15KAl2(AlSi3O10)(OH)2
var: Sericite9.EC.15KAl2(AlSi3O10)(OH)2
Pyrosmalite-(Fe)9.EE.10Fe2+8Si6O15(OH,Cl)10
Pyroxferroite9.DO.05(Fe,Mn,Ca)SiO3
Pyroxmangite9.DO.05MnSiO3
Sillimanite9.AF.05Al2(SiO4)O
Talc9.EC.05Mg3Si4O10(OH)2
Titanite9.AG.15CaTi(SiO4)O
Unclassified Minerals, Rocks, etc.
'Amphibole Supergroup'-AX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Apatite-
Biotite-
Chlorite Group-
Fayalite-Forsterite Series-
Garnet Group-X3Z2(SiO4)3
K Feldspar-
Pyrosmalite-(Fe)-Pyrosmalite-(Mn) Series-

List of minerals arranged by Dana 8th Edition classification

Group 1 - NATIVE ELEMENTS AND ALLOYS
Metals, other than the Platinum Group
Silver1.1.1.2Ag
Semi-metals and non-metals
Graphite1.3.6.2C
Group 2 - SULFIDES
AmBnXp, with (m+n):p = 3:1
Allargentum2.2.1.2(Ag1-xSbx)
Dyscrasite2.2.1.1Ag3Sb
AmBnXp, with (m+n):p = 2:1
Acanthite2.4.1.1Ag2S
AmXp, with m:p = 1:1
Galena2.8.1.1PbS
Pyrrhotite2.8.10.1Fe7S8
Sphalerite2.8.2.1ZnS
AmBnXp, with (m+n):p = 1:1
Chalcopyrite2.9.1.1CuFeS2
Sternbergite2.9.12.1AgFe2S3
AmBnXp, with (m+n):p = 2:3
Bismuthinite2.11.2.3Bi2S3
AmBnXp, with (m+n):p = 1:2
Arsenopyrite2.12.4.1FeAsS
Gudmundite2.12.4.2FeSbS
Löllingite2.12.2.9FeAs2
Marcasite2.12.2.1FeS2
Pyrite2.12.1.1FeS2
Group 3 - SULFOSALTS
ø = 4
Stephanite3.2.4.1Ag5SbS4
3 <ø < 4
Freibergite3.3.6.3Ag6[Cu4Fe2]Sb4S13-x
ø = 3
Proustite3.4.1.1Ag3AsS3
Pyrargyrite3.4.1.2Ag3SbS3
2.5 < ø < 3
Veenite3.5.9.2Pb2(Sb,As)2S5
2 < ø < 2.49
Jamesonite3.6.7.1Pb4FeSb6S14
Launayite3.6.6.1CuPb10(Sb,As)12S20
Group 4 - SIMPLE OXIDES
A2X3
Ilmenite4.3.5.1Fe2+TiO3
Group 7 - MULTIPLE OXIDES
AB2X4
Gahnite7.2.1.4ZnAl2O4
Magnetite7.2.2.3Fe2+Fe3+2O4
Group 9 - NORMAL HALIDES
AX2
Fluorite9.2.1.1CaF2
Group 14 - ANHYDROUS NORMAL CARBONATES
A(XO3)
Siderite14.1.1.3FeCO3
Group 51 - NESOSILICATES Insular SiO4 Groups Only
Insular SiO4 Groups Only with all cations in octahedral [6] coordination
Fayalite51.3.1.1Fe2+2SiO4
Insular SiO4 Groups Only with cations in [6] and >[6] coordination
Almandine51.4.3a.2Fe2+3Al2(SiO4)3
Group 52 - NESOSILICATES Insular SiO4 Groups and O,OH,F,H2O
Insular SiO4 Groups and O, OH, F, and H2O with cations in [4] and >[4] coordination
Sillimanite52.2.2a.1Al2(SiO4)O
Insular SiO4 Groups and O, OH, F, and H2O with cations in [6] and/or >[6] coordination
Titanite52.4.3.1CaTi(SiO4)O
Group 56 - SOROSILICATES Si2O7 Groups, With Additional O, OH, F and H2O
Si2O7 Groups and O, OH, F, and H2O with cations in [4] and/or >[4] coordination
Ilvaite56.2.3.3CaFe3+Fe2+2(Si2O7)O(OH)
Group 65 - INOSILICATES Single-Width,Unbranched Chains,(W=1)
Single-Width Unbranched Chains, W=1 with chains P=2
Hedenbergite65.1.3a.2CaFe2+Si2O6
Single-Width Unbranched Chains, W=1 with chains P=7
Pyroxferroite65.6.1.2(Fe,Mn,Ca)SiO3
Pyroxmangite65.6.1.1MnSiO3
Group 71 - PHYLLOSILICATES Sheets of Six-Membered Rings
Sheets of 6-membered rings with 2:1 layers
Muscovite71.2.2a.1KAl2(AlSi3O10)(OH)2
Talc71.2.1.3Mg3Si4O10(OH)2
Group 72 - PHYLLOSILICATES Two-Dimensional Infinite Sheets with Other Than Six-Membered Rings
Two-Dimensional Infinite Sheets with Other Than Six-Membered Rings with 4-, 6-, and 12-membered rings
Pyrosmalite-(Fe)72.4.1a.1Fe2+8Si6O15(OH,Cl)10
Group 74 - PHYLLOSILICATES Modulated Layers
Modulated Layers with joined strips
Chrysocolla74.3.2.1Cu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Group 75 - TECTOSILICATES Si Tetrahedral Frameworks
Si Tetrahedral Frameworks - SiO2 with H2O and organics
Opal75.2.1.1SiO2 · nH2O
Unclassified Minerals, Rocks, etc.
'Amphibole Supergroup'-AX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
'Apatite'-
'Biotite'-
'Chlorite Group'-
'Fayalite-Forsterite Series'-
'Garnet Group'-X3Z2(SiO4)3
Grunerite-☐{Fe2+2}{Fe2+5}(Si8O22)(OH)2
'K Feldspar'-
Muscovite
var: Sericite
-KAl2(AlSi3O10)(OH)2
'Pyrosmalite-(Fe)-Pyrosmalite-(Mn) Series'-
Silver
var: Antimonial Silver
-(Ag,Sb), Sb < 5%

List of minerals for each chemical element

HHydrogen
H Amphibole SupergroupAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
H ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
H Grunerite☐{Fe22+}{Fe52+}(Si8O22)(OH)2
H IlvaiteCaFe3+Fe22+(Si2O7)O(OH)
H MuscoviteKAl2(AlSi3O10)(OH)2
H OpalSiO2 · nH2O
H Pyrosmalite-(Fe)Fe82+Si6O15(OH,Cl)10
H Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
H TalcMg3Si4O10(OH)2
CCarbon
C GraphiteC
C SideriteFeCO3
OOxygen
O AlmandineFe32+Al2(SiO4)3
O Amphibole SupergroupAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
O ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
O FayaliteFe22+SiO4
O GahniteZnAl2O4
O Garnet GroupX3Z2(SiO4)3
O Grunerite☐{Fe22+}{Fe52+}(Si8O22)(OH)2
O HedenbergiteCaFe2+Si2O6
O IlmeniteFe2+TiO3
O IlvaiteCaFe3+Fe22+(Si2O7)O(OH)
O MagnetiteFe2+Fe23+O4
O MuscoviteKAl2(AlSi3O10)(OH)2
O OpalSiO2 · nH2O
O Pyrosmalite-(Fe)Fe82+Si6O15(OH,Cl)10
O Pyroxferroite(Fe,Mn,Ca)SiO3
O PyroxmangiteMnSiO3
O Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
O SideriteFeCO3
O SillimaniteAl2(SiO4)O
O TalcMg3Si4O10(OH)2
O TitaniteCaTi(SiO4)O
FFluorine
F Amphibole SupergroupAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
F FluoriteCaF2
MgMagnesium
Mg TalcMg3Si4O10(OH)2
AlAluminium
Al AlmandineFe32+Al2(SiO4)3
Al Amphibole SupergroupAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Al ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Al GahniteZnAl2O4
Al MuscoviteKAl2(AlSi3O10)(OH)2
Al Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
Al SillimaniteAl2(SiO4)O
SiSilicon
Si AlmandineFe32+Al2(SiO4)3
Si Amphibole SupergroupAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Si ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Si FayaliteFe22+SiO4
Si Garnet GroupX3Z2(SiO4)3
Si Grunerite☐{Fe22+}{Fe52+}(Si8O22)(OH)2
Si HedenbergiteCaFe2+Si2O6
Si IlvaiteCaFe3+Fe22+(Si2O7)O(OH)
Si MuscoviteKAl2(AlSi3O10)(OH)2
Si OpalSiO2 · nH2O
Si Pyrosmalite-(Fe)Fe82+Si6O15(OH,Cl)10
Si Pyroxferroite(Fe,Mn,Ca)SiO3
Si PyroxmangiteMnSiO3
Si Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
Si SillimaniteAl2(SiO4)O
Si TalcMg3Si4O10(OH)2
Si TitaniteCaTi(SiO4)O
SSulfur
S AcanthiteAg2S
S ArsenopyriteFeAsS
S BismuthiniteBi2S3
S ChalcopyriteCuFeS2
S FreibergiteAg6[Cu4Fe2]Sb4S13-x
S GalenaPbS
S GudmunditeFeSbS
S JamesonitePb4FeSb6S14
S LaunayiteCuPb10(Sb,As)12S20
S MarcasiteFeS2
S ProustiteAg3AsS3
S PyrargyriteAg3SbS3
S PyriteFeS2
S PyrrhotiteFe7S8
S SphaleriteZnS
S StephaniteAg5SbS4
S SternbergiteAgFe2S3
S VeenitePb2(Sb,As)2S5
ClChlorine
Cl Amphibole SupergroupAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
KPotassium
K MuscoviteKAl2(AlSi3O10)(OH)2
K Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
CaCalcium
Ca FluoriteCaF2
Ca HedenbergiteCaFe2+Si2O6
Ca IlvaiteCaFe3+Fe22+(Si2O7)O(OH)
Ca Pyroxferroite(Fe,Mn,Ca)SiO3
Ca TitaniteCaTi(SiO4)O
TiTitanium
Ti Amphibole SupergroupAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Ti IlmeniteFe2+TiO3
Ti TitaniteCaTi(SiO4)O
MnManganese
Mn Pyroxferroite(Fe,Mn,Ca)SiO3
Mn PyroxmangiteMnSiO3
FeIron
Fe AlmandineFe32+Al2(SiO4)3
Fe ArsenopyriteFeAsS
Fe ChalcopyriteCuFeS2
Fe FayaliteFe22+SiO4
Fe FreibergiteAg6[Cu4Fe2]Sb4S13-x
Fe Grunerite☐{Fe22+}{Fe52+}(Si8O22)(OH)2
Fe GudmunditeFeSbS
Fe HedenbergiteCaFe2+Si2O6
Fe IlmeniteFe2+TiO3
Fe IlvaiteCaFe3+Fe22+(Si2O7)O(OH)
Fe JamesonitePb4FeSb6S14
Fe LöllingiteFeAs2
Fe MagnetiteFe2+Fe23+O4
Fe MarcasiteFeS2
Fe PyriteFeS2
Fe Pyrosmalite-(Fe)Fe82+Si6O15(OH,Cl)10
Fe Pyroxferroite(Fe,Mn,Ca)SiO3
Fe PyrrhotiteFe7S8
Fe SideriteFeCO3
Fe SternbergiteAgFe2S3
CuCopper
Cu ChalcopyriteCuFeS2
Cu ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Cu FreibergiteAg6[Cu4Fe2]Sb4S13-x
Cu LaunayiteCuPb10(Sb,As)12S20
ZnZinc
Zn GahniteZnAl2O4
Zn SphaleriteZnS
AsArsenic
As ArsenopyriteFeAsS
As LaunayiteCuPb10(Sb,As)12S20
As LöllingiteFeAs2
As ProustiteAg3AsS3
As VeenitePb2(Sb,As)2S5
AgSilver
Ag AcanthiteAg2S
Ag Allargentum(Ag1-xSbx)
Ag Silver (var: Antimonial Silver)(Ag,Sb), Sb < 5%
Ag DyscrasiteAg3Sb
Ag FreibergiteAg6[Cu4Fe2]Sb4S13-x
Ag ProustiteAg3AsS3
Ag PyrargyriteAg3SbS3
Ag SilverAg
Ag StephaniteAg5SbS4
Ag SternbergiteAgFe2S3
SbAntimony
Sb Allargentum(Ag1-xSbx)
Sb Silver (var: Antimonial Silver)(Ag,Sb), Sb < 5%
Sb DyscrasiteAg3Sb
Sb FreibergiteAg6[Cu4Fe2]Sb4S13-x
Sb GudmunditeFeSbS
Sb JamesonitePb4FeSb6S14
Sb LaunayiteCuPb10(Sb,As)12S20
Sb PyrargyriteAg3SbS3
Sb StephaniteAg5SbS4
Sb VeenitePb2(Sb,As)2S5
PbLead
Pb GalenaPbS
Pb JamesonitePb4FeSb6S14
Pb LaunayiteCuPb10(Sb,As)12S20
Pb VeenitePb2(Sb,As)2S5
BiBismuth
Bi BismuthiniteBi2S3

Regional Geology

This geological map and associated information on rock units at or nearby to the coordinates given for this locality is based on relatively small scale geological maps provided by various national Geological Surveys. This does not necessarily represent the complete geology at this locality but it gives a background for the region in which it is found.

Click on geological units on the map for more information. Click here to view full-screen map on Macrostrat.org

Quaternary
0 - 2.588 Ma



ID: 779563
colluvium 38491

Age: Pleistocene (0 - 2.588 Ma)

Description: Colluvium and/or residual deposits, sheetwash, talus, scree; boulder, gravel, sand; may include minor alluvial or sand plain deposits, local calcrete and reworked laterite

Comments: regolith; synthesis of multiple published descriptions

Lithology: Regolith

Reference: Raymond, O.L., Liu, S., Gallagher, R., Zhang, W., Highet, L.M. Surface Geology of Australia 1:1 million scale dataset 2012 edition. Commonwealth of Australia (Geoscience Australia). [5]

Cretaceous
66 - 145 Ma



ID: 3189471
Mesozoic sedimentary rocks

Age: Cretaceous (66 - 145 Ma)

Comments: Carpentaria Basin

Lithology: Sandstone,shale,siltstone,limestone

Reference: Chorlton, L.B. Generalized geology of the world: bedrock domains and major faults in GIS format: a small-scale world geology map with an extended geological attribute database. doi: 10.4095/223767. Geological Survey of Canada, Open File 5529. [154]

Data and map coding provided by Macrostrat.org, used under Creative Commons Attribution 4.0 License

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
Walters, S., Bailey, A. (1998) Geology and mineralization of the Cannington Ag-Pb-Zn deposit; an example of Broken Hill-type mineralization in the eastern succession, Mount Isa Inlier, Australia. Economic Geology, 93(8), 1307-1329.
T.J. Roache, P.J. Williams, J.M. Richmond, L.H. Chapman (2005) Vein and skarn formation at the Cannington Ag-Pb-Zn deposit, northeastern Australia. Canadian Mineralogist 43, 241-262.
Large, R.R., Bull, S.W., McGoldrick, P.J., Walters, S.G. (2005) Stratiform and Strata-Bound Zn-Pb-Ag Deposits in Proterozoic Sedimentary Basins, Northern Australia. Economic Geology, 100th Anniversary Volume, 931-963.
Munksgaard, N.C., Lottermoser, B.G. (2013) Phosphate amendment of metalliferous tailings, Cannington Ag–Pb–Zn mine, Australia: implications for the capping of tailings storage facilities. Environmental earth sciences, 68(1), 33-44.
Liu, C., Nie, F. (2015) Geological characteristics and metallogenic model of Cannington Ag-Pb-Zn deposit, Australia. Dizhi Tongbao 34, 1077-1085 (in Chinese).

External Links



This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization. Public Relations by Blytheweigh.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2019, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: May 21, 2019 19:40:59 Page generated: December 12, 2018 18:47:41
Go to top of page