SUPPORT US. Covid-19 has significantly affected our fundraising. Please help!
Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsBooks & Magazines
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryMineral Photography

Woodsreef Mine (Wood's Reef Mine; Woodsreef Asbestos Mine; Wood'sreef asbestos deposit), Barraba, Darling Co., New South Wales, Australiai
Regional Level Types
Woodsreef Mine (Wood's Reef Mine; Woodsreef Asbestos Mine; Wood'sreef asbestos deposit)Mine
Barraba- not defined -
Darling Co.County
New South WalesState
AustraliaCountry

This page is currently not sponsored. Click here to sponsor this page.
Key
Latitude & Longitude (WGS84):
30° 24' 34'' South , 150° 44' 20'' East
Latitude & Longitude (decimal):
Locality type:
Age:
~521 to 427.4 ± 0.5 Ma
Reference for age:
Brown, R.E., Brownlow, J.W., Krynen, J.P. (1992) Metallogenic Study and Mineral Deposit Data Sheets, Manilla-Narrabri 1:250 000 Metallogenic Map SH/56-9, SH/55-12. Geological Survey of New South Wales, Sydney, 319 pages.
Köppen climate type:
Nearest Settlements:
PlacePopulationDistance
Kingstown134 (2013)37.4km
Manilla2,081 (2012)37.6km
New Mexico281 (2014)38.7km
Bundarra462 (2012)41.8km


10 miles East of Barraba, a large open pit excavation of serpentine rock containing asbestos minerals.

Located in the Parish of Woods Reef.

The former mine extended over an area of approximately 400 hectares. The site comprisd a 75 million tonne waste rock dump, a 25 million tonne tailings dump and a number of open pits, some containing considerable quantities of water.

In 2014, the NSW Government provided funding of $6.3 million to address the most significant health, safety and environmental issues at the Woodsreef Mine, including:

(i) the containment of processed friable chrysotile asbestos;
(ii) removal of the mill building, silos, and administration buildings;
(iii) implementation of a comprehensive air quality monitoring program; and (iv) health risk assessment before, during and following remediation works.
The mine buildings have been demolished and the mine road is also closed to the public due to the ongoing danger of asbestos.

Select Mineral List Type

Standard Detailed Gallery Strunz Dana Chemical Elements

Commodity List

This is a list of exploitable or exploited mineral commodities recorded at this locality.


Mineral List


30 valid minerals.

Rock Types Recorded

Note: data is currently VERY limited. Please bear with us while we work towards adding this information!

Select Rock List Type

Alphabetical List Tree Diagram

Detailed Mineral List:

Albite
Formula: Na(AlSi3O8)
Reference: Slansky, E., Glen, R.A. (1981) Neptunite from the Woodsreef Serpentinite, New South Wales: A New Occurrence (A Preliminary Communication), Geological Survey of New South Wales, GS1981/231.
Anthophyllite
Formula: ◻{Mg2}{Mg5}(Si8O22)(OH)2
Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO 2 in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates. Chemical Geology, 358, 156-169.
Antigorite
Formula: Mg3(Si2O5)(OH)4
Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169.
Brucite
Formula: Mg(OH)2
Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO2 in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169.; Turvey, C. C., Wilson, S. A., Hamilton, J. L., Tait, A. W., McCutcheon, J., Beinlich, A., ... & Southam, G. (2018). Hydrotalcites and hydrated Mg-carbonates as carbon sinks in serpentinite mineral wastes from the Woodsreef chrysotile mine, New South Wales, Australia: Controls on carbonate mineralogy and efficiency of CO2 air capture in mine tailings. International Journal of Greenhouse Gas Control, 79, 38-60.
Calcite
Formula: CaCO3
Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO2 in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169.
'Chlorite Group'
Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169.
Chromite
Formula: Fe2+Cr3+2O4
Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169.
Chrysotile
Formula: Mg3(Si2O5)(OH)4
Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169.; Turvey, C. C., Wilson, S. A., Hamilton, J. L., Tait, A. W., McCutcheon, J., Beinlich, A., ... & Southam, G. (2018). Hydrotalcites and hydrated Mg-carbonates as carbon sinks in serpentinite mineral wastes from the Woodsreef chrysotile mine, New South Wales, Australia: Controls on carbonate mineralogy and efficiency of CO2 air capture in mine tailings. International Journal of Greenhouse Gas Control, 79, 38-60.
Coalingite
Formula: Mg10Fe3+2(OH)24[CO3] · 2H2O
Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169.; Turvey, C. C., Wilson, S. A., Hamilton, J. L., Tait, A. W., McCutcheon, J., Beinlich, A., ... & Southam, G. (2018). Hydrotalcites and hydrated Mg-carbonates as carbon sinks in serpentinite mineral wastes from the Woodsreef chrysotile mine, New South Wales, Australia: Controls on carbonate mineralogy and efficiency of CO2 air capture in mine tailings. International Journal of Greenhouse Gas Control, 79, 38-60.
Diopside
Formula: CaMgSi2O6
Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169.
Dolomite
Formula: CaMg(CO3)2
Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169.
Enstatite
Formula: Mg2Si2O6
Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169.
Forsterite
Formula: Mg2SiO4
Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169.
Grossular
Formula: Ca3Al2(SiO4)3
Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169.
Hematite
Formula: Fe2O3
Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169.
Huntite
Formula: CaMg3(CO3)4
Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169.
Hydromagnesite
Formula: Mg5(CO3)4(OH)2 · 4H2O
Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169.; Turvey, C. C., Wilson, S. A., Hamilton, J. L., Tait, A. W., McCutcheon, J., Beinlich, A., ... & Southam, G. (2018). Hydrotalcites and hydrated Mg-carbonates as carbon sinks in serpentinite mineral wastes from the Woodsreef chrysotile mine, New South Wales, Australia: Controls on carbonate mineralogy and efficiency of CO2 air capture in mine tailings. International Journal of Greenhouse Gas Control, 79, 38-60.
Hydrotalcite
Formula: Mg6Al2(CO3)(OH)16 · 4H2O
Reference: Turvey, C. C., Wilson, S. A., Hamilton, J. L., Tait, A. W., McCutcheon, J., Beinlich, A., ... & Southam, G. (2018). Hydrotalcites and hydrated Mg-carbonates as carbon sinks in serpentinite mineral wastes from the Woodsreef chrysotile mine, New South Wales, Australia: Controls on carbonate mineralogy and efficiency of CO2 air capture in mine tailings. International Journal of Greenhouse Gas Control, 79, 38-60.
Ilmenite
Formula: Fe2+TiO3
Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169.
Lizardite
Formula: Mg3(Si2O5)(OH)4
Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169.
Magnesite
Formula: MgCO3
Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169.
Magnetite
Formula: Fe2+Fe3+2O4
Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169.
Muscovite
Formula: KAl2(AlSi3O10)(OH)2
Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169.
Neptunite
Formula: Na2KLiFe2+2Ti2Si8O24
Description: Slansky and Glen indicate that the Neptunite from Woodsreef contains the highest amount of Fe ever reported in Neptunite and are very low in Mn.
Reference: Slansky, E., Glen, R.A. (1981) Neptunite from the Woodsreef Serpentinite, New South Wales: A New Occurrence (A Preliminary Communication), Geological Survey of New South Wales, GS1981/231. Tschermaks Mineralogische und Petrographische Mitteilungen 30, 237-247.
Opal
Formula: SiO2 · nH2O
Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169.
Pyrite
Formula: FeS2
Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169.
Pyroaurite
Formula: Mg6Fe3+2(OH)16[CO3] · 4H2O
Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169.; Turvey, C. C., Wilson, S. A., Hamilton, J. L., Tait, A. W., McCutcheon, J., Beinlich, A., ... & Southam, G. (2018). Hydrotalcites and hydrated Mg-carbonates as carbon sinks in serpentinite mineral wastes from the Woodsreef chrysotile mine, New South Wales, Australia: Controls on carbonate mineralogy and efficiency of CO2 air capture in mine tailings. International Journal of Greenhouse Gas Control, 79, 38-60.
'Pyroxene Group'
Reference: Slansky, E., Glen, R.A. (1981) Neptunite from the Woodsreef Serpentinite, New South Wales: A New Occurrence (A Preliminary Communication), Geological Survey of New South Wales, GS1981/231.
Quartz
Formula: SiO2
Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169.
'Serpentine Subgroup'
Formula: D3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn
Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169.
Spinel
Formula: MgAl2O4
Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169.
Talc
Formula: Mg3Si4O10(OH)2
Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169.
Tremolite
Formula: ◻{Ca2}{Mg5}(Si8O22)(OH)2
Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO2 in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169.

Gallery:

List of minerals arranged by Strunz 10th Edition classification

Group 2 - Sulphides and Sulfosalts
Pyrite2.EB.05aFeS2
Group 4 - Oxides and Hydroxides
Brucite4.FE.05Mg(OH)2
Chromite4.BB.05Fe2+Cr3+2O4
Hematite4.CB.05Fe2O3
Ilmenite4.CB.05Fe2+TiO3
Magnetite4.BB.05Fe2+Fe3+2O4
Opal4.DA.10SiO2 · nH2O
Quartz4.DA.05SiO2
Spinel4.BB.05MgAl2O4
Group 5 - Nitrates and Carbonates
Calcite5.AB.05CaCO3
Coalingite5.DA.55Mg10Fe3+2(OH)24[CO3] · 2H2O
Dolomite5.AB.10CaMg(CO3)2
Huntite5.AB.25CaMg3(CO3)4
Hydromagnesite5.DA.05Mg5(CO3)4(OH)2 · 4H2O
Hydrotalcite5.DA.50Mg6Al2(CO3)(OH)16 · 4H2O
Magnesite5.AB.05MgCO3
Pyroaurite5.DA.50Mg6Fe3+2(OH)16[CO3] · 4H2O
Group 9 - Silicates
Albite9.FA.35Na(AlSi3O8)
Anthophyllite9.DD.05◻{Mg2}{Mg5}(Si8O22)(OH)2
Antigorite9.ED.15Mg3(Si2O5)(OH)4
Chrysotile9.ED.15Mg3(Si2O5)(OH)4
Diopside9.DA.15CaMgSi2O6
Enstatite9.DA.05Mg2Si2O6
Forsterite9.AC.05Mg2SiO4
Grossular9.AD.25Ca3Al2(SiO4)3
Lizardite9.ED.15Mg3(Si2O5)(OH)4
Muscovite9.EC.15KAl2(AlSi3O10)(OH)2
Neptunite9.EH.05Na2KLiFe2+2Ti2Si8O24
Talc9.EC.05Mg3Si4O10(OH)2
Tremolite9.DE.10◻{Ca2}{Mg5}(Si8O22)(OH)2
Unclassified Minerals, Rocks, etc.
'Chlorite Group'-
'Pyroxene Group'-
'Serpentine Subgroup'-D3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn

List of minerals arranged by Dana 8th Edition classification

Group 2 - SULFIDES
AmBnXp, with (m+n):p = 1:2
Pyrite2.12.1.1FeS2
Group 4 - SIMPLE OXIDES
A2X3
Hematite4.3.1.2Fe2O3
Ilmenite4.3.5.1Fe2+TiO3
Group 6 - HYDROXIDES AND OXIDES CONTAINING HYDROXYL
X(OH)2
Brucite6.2.1.1Mg(OH)2
Group 7 - MULTIPLE OXIDES
AB2X4
Chromite7.2.3.3Fe2+Cr3+2O4
Magnetite7.2.2.3Fe2+Fe3+2O4
Spinel7.2.1.1MgAl2O4
Group 14 - ANHYDROUS NORMAL CARBONATES
A(XO3)
Calcite14.1.1.1CaCO3
Magnesite14.1.1.2MgCO3
AB(XO3)2
Dolomite14.2.1.1CaMg(CO3)2
Miscellaneous
Huntite14.4.3.1CaMg3(CO3)4
Group 16b - HYDRATED CARBONATES CONTAINING HYDROXYL OR HALOGEN
Hydrotalcite16b.6.2.1Mg6Al2(CO3)(OH)16 · 4H2O
Pyroaurite16b.6.2.3Mg6Fe3+2(OH)16[CO3] · 4H2O
Coalingite16b.7.6.1Mg10Fe3+2(OH)24[CO3] · 2H2O
Hydromagnesite16b.7.1.1Mg5(CO3)4(OH)2 · 4H2O
Group 51 - NESOSILICATES Insular SiO4 Groups Only
Insular SiO4 Groups Only with all cations in octahedral [6] coordination
Forsterite51.3.1.2Mg2SiO4
Insular SiO4 Groups Only with cations in [6] and >[6] coordination
Grossular51.4.3b.2Ca3Al2(SiO4)3
Group 65 - INOSILICATES Single-Width,Unbranched Chains,(W=1)
Single-Width Unbranched Chains, W=1 with chains P=2
Diopside65.1.3a.1CaMgSi2O6
Enstatite65.1.2.1Mg2Si2O6
Group 66 - INOSILICATES Double-Width,Unbranched Chains,(W=2)
Amphiboles - Mg-Fe-Mn-Li subgroup
Anthophyllite66.1.2.1◻{Mg2}{Mg5}(Si8O22)(OH)2
Tremolite66.1.3a.1◻{Ca2}{Mg5}(Si8O22)(OH)2
Group 70 - INOSILICATES Column or Tube Structures
Column or Tube Structures with linked chains forming cages
Neptunite70.4.1.1Na2KLiFe2+2Ti2Si8O24
Group 71 - PHYLLOSILICATES Sheets of Six-Membered Rings
Sheets of 6-membered rings with 1:1 layers
Antigorite71.1.2a.1Mg3(Si2O5)(OH)4
Chrysotile71.1.5.1Mg3(Si2O5)(OH)4
Lizardite71.1.2b.2Mg3(Si2O5)(OH)4
Sheets of 6-membered rings with 2:1 layers
Muscovite71.2.2a.1KAl2(AlSi3O10)(OH)2
Talc71.2.1.3Mg3Si4O10(OH)2
Group 75 - TECTOSILICATES Si Tetrahedral Frameworks
Si Tetrahedral Frameworks - SiO2 with [4] coordinated Si
Quartz75.1.3.1SiO2
Si Tetrahedral Frameworks - SiO2 with H2O and organics
Opal75.2.1.1SiO2 · nH2O
Group 76 - TECTOSILICATES Al-Si Framework
Al-Si Framework with Al-Si frameworks
Albite76.1.3.1Na(AlSi3O8)
Unclassified Minerals, Mixtures, etc.
'Chlorite Group'-
'Pyroxene Group'-
'Serpentine Subgroup'-D3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn

List of minerals for each chemical element

HHydrogen
H ChrysotileMg3(Si2O5)(OH)4
H Serpentine SubgroupD3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn
H Tremolite◻{Ca2}{Mg5}(Si8O22)(OH)2
H TalcMg3Si4O10(OH)2
H AntigoriteMg3(Si2O5)(OH)4
H LizarditeMg3(Si2O5)(OH)4
H BruciteMg(OH)2
H PyroauriteMg6Fe23+(OH)16[CO3] · 4H2O
H HydromagnesiteMg5(CO3)4(OH)2 · 4H2O
H OpalSiO2 · nH2O
H Anthophyllite◻{Mg2}{Mg5}(Si8O22)(OH)2
H CoalingiteMg10Fe23+(OH)24[CO3] · 2H2O
H MuscoviteKAl2(AlSi3O10)(OH)2
H HydrotalciteMg6Al2(CO3)(OH)16 · 4H2O
LiLithium
Li NeptuniteNa2KLiFe22+Ti2Si8O24
CCarbon
C MagnesiteMgCO3
C PyroauriteMg6Fe23+(OH)16[CO3] · 4H2O
C HydromagnesiteMg5(CO3)4(OH)2 · 4H2O
C CalciteCaCO3
C DolomiteCaMg(CO3)2
C CoalingiteMg10Fe23+(OH)24[CO3] · 2H2O
C HuntiteCaMg3(CO3)4
C HydrotalciteMg6Al2(CO3)(OH)16 · 4H2O
OOxygen
O ChrysotileMg3(Si2O5)(OH)4
O Serpentine SubgroupD3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn
O NeptuniteNa2KLiFe22+Ti2Si8O24
O MagnesiteMgCO3
O Tremolite◻{Ca2}{Mg5}(Si8O22)(OH)2
O TalcMg3Si4O10(OH)2
O AntigoriteMg3(Si2O5)(OH)4
O LizarditeMg3(Si2O5)(OH)4
O BruciteMg(OH)2
O MagnetiteFe2+Fe23+O4
O HematiteFe2O3
O ForsteriteMg2SiO4
O DiopsideCaMgSi2O6
O PyroauriteMg6Fe23+(OH)16[CO3] · 4H2O
O HydromagnesiteMg5(CO3)4(OH)2 · 4H2O
O CalciteCaCO3
O DolomiteCaMg(CO3)2
O QuartzSiO2
O OpalSiO2 · nH2O
O Anthophyllite◻{Mg2}{Mg5}(Si8O22)(OH)2
O GrossularCa3Al2(SiO4)3
O CoalingiteMg10Fe23+(OH)24[CO3] · 2H2O
O MuscoviteKAl2(AlSi3O10)(OH)2
O EnstatiteMg2Si2O6
O ChromiteFe2+Cr23+O4
O IlmeniteFe2+TiO3
O HuntiteCaMg3(CO3)4
O SpinelMgAl2O4
O AlbiteNa(AlSi3O8)
O HydrotalciteMg6Al2(CO3)(OH)16 · 4H2O
NaSodium
Na NeptuniteNa2KLiFe22+Ti2Si8O24
Na AlbiteNa(AlSi3O8)
MgMagnesium
Mg ChrysotileMg3(Si2O5)(OH)4
Mg Serpentine SubgroupD3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn
Mg MagnesiteMgCO3
Mg Tremolite◻{Ca2}{Mg5}(Si8O22)(OH)2
Mg TalcMg3Si4O10(OH)2
Mg AntigoriteMg3(Si2O5)(OH)4
Mg LizarditeMg3(Si2O5)(OH)4
Mg BruciteMg(OH)2
Mg ForsteriteMg2SiO4
Mg DiopsideCaMgSi2O6
Mg PyroauriteMg6Fe23+(OH)16[CO3] · 4H2O
Mg HydromagnesiteMg5(CO3)4(OH)2 · 4H2O
Mg DolomiteCaMg(CO3)2
Mg Anthophyllite◻{Mg2}{Mg5}(Si8O22)(OH)2
Mg CoalingiteMg10Fe23+(OH)24[CO3] · 2H2O
Mg EnstatiteMg2Si2O6
Mg HuntiteCaMg3(CO3)4
Mg SpinelMgAl2O4
Mg HydrotalciteMg6Al2(CO3)(OH)16 · 4H2O
AlAluminium
Al Serpentine SubgroupD3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn
Al GrossularCa3Al2(SiO4)3
Al MuscoviteKAl2(AlSi3O10)(OH)2
Al SpinelMgAl2O4
Al AlbiteNa(AlSi3O8)
Al HydrotalciteMg6Al2(CO3)(OH)16 · 4H2O
SiSilicon
Si ChrysotileMg3(Si2O5)(OH)4
Si Serpentine SubgroupD3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn
Si NeptuniteNa2KLiFe22+Ti2Si8O24
Si Tremolite◻{Ca2}{Mg5}(Si8O22)(OH)2
Si TalcMg3Si4O10(OH)2
Si AntigoriteMg3(Si2O5)(OH)4
Si LizarditeMg3(Si2O5)(OH)4
Si ForsteriteMg2SiO4
Si DiopsideCaMgSi2O6
Si QuartzSiO2
Si OpalSiO2 · nH2O
Si Anthophyllite◻{Mg2}{Mg5}(Si8O22)(OH)2
Si GrossularCa3Al2(SiO4)3
Si MuscoviteKAl2(AlSi3O10)(OH)2
Si EnstatiteMg2Si2O6
Si AlbiteNa(AlSi3O8)
SSulfur
S PyriteFeS2
KPotassium
K NeptuniteNa2KLiFe22+Ti2Si8O24
K MuscoviteKAl2(AlSi3O10)(OH)2
CaCalcium
Ca Tremolite◻{Ca2}{Mg5}(Si8O22)(OH)2
Ca DiopsideCaMgSi2O6
Ca CalciteCaCO3
Ca DolomiteCaMg(CO3)2
Ca GrossularCa3Al2(SiO4)3
Ca HuntiteCaMg3(CO3)4
TiTitanium
Ti NeptuniteNa2KLiFe22+Ti2Si8O24
Ti IlmeniteFe2+TiO3
CrChromium
Cr ChromiteFe2+Cr23+O4
MnManganese
Mn Serpentine SubgroupD3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn
FeIron
Fe Serpentine SubgroupD3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn
Fe NeptuniteNa2KLiFe22+Ti2Si8O24
Fe MagnetiteFe2+Fe23+O4
Fe HematiteFe2O3
Fe PyroauriteMg6Fe23+(OH)16[CO3] · 4H2O
Fe CoalingiteMg10Fe23+(OH)24[CO3] · 2H2O
Fe ChromiteFe2+Cr23+O4
Fe IlmeniteFe2+TiO3
Fe PyriteFeS2
NiNickel
Ni Serpentine SubgroupD3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn
ZnZinc
Zn Serpentine SubgroupD3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
Raggatt, H.G. (1925) Chromium, Cobalt, Nickel, Zirconium, Titanium, Thorium, Cerium. Department of Mines, New South Wales, Geological Survey Bulletin No.13, 17 pages.
Wallis, G.R. (1964) Woodsreef asbestos deposit, preliminary report. NSW Geological Survey Report GS 1964/022.
MacNevin, A.A. (1975) Woolomin-Texas Block: Great Serpentinite Belt. In Markham N.L. & Basden H. eds. The Mineral Deposits of New South Wales, Geological Survey of New South Wales, Sydney. pp. 393-403.
Slansky, E., Glen, R.A. (1981) Neptunite from the Woodsreef Serpentinite, New South Wales: A New Occurrence (A Preliminary Communication), Geological Survey of New South Wales, GS1981/231.
Tschermaks Mineralogische und Petrographische Mitteilungen 30, 237-247.
Oskierski, H.C., Dlugogorski, B.Z., Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169.
Turvey, C.C., Wilson, S.A., Hamilton, J.L., Tait, A.W., McCutcheon, J., Beinlich, A., Fallon, S.J., Dipple, G.M., Southam, G. (2018) Hydrotalcites and hydrated Mg-carbonates as carbon sinks in serpentinite mineral wastes from the Woodsreef chrysotile mine, New South Wales, Australia: Controls on carbonate mineralogy and efficiency of CO2 air capture in mine tailings. International Journal of Greenhouse Gas Control, 79, 38-60.

Other Regions, Features and Areas containing this locality

Australia
Australian PlateTectonic Plate

This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
 
Mineral and/or Locality  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization. Public Relations by Blytheweigh.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2021, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us - Report a bug/vulnerability Current server date and time: March 7, 2021 09:03:44 Page generated: December 18, 2020 06:59:30
Go to top of page