Woodsreef Mine (Wood's Reef Mine; Woodsreef Asbestos Mine; Wood'sreef asbestos deposit), Barraba, Darling Co., New South Wales, Australiai
Regional Level Types | |
---|---|
Woodsreef Mine (Wood's Reef Mine; Woodsreef Asbestos Mine; Wood'sreef asbestos deposit) | Mine |
Barraba | - not defined - |
Darling Co. | County |
New South Wales | State |
Australia | Country |
This page is currently not sponsored. Click here to sponsor this page.

Key
Latitude & Longitude (WGS84):
30° 24' 34'' South , 150° 44' 20'' East
Latitude & Longitude (decimal):
Locality type:
Age:
~521 to 427.4 ± 0.5 Ma
Geologic Time:
Reference for age:
Brown, R.E., Brownlow, J.W., Krynen, J.P. (1992) Metallogenic Study and Mineral Deposit Data Sheets, Manilla-Narrabri 1:250 000 Metallogenic Map SH/56-9, SH/55-12. Geological Survey of New South Wales, Sydney, 319 pages.
Köppen climate type:
Nearest Settlements:
Place | Population | Distance |
---|---|---|
Kingstown | 134 (2013) | 37.4km |
Manilla | 2,081 (2012) | 37.6km |
New Mexico | 281 (2014) | 38.7km |
Bundarra | 462 (2012) | 41.8km |
10 miles East of Barraba, a large open pit excavation of serpentine rock containing asbestos minerals.
Located in the Parish of Woods Reef.
The former mine extended over an area of approximately 400 hectares. The site comprisd a 75 million tonne waste rock dump, a 25 million tonne tailings dump and a number of open pits, some containing considerable quantities of water.
In 2014, the NSW Government provided funding of $6.3 million to address the most significant health, safety and environmental issues at the Woodsreef Mine, including:
(i) the containment of processed friable chrysotile asbestos;
(ii) removal of the mill building, silos, and administration buildings;
(iii) implementation of a comprehensive air quality monitoring program; and (iv) health risk assessment before, during and following remediation works.
The mine buildings have been demolished and the mine road is also closed to the public due to the ongoing danger of asbestos.
Select Mineral List Type
Standard Detailed Gallery Strunz Dana Chemical ElementsCommodity List
This is a list of exploitable or exploited mineral commodities recorded at this locality.Mineral List
30 valid minerals.
Rock Types Recorded
Note: data is currently VERY limited. Please bear with us while we work towards adding this information!
Select Rock List Type
Alphabetical List Tree DiagramDetailed Mineral List:
ⓘ Albite Formula: Na(AlSi3O8) Reference: Slansky, E., Glen, R.A. (1981) Neptunite from the Woodsreef Serpentinite, New South Wales: A New Occurrence (A Preliminary Communication), Geological Survey of New South Wales, GS1981/231. |
ⓘ Anthophyllite Formula: ◻{Mg2}{Mg5}(Si8O22)(OH)2 Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO 2 in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates. Chemical Geology, 358, 156-169. |
ⓘ Antigorite Formula: Mg3(Si2O5)(OH)4 Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169. |
ⓘ Brucite Formula: Mg(OH)2 Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO2 in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169.; Turvey, C. C., Wilson, S. A., Hamilton, J. L., Tait, A. W., McCutcheon, J., Beinlich, A., ... & Southam, G. (2018). Hydrotalcites and hydrated Mg-carbonates as carbon sinks in serpentinite mineral wastes from the Woodsreef chrysotile mine, New South Wales, Australia: Controls on carbonate mineralogy and efficiency of CO2 air capture in mine tailings. International Journal of Greenhouse Gas Control, 79, 38-60. |
ⓘ Calcite Formula: CaCO3 Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO2 in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169. |
ⓘ 'Chlorite Group' Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169. |
ⓘ Chromite Formula: Fe2+Cr3+2O4 Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169. |
ⓘ Chrysotile Formula: Mg3(Si2O5)(OH)4 Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169.; Turvey, C. C., Wilson, S. A., Hamilton, J. L., Tait, A. W., McCutcheon, J., Beinlich, A., ... & Southam, G. (2018). Hydrotalcites and hydrated Mg-carbonates as carbon sinks in serpentinite mineral wastes from the Woodsreef chrysotile mine, New South Wales, Australia: Controls on carbonate mineralogy and efficiency of CO2 air capture in mine tailings. International Journal of Greenhouse Gas Control, 79, 38-60. |
ⓘ Coalingite Formula: Mg10Fe3+2(OH)24[CO3] · 2H2O Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169.; Turvey, C. C., Wilson, S. A., Hamilton, J. L., Tait, A. W., McCutcheon, J., Beinlich, A., ... & Southam, G. (2018). Hydrotalcites and hydrated Mg-carbonates as carbon sinks in serpentinite mineral wastes from the Woodsreef chrysotile mine, New South Wales, Australia: Controls on carbonate mineralogy and efficiency of CO2 air capture in mine tailings. International Journal of Greenhouse Gas Control, 79, 38-60. |
ⓘ Diopside Formula: CaMgSi2O6 Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169. |
ⓘ Dolomite Formula: CaMg(CO3)2 Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169. |
ⓘ Enstatite Formula: Mg2Si2O6 Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169. |
ⓘ Forsterite Formula: Mg2SiO4 Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169. |
ⓘ Grossular Formula: Ca3Al2(SiO4)3 Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169. |
ⓘ Hematite Formula: Fe2O3 Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169. |
ⓘ Huntite Formula: CaMg3(CO3)4 Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169. |
ⓘ Hydromagnesite Formula: Mg5(CO3)4(OH)2 · 4H2O Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169.; Turvey, C. C., Wilson, S. A., Hamilton, J. L., Tait, A. W., McCutcheon, J., Beinlich, A., ... & Southam, G. (2018). Hydrotalcites and hydrated Mg-carbonates as carbon sinks in serpentinite mineral wastes from the Woodsreef chrysotile mine, New South Wales, Australia: Controls on carbonate mineralogy and efficiency of CO2 air capture in mine tailings. International Journal of Greenhouse Gas Control, 79, 38-60. |
ⓘ Hydrotalcite Formula: Mg6Al2(CO3)(OH)16 · 4H2O Reference: Turvey, C. C., Wilson, S. A., Hamilton, J. L., Tait, A. W., McCutcheon, J., Beinlich, A., ... & Southam, G. (2018). Hydrotalcites and hydrated Mg-carbonates as carbon sinks in serpentinite mineral wastes from the Woodsreef chrysotile mine, New South Wales, Australia: Controls on carbonate mineralogy and efficiency of CO2 air capture in mine tailings. International Journal of Greenhouse Gas Control, 79, 38-60. |
ⓘ Ilmenite Formula: Fe2+TiO3 Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169. |
ⓘ Lizardite Formula: Mg3(Si2O5)(OH)4 Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169. |
ⓘ Magnesite Formula: MgCO3 Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169. |
ⓘ Magnetite Formula: Fe2+Fe3+2O4 Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169. |
ⓘ Muscovite Formula: KAl2(AlSi3O10)(OH)2 Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169. |
ⓘ Neptunite Formula: Na2KLiFe2+2Ti2Si8O24 Description: Slansky and Glen indicate that the Neptunite from Woodsreef contains the highest amount of Fe ever reported in Neptunite and are very low in Mn. Reference: Slansky, E., Glen, R.A. (1981) Neptunite from the Woodsreef Serpentinite, New South Wales: A New Occurrence (A Preliminary Communication), Geological Survey of New South Wales, GS1981/231.
Tschermaks Mineralogische und Petrographische Mitteilungen 30, 237-247. |
ⓘ Opal Formula: SiO2 · nH2O Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169. |
ⓘ Pyrite Formula: FeS2 Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169. |
ⓘ Pyroaurite Formula: Mg6Fe3+2(OH)16[CO3] · 4H2O Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169.; Turvey, C. C., Wilson, S. A., Hamilton, J. L., Tait, A. W., McCutcheon, J., Beinlich, A., ... & Southam, G. (2018). Hydrotalcites and hydrated Mg-carbonates as carbon sinks in serpentinite mineral wastes from the Woodsreef chrysotile mine, New South Wales, Australia: Controls on carbonate mineralogy and efficiency of CO2 air capture in mine tailings. International Journal of Greenhouse Gas Control, 79, 38-60. |
ⓘ 'Pyroxene Group' Reference: Slansky, E., Glen, R.A. (1981) Neptunite from the Woodsreef Serpentinite, New South Wales: A New Occurrence (A Preliminary Communication), Geological Survey of New South Wales, GS1981/231. |
ⓘ Quartz Formula: SiO2 Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169. |
ⓘ 'Serpentine Subgroup' Formula: D3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169. |
ⓘ Spinel Formula: MgAl2O4 Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169. |
ⓘ Talc Formula: Mg3Si4O10(OH)2 Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169. |
ⓘ Tremolite Formula: ◻{Ca2}{Mg5}(Si8O22)(OH)2 Reference: Oskierski, H. C., Dlugogorski, B. Z., & Jacobsen, G. (2013) Sequestration of atmospheric CO2 in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169. |
Gallery:
List of minerals arranged by Strunz 10th Edition classification
Group 2 - Sulphides and Sulfosalts | |||
---|---|---|---|
ⓘ | Pyrite | 2.EB.05a | FeS2 |
Group 4 - Oxides and Hydroxides | |||
ⓘ | Brucite | 4.FE.05 | Mg(OH)2 |
ⓘ | Chromite | 4.BB.05 | Fe2+Cr3+2O4 |
ⓘ | Hematite | 4.CB.05 | Fe2O3 |
ⓘ | Ilmenite | 4.CB.05 | Fe2+TiO3 |
ⓘ | Magnetite | 4.BB.05 | Fe2+Fe3+2O4 |
ⓘ | Opal | 4.DA.10 | SiO2 · nH2O |
ⓘ | Quartz | 4.DA.05 | SiO2 |
ⓘ | Spinel | 4.BB.05 | MgAl2O4 |
Group 5 - Nitrates and Carbonates | |||
ⓘ | Calcite | 5.AB.05 | CaCO3 |
ⓘ | Coalingite | 5.DA.55 | Mg10Fe3+2(OH)24[CO3] · 2H2O |
ⓘ | Dolomite | 5.AB.10 | CaMg(CO3)2 |
ⓘ | Huntite | 5.AB.25 | CaMg3(CO3)4 |
ⓘ | Hydromagnesite | 5.DA.05 | Mg5(CO3)4(OH)2 · 4H2O |
ⓘ | Hydrotalcite | 5.DA.50 | Mg6Al2(CO3)(OH)16 · 4H2O |
ⓘ | Magnesite | 5.AB.05 | MgCO3 |
ⓘ | Pyroaurite | 5.DA.50 | Mg6Fe3+2(OH)16[CO3] · 4H2O |
Group 9 - Silicates | |||
ⓘ | Albite | 9.FA.35 | Na(AlSi3O8) |
ⓘ | Anthophyllite | 9.DD.05 | ◻{Mg2}{Mg5}(Si8O22)(OH)2 |
ⓘ | Antigorite | 9.ED.15 | Mg3(Si2O5)(OH)4 |
ⓘ | Chrysotile | 9.ED.15 | Mg3(Si2O5)(OH)4 |
ⓘ | Diopside | 9.DA.15 | CaMgSi2O6 |
ⓘ | Enstatite | 9.DA.05 | Mg2Si2O6 |
ⓘ | Forsterite | 9.AC.05 | Mg2SiO4 |
ⓘ | Grossular | 9.AD.25 | Ca3Al2(SiO4)3 |
ⓘ | Lizardite | 9.ED.15 | Mg3(Si2O5)(OH)4 |
ⓘ | Muscovite | 9.EC.15 | KAl2(AlSi3O10)(OH)2 |
ⓘ | Neptunite | 9.EH.05 | Na2KLiFe2+2Ti2Si8O24 |
ⓘ | Talc | 9.EC.05 | Mg3Si4O10(OH)2 |
ⓘ | Tremolite | 9.DE.10 | ◻{Ca2}{Mg5}(Si8O22)(OH)2 |
Unclassified Minerals, Rocks, etc. | |||
ⓘ | 'Chlorite Group' | - | |
ⓘ | 'Pyroxene Group' | - | |
ⓘ | 'Serpentine Subgroup' | - | D3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn |
List of minerals arranged by Dana 8th Edition classification
Group 2 - SULFIDES | |||
---|---|---|---|
AmBnXp, with (m+n):p = 1:2 | |||
ⓘ | Pyrite | 2.12.1.1 | FeS2 |
Group 4 - SIMPLE OXIDES | |||
A2X3 | |||
ⓘ | Hematite | 4.3.1.2 | Fe2O3 |
ⓘ | Ilmenite | 4.3.5.1 | Fe2+TiO3 |
Group 6 - HYDROXIDES AND OXIDES CONTAINING HYDROXYL | |||
X(OH)2 | |||
ⓘ | Brucite | 6.2.1.1 | Mg(OH)2 |
Group 7 - MULTIPLE OXIDES | |||
AB2X4 | |||
ⓘ | Chromite | 7.2.3.3 | Fe2+Cr3+2O4 |
ⓘ | Magnetite | 7.2.2.3 | Fe2+Fe3+2O4 |
ⓘ | Spinel | 7.2.1.1 | MgAl2O4 |
Group 14 - ANHYDROUS NORMAL CARBONATES | |||
A(XO3) | |||
ⓘ | Calcite | 14.1.1.1 | CaCO3 |
ⓘ | Magnesite | 14.1.1.2 | MgCO3 |
AB(XO3)2 | |||
ⓘ | Dolomite | 14.2.1.1 | CaMg(CO3)2 |
Miscellaneous | |||
ⓘ | Huntite | 14.4.3.1 | CaMg3(CO3)4 |
Group 16b - HYDRATED CARBONATES CONTAINING HYDROXYL OR HALOGEN | |||
ⓘ | Hydrotalcite | 16b.6.2.1 | Mg6Al2(CO3)(OH)16 · 4H2O |
ⓘ | Pyroaurite | 16b.6.2.3 | Mg6Fe3+2(OH)16[CO3] · 4H2O |
ⓘ | Coalingite | 16b.7.6.1 | Mg10Fe3+2(OH)24[CO3] · 2H2O |
ⓘ | Hydromagnesite | 16b.7.1.1 | Mg5(CO3)4(OH)2 · 4H2O |
Group 51 - NESOSILICATES Insular SiO4 Groups Only | |||
Insular SiO4 Groups Only with all cations in octahedral [6] coordination | |||
ⓘ | Forsterite | 51.3.1.2 | Mg2SiO4 |
Insular SiO4 Groups Only with cations in [6] and >[6] coordination | |||
ⓘ | Grossular | 51.4.3b.2 | Ca3Al2(SiO4)3 |
Group 65 - INOSILICATES Single-Width,Unbranched Chains,(W=1) | |||
Single-Width Unbranched Chains, W=1 with chains P=2 | |||
ⓘ | Diopside | 65.1.3a.1 | CaMgSi2O6 |
ⓘ | Enstatite | 65.1.2.1 | Mg2Si2O6 |
Group 66 - INOSILICATES Double-Width,Unbranched Chains,(W=2) | |||
Amphiboles - Mg-Fe-Mn-Li subgroup | |||
ⓘ | Anthophyllite | 66.1.2.1 | ◻{Mg2}{Mg5}(Si8O22)(OH)2 |
ⓘ | Tremolite | 66.1.3a.1 | ◻{Ca2}{Mg5}(Si8O22)(OH)2 |
Group 70 - INOSILICATES Column or Tube Structures | |||
Column or Tube Structures with linked chains forming cages | |||
ⓘ | Neptunite | 70.4.1.1 | Na2KLiFe2+2Ti2Si8O24 |
Group 71 - PHYLLOSILICATES Sheets of Six-Membered Rings | |||
Sheets of 6-membered rings with 1:1 layers | |||
ⓘ | Antigorite | 71.1.2a.1 | Mg3(Si2O5)(OH)4 |
ⓘ | Chrysotile | 71.1.5.1 | Mg3(Si2O5)(OH)4 |
ⓘ | Lizardite | 71.1.2b.2 | Mg3(Si2O5)(OH)4 |
Sheets of 6-membered rings with 2:1 layers | |||
ⓘ | Muscovite | 71.2.2a.1 | KAl2(AlSi3O10)(OH)2 |
ⓘ | Talc | 71.2.1.3 | Mg3Si4O10(OH)2 |
Group 75 - TECTOSILICATES Si Tetrahedral Frameworks | |||
Si Tetrahedral Frameworks - SiO2 with [4] coordinated Si | |||
ⓘ | Quartz | 75.1.3.1 | SiO2 |
Si Tetrahedral Frameworks - SiO2 with H2O and organics | |||
ⓘ | Opal | 75.2.1.1 | SiO2 · nH2O |
Group 76 - TECTOSILICATES Al-Si Framework | |||
Al-Si Framework with Al-Si frameworks | |||
ⓘ | Albite | 76.1.3.1 | Na(AlSi3O8) |
Unclassified Minerals, Mixtures, etc. | |||
ⓘ | 'Chlorite Group' | - | |
ⓘ | 'Pyroxene Group' | - | |
ⓘ | 'Serpentine Subgroup' | - | D3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn |
List of minerals for each chemical element
H | Hydrogen | |
---|---|---|
H | ⓘ Chrysotile | Mg3(Si2O5)(OH)4 |
H | ⓘ Serpentine Subgroup | D3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn |
H | ⓘ Tremolite | ◻{Ca2}{Mg5}(Si8O22)(OH)2 |
H | ⓘ Talc | Mg3Si4O10(OH)2 |
H | ⓘ Antigorite | Mg3(Si2O5)(OH)4 |
H | ⓘ Lizardite | Mg3(Si2O5)(OH)4 |
H | ⓘ Brucite | Mg(OH)2 |
H | ⓘ Pyroaurite | Mg6Fe23+(OH)16[CO3] · 4H2O |
H | ⓘ Hydromagnesite | Mg5(CO3)4(OH)2 · 4H2O |
H | ⓘ Opal | SiO2 · nH2O |
H | ⓘ Anthophyllite | ◻{Mg2}{Mg5}(Si8O22)(OH)2 |
H | ⓘ Coalingite | Mg10Fe23+(OH)24[CO3] · 2H2O |
H | ⓘ Muscovite | KAl2(AlSi3O10)(OH)2 |
H | ⓘ Hydrotalcite | Mg6Al2(CO3)(OH)16 · 4H2O |
Li | Lithium | |
Li | ⓘ Neptunite | Na2KLiFe22+Ti2Si8O24 |
C | Carbon | |
C | ⓘ Magnesite | MgCO3 |
C | ⓘ Pyroaurite | Mg6Fe23+(OH)16[CO3] · 4H2O |
C | ⓘ Hydromagnesite | Mg5(CO3)4(OH)2 · 4H2O |
C | ⓘ Calcite | CaCO3 |
C | ⓘ Dolomite | CaMg(CO3)2 |
C | ⓘ Coalingite | Mg10Fe23+(OH)24[CO3] · 2H2O |
C | ⓘ Huntite | CaMg3(CO3)4 |
C | ⓘ Hydrotalcite | Mg6Al2(CO3)(OH)16 · 4H2O |
O | Oxygen | |
O | ⓘ Chrysotile | Mg3(Si2O5)(OH)4 |
O | ⓘ Serpentine Subgroup | D3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn |
O | ⓘ Neptunite | Na2KLiFe22+Ti2Si8O24 |
O | ⓘ Magnesite | MgCO3 |
O | ⓘ Tremolite | ◻{Ca2}{Mg5}(Si8O22)(OH)2 |
O | ⓘ Talc | Mg3Si4O10(OH)2 |
O | ⓘ Antigorite | Mg3(Si2O5)(OH)4 |
O | ⓘ Lizardite | Mg3(Si2O5)(OH)4 |
O | ⓘ Brucite | Mg(OH)2 |
O | ⓘ Magnetite | Fe2+Fe23+O4 |
O | ⓘ Hematite | Fe2O3 |
O | ⓘ Forsterite | Mg2SiO4 |
O | ⓘ Diopside | CaMgSi2O6 |
O | ⓘ Pyroaurite | Mg6Fe23+(OH)16[CO3] · 4H2O |
O | ⓘ Hydromagnesite | Mg5(CO3)4(OH)2 · 4H2O |
O | ⓘ Calcite | CaCO3 |
O | ⓘ Dolomite | CaMg(CO3)2 |
O | ⓘ Quartz | SiO2 |
O | ⓘ Opal | SiO2 · nH2O |
O | ⓘ Anthophyllite | ◻{Mg2}{Mg5}(Si8O22)(OH)2 |
O | ⓘ Grossular | Ca3Al2(SiO4)3 |
O | ⓘ Coalingite | Mg10Fe23+(OH)24[CO3] · 2H2O |
O | ⓘ Muscovite | KAl2(AlSi3O10)(OH)2 |
O | ⓘ Enstatite | Mg2Si2O6 |
O | ⓘ Chromite | Fe2+Cr23+O4 |
O | ⓘ Ilmenite | Fe2+TiO3 |
O | ⓘ Huntite | CaMg3(CO3)4 |
O | ⓘ Spinel | MgAl2O4 |
O | ⓘ Albite | Na(AlSi3O8) |
O | ⓘ Hydrotalcite | Mg6Al2(CO3)(OH)16 · 4H2O |
Na | Sodium | |
Na | ⓘ Neptunite | Na2KLiFe22+Ti2Si8O24 |
Na | ⓘ Albite | Na(AlSi3O8) |
Mg | Magnesium | |
Mg | ⓘ Chrysotile | Mg3(Si2O5)(OH)4 |
Mg | ⓘ Serpentine Subgroup | D3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn |
Mg | ⓘ Magnesite | MgCO3 |
Mg | ⓘ Tremolite | ◻{Ca2}{Mg5}(Si8O22)(OH)2 |
Mg | ⓘ Talc | Mg3Si4O10(OH)2 |
Mg | ⓘ Antigorite | Mg3(Si2O5)(OH)4 |
Mg | ⓘ Lizardite | Mg3(Si2O5)(OH)4 |
Mg | ⓘ Brucite | Mg(OH)2 |
Mg | ⓘ Forsterite | Mg2SiO4 |
Mg | ⓘ Diopside | CaMgSi2O6 |
Mg | ⓘ Pyroaurite | Mg6Fe23+(OH)16[CO3] · 4H2O |
Mg | ⓘ Hydromagnesite | Mg5(CO3)4(OH)2 · 4H2O |
Mg | ⓘ Dolomite | CaMg(CO3)2 |
Mg | ⓘ Anthophyllite | ◻{Mg2}{Mg5}(Si8O22)(OH)2 |
Mg | ⓘ Coalingite | Mg10Fe23+(OH)24[CO3] · 2H2O |
Mg | ⓘ Enstatite | Mg2Si2O6 |
Mg | ⓘ Huntite | CaMg3(CO3)4 |
Mg | ⓘ Spinel | MgAl2O4 |
Mg | ⓘ Hydrotalcite | Mg6Al2(CO3)(OH)16 · 4H2O |
Al | Aluminium | |
Al | ⓘ Serpentine Subgroup | D3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn |
Al | ⓘ Grossular | Ca3Al2(SiO4)3 |
Al | ⓘ Muscovite | KAl2(AlSi3O10)(OH)2 |
Al | ⓘ Spinel | MgAl2O4 |
Al | ⓘ Albite | Na(AlSi3O8) |
Al | ⓘ Hydrotalcite | Mg6Al2(CO3)(OH)16 · 4H2O |
Si | Silicon | |
Si | ⓘ Chrysotile | Mg3(Si2O5)(OH)4 |
Si | ⓘ Serpentine Subgroup | D3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn |
Si | ⓘ Neptunite | Na2KLiFe22+Ti2Si8O24 |
Si | ⓘ Tremolite | ◻{Ca2}{Mg5}(Si8O22)(OH)2 |
Si | ⓘ Talc | Mg3Si4O10(OH)2 |
Si | ⓘ Antigorite | Mg3(Si2O5)(OH)4 |
Si | ⓘ Lizardite | Mg3(Si2O5)(OH)4 |
Si | ⓘ Forsterite | Mg2SiO4 |
Si | ⓘ Diopside | CaMgSi2O6 |
Si | ⓘ Quartz | SiO2 |
Si | ⓘ Opal | SiO2 · nH2O |
Si | ⓘ Anthophyllite | ◻{Mg2}{Mg5}(Si8O22)(OH)2 |
Si | ⓘ Grossular | Ca3Al2(SiO4)3 |
Si | ⓘ Muscovite | KAl2(AlSi3O10)(OH)2 |
Si | ⓘ Enstatite | Mg2Si2O6 |
Si | ⓘ Albite | Na(AlSi3O8) |
S | Sulfur | |
S | ⓘ Pyrite | FeS2 |
K | Potassium | |
K | ⓘ Neptunite | Na2KLiFe22+Ti2Si8O24 |
K | ⓘ Muscovite | KAl2(AlSi3O10)(OH)2 |
Ca | Calcium | |
Ca | ⓘ Tremolite | ◻{Ca2}{Mg5}(Si8O22)(OH)2 |
Ca | ⓘ Diopside | CaMgSi2O6 |
Ca | ⓘ Calcite | CaCO3 |
Ca | ⓘ Dolomite | CaMg(CO3)2 |
Ca | ⓘ Grossular | Ca3Al2(SiO4)3 |
Ca | ⓘ Huntite | CaMg3(CO3)4 |
Ti | Titanium | |
Ti | ⓘ Neptunite | Na2KLiFe22+Ti2Si8O24 |
Ti | ⓘ Ilmenite | Fe2+TiO3 |
Cr | Chromium | |
Cr | ⓘ Chromite | Fe2+Cr23+O4 |
Mn | Manganese | |
Mn | ⓘ Serpentine Subgroup | D3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn |
Fe | Iron | |
Fe | ⓘ Serpentine Subgroup | D3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn |
Fe | ⓘ Neptunite | Na2KLiFe22+Ti2Si8O24 |
Fe | ⓘ Magnetite | Fe2+Fe23+O4 |
Fe | ⓘ Hematite | Fe2O3 |
Fe | ⓘ Pyroaurite | Mg6Fe23+(OH)16[CO3] · 4H2O |
Fe | ⓘ Coalingite | Mg10Fe23+(OH)24[CO3] · 2H2O |
Fe | ⓘ Chromite | Fe2+Cr23+O4 |
Fe | ⓘ Ilmenite | Fe2+TiO3 |
Fe | ⓘ Pyrite | FeS2 |
Ni | Nickel | |
Ni | ⓘ Serpentine Subgroup | D3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn |
Zn | Zinc | |
Zn | ⓘ Serpentine Subgroup | D3[Si2O5](OH)4 D = Mg, Fe, Ni, Mn, Al, Zn |
References
Sort by
Year (asc) Year (desc) Author (A-Z) Author (Z-A)Raggatt, H.G. (1925) Chromium, Cobalt, Nickel, Zirconium, Titanium, Thorium, Cerium. Department of Mines, New South Wales, Geological Survey Bulletin No.13, 17 pages.
Wallis, G.R. (1964) Woodsreef asbestos deposit, preliminary report. NSW Geological Survey Report GS 1964/022.
MacNevin, A.A. (1975) Woolomin-Texas Block: Great Serpentinite Belt. In Markham N.L. & Basden H. eds. The Mineral Deposits of New South Wales, Geological Survey of New South Wales, Sydney. pp. 393-403.
Slansky, E., Glen, R.A. (1981) Neptunite from the Woodsreef Serpentinite, New South Wales: A New Occurrence (A Preliminary Communication), Geological Survey of New South Wales, GS1981/231.
Tschermaks Mineralogische und Petrographische Mitteilungen 30, 237-247.
Oskierski, H.C., Dlugogorski, B.Z., Jacobsen, G. (2013) Sequestration of atmospheric CO₂ in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates, Chemical Geology, vol. 358, 156-169.
Turvey, C.C., Wilson, S.A., Hamilton, J.L., Tait, A.W., McCutcheon, J., Beinlich, A., Fallon, S.J., Dipple, G.M., Southam, G. (2018) Hydrotalcites and hydrated Mg-carbonates as carbon sinks in serpentinite mineral wastes from the Woodsreef chrysotile mine, New South Wales, Australia: Controls on carbonate mineralogy and efficiency of CO2 air capture in mine tailings. International Journal of Greenhouse Gas Control, 79, 38-60.
Other Regions, Features and Areas containing this locality
Australia
- Great Dividing RangeMountain Range
- New England OrogenOrogen
- Woolomin ProvinceGeologic Province
Australian PlateTectonic Plate
This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to
visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders
for access and that you are aware of all safety precautions necessary.
Woodsreef Mine, Barraba, Darling Co., New South Wales, Australia