SUPPORT US. Covid-19 has significantly affected our fundraising. Please help!
Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsBooks & Magazines
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryMineral Photography

Teutonic Bore Mine, Ten Mile Outcamp, Leonora Shire, Western Australia, Australiai
Regional Level Types
Teutonic Bore MineMine
Ten Mile Outcamp- not defined -
Leonora ShireShire
Western AustraliaState
AustraliaCountry

This page is currently not sponsored. Click here to sponsor this page.
Key
Latitude & Longitude (WGS84):
28° 24' 29'' South , 121° 8' 58'' East
Latitude & Longitude (decimal):
Locality type:
Köppen climate type:


A copper-zinc-lead-silver VMS deposit, located 60 kilometres north of Leonora, and about 1 kilometre west of the Goldfields Highway. The Jaguar mine is a short distance to the south-west.

It was originally discovered by Seltrust Mining Corp as a result of geochemical prospecting in 1976. Open pit mining commenced in 1980, during which the oxidised zone mineralisation was exposed. Sulphides have been weathered to a depth of 80 metres. All underground ore was to be removed by 1985.

Nearby Jaguar and Bentley VMS deposits were blind orebodies discovered some 20 years later by geophysics and diamond drilling.

The ore body is a single, relatively steep dipping lens of predominantly banded massive pyrite, sphalerite, chalcopyrite, and galena, underlain by concordant and discordant stringer mineralisation.

The host is pillowed basalt and tuffaceous sediment above rhyolitic volcanics and volcaniclastics. Active growth faulting controlled the development of the basin hosting the massive sulphides, and the faults provided the conduit for the hydrothermal solutions.

Mineralisation is in a unit of pyritic black shale, chert, and tuffaceous sedimentary rocks, 3 metres thick, but thicken locally to 20 metres in the area of mineralisation. This immediately overlies a 100 metre thick sequence of pillowed basalt.

Mineralisation is found in a massive sulphide lens 320 metres long, up to 30 metres thick, and down dip 280 metres, underlain by irregular stringer mineralisation. Major sulphide minerals are pyrite, sphalerite, chalcopyrite and galena, with trace pyrrhotite, famatinite, cosalite, aikinite, bismuthinite, and stannite, with quartz and siderite gangue.

The massive sulphide mineralisation is banded 1mm to 1 metre, locally with pyrite nodules, colloform textures, sulphide breccia, and minor contortions/folds. The massive sulphide lens is Zn rich in the core, and Cu abundant at the base and top.

Major stringer mineralisation is pyrite, chalcopyrite, and sphalerite, as disseminations in veins with quartz, siderite, ankerite, and chlorite. Alteration beneath the ore body is dominated by chlorite, siderite, ankerite and sericite, with chloritoid, andalusite and kyanite as metamorphism of the alteration assemblage.

Weathering reaches a depth of 75 metres. Upwards there is a transition zone of supergene sulphides containing abundant secondary ore minerals, often seen in collections, then an oxide assemblage, leached oxides and finally gossan.

A variety of specimens have been seen from the mine, usually miniature to small cabinet in size. Magnification often gets the best results. The specimens usually come with little provenance. It is thought but not confirmed specimens came from the dumps before the area was taken over for the Jaguar and Bentley mining operations.

Select Mineral List Type

Standard Detailed Gallery Strunz Dana Chemical Elements

Mineral List


47 valid minerals.

Rock Types Recorded

Note: data is currently VERY limited. Please bear with us while we work towards adding this information!

Select Rock List Type

Alphabetical List Tree Diagram

Detailed Mineral List:

Aikinite
Formula: PbCuBiS3
Reference: Ferguson, K.M. (1999) Lead, Zinc and Silver Deposits of Western Australia. Geological Survey of Western Australia, Mineral Resources Bulletin 15.
Alunite
Formula: KAl3(SO4)2(OH)6
Reference: Nickel, E.H. (1982) Secondary minerals from the oxidized zone of the Teutonic Bore sulphide deposit. The Australian Mineralogist, No. 40, December 1982, pg. 219-223.
Andalusite
Formula: Al2(SiO4)O
Reference: Hallberg, J.A. and Thompson, J.F.H. (1985) Geological setting of the Teutonic Bore massive sulfide deposit, Archean Yilgarn Block, Western Australia. Economic Geology, Vol. 80, pg. 1953-1964.
Ankerite
Formula: Ca(Fe2+,Mg)(CO3)2
Reference: Ferguson, K.M. (1999) Lead, Zinc and Silver Deposits of Western Australia. Geological Survey of Western Australia, Mineral Resources Bulletin 15.
Arsenopyrite
Formula: FeAsS
Reference: Ferguson, K.M. (1999) Lead, Zinc and Silver Deposits of Western Australia. Geological Survey of Western Australia, Mineral Resources Bulletin 15.
Atacamite
Formula: Cu2(OH)3Cl
Reference: R Bottrill, unpub data
Azurite
Formula: Cu3(CO3)2(OH)2
Reference: R Bottrill, unpub data
Bismuthinite
Formula: Bi2S3
Reference: Barley, M.E. (1998) Achaean Volcanic Hosted Massive Sulphides, UWA, Dept Geology and Geophysics, AGSO, Commonwealth of Australia, 17 (4) pp 69-73, 1998.
Calcite
Formula: CaCO3
Reference: Nickel, E.H. (1982) Secondary minerals from the oxidized zone of the Teutonic Bore sulphide deposit. The Australian Mineralogist, No. 40, December 1982, pg. 219-223.
Cerussite
Formula: PbCO3
Reference: Nickel, E.H. (1982) Secondary minerals from the oxidized zone of the Teutonic Bore sulphide deposit. The Australian Mineralogist, No. 40, December 1982, pg. 219-223.
Chalcopyrite
Formula: CuFeS2
Reference: Ferguson, K.M. (1999) Lead, Zinc and Silver Deposits of Western Australia. Geological Survey of Western Australia, Mineral Resources Bulletin 15.
Chlorargyrite
Formula: AgCl
Reference: Nickel, E.H. (1982) Secondary minerals from the oxidized zone of the Teutonic Bore sulphide deposit. The Australian Mineralogist, No. 40, December 1982, pg. 219-223.
'Chlorite Group'
Reference: Hallberg, J.A. and Thompson, J.F.H. (1985) Geological setting of the Teutonic Bore massive sulfide deposit, Archean Yilgarn Block, Western Australia. Economic Geology, Vol. 80, pg. 1953-1964.
Chloritoid
Formula: (Fe2+,Mg,Mn2+)Al2(SiO4)O(OH)2
Reference: Hallberg, J.A. and Thompson, J.F.H. (1985) Geological setting of the Teutonic Bore massive sulfide deposit, Archean Yilgarn Block, Western Australia. Economic Geology, Vol. 80, pg. 1953-1964.
Copper
Formula: Cu
Coronadite
Formula: Pb(Mn4+6Mn3+2)O16
Reference: Nickel, E.H. (1982) Secondary minerals from the oxidized zone of the Teutonic Bore sulphide deposit. The Australian Mineralogist, No. 40, December 1982, pg. 219-223.
Cosalite
Formula: Pb2Bi2S5
Reference: Ferguson, K.M. (1999) Lead, Zinc and Silver Deposits of Western Australia. Geological Survey of Western Australia, Mineral Resources Bulletin 15.
Cuprite
Formula: Cu2O
Dolomite
Formula: CaMg(CO3)2
Famatinite
Formula: Cu3SbS4
Reference: Barley, M.E. (1998), Achaean Volcanic Hosted Massive Sulphides, UWA, Dept Geology and Geophysics, AGSO, Commonwealth of Australia, 17 (4) pp 69-73, 1998
Fornacite
Formula: Pb2Cu(CrO4)(AsO4)(OH)
Reference: Nickel, E.H. (1982) Secondary minerals from the oxidized zone of the Teutonic Bore sulphide deposit. The Australian Mineralogist, No. 40, December 1982, pg. 219-223.
Galena
Formula: PbS
Reference: Ferguson, K.M. (1999) Lead, Zinc and Silver Deposits of Western Australia. Geological Survey of Western Australia, Mineral Resources Bulletin 15.
Gold
Formula: Au
Reference: Nickel, E.H. (1982) Secondary minerals from the oxidized zone of the Teutonic Bore sulphide deposit. The Australian Mineralogist, No. 40, December 1982, pg. 219-223.
Hemimorphite
Formula: Zn4Si2O7(OH)2 · H2O
Reference: Nickel, E.H. (1982) Secondary minerals from the oxidized zone of the Teutonic Bore sulphide deposit. The Australian Mineralogist, No. 40, December 1982, pg. 219-223.
Iodargyrite
Formula: AgI
Reference: Nickel, E.H. (1982) Secondary minerals from the oxidized zone of the Teutonic Bore sulphide deposit. The Australian Mineralogist, No. 40, December 1982, pg. 219-223.
Jarosite
Formula: KFe3+ 3(SO4)2(OH)6
Reference: Nickel, E.H. (1982) Secondary minerals from the oxidized zone of the Teutonic Bore sulphide deposit. The Australian Mineralogist, No. 40, December 1982, pg. 219-223.
Kaolinite
Formula: Al2(Si2O5)(OH)4
Reference: Nickel, E.H. (1982) Secondary minerals from the oxidized zone of the Teutonic Bore sulphide deposit. The Australian Mineralogist, No. 40, December 1982, pg. 219-223.
Kyanite
Formula: Al2(SiO4)O
Reference: Barley, M.E. (1998), Achaean Volcanic Hosted Massive Sulphides, UWA, Dept Geology and Geophysics, AGSO, Commonwealth of Australia, 17 (4) pp 69-73, 1998
Malachite
Formula: Cu2(CO3)(OH)2
Mimetite
Formula: Pb5(AsO4)3Cl
Reference: Museum Victoria Mineralogy Collection
Montmorillonite
Formula: (Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Reference: Nickel, E.H. (1982) Secondary minerals from the oxidized zone of the Teutonic Bore sulphide deposit. The Australian Mineralogist, No. 40, December 1982, pg. 219-223.
Muscovite
Formula: KAl2(AlSi3O10)(OH)2
Reference: Barley, M.E. (1998), Achaean Volcanic Hosted Massive Sulphides, UWA, Dept Geology and Geophysics, AGSO, Commonwealth of Australia, 17 (4) pp 69-73, 1998
Muscovite var:
Formula: KAl2(AlSi3O10)(OH)2
Reference: Barley, M.E. (1998), Achaean Volcanic Hosted Massive Sulphides, UWA, Dept Geology and Geophysics, AGSO, Commonwealth of Australia, 17 (4) pp 69-73, 1998
Natroalunite
Formula: NaAl3(SO4)2(OH)6
Reference: Nickel, E.H. (1982) Secondary minerals from the oxidized zone of the Teutonic Bore sulphide deposit. The Australian Mineralogist, No. 40, December 1982, pg. 219-223.
Osarizawaite
Formula: Pb(Al2Cu2+)(SO4)2(OH)6
Reference: Handbook of Mineralogy - Anthony, Bideaux, Bladh, Nichols
Paragonite
Formula: NaAl2(AlSi3O10)(OH)2
Reference: Ferguson, K.M. (1999) Lead, Zinc and Silver Deposits of Western Australia. Geological Survey of Western Australia, Mineral Resources Bulletin 15.
Pharmacosiderite
Formula: KFe3+4(AsO4)3(OH)4 · 6-7H2O
Reference: Kim Macdonald collection
Plumbogummite
Formula: PbAl3(PO4)(PO3OH)(OH)6
Reference: Nickel, E.H. (1982) Secondary minerals from the oxidized zone of the Teutonic Bore sulphide deposit. The Australian Mineralogist, No. 40, December 1982, pg. 219-223.
Pyrite
Formula: FeS2
Reference: Ferguson, K.M. (1999) Lead, Zinc and Silver Deposits of Western Australia. Geological Survey of Western Australia, Mineral Resources Bulletin 15.
Pyrrhotite
Formula: Fe1-xS
Reference: Ferguson, K.M. (1999) Lead, Zinc and Silver Deposits of Western Australia. Geological Survey of Western Australia, Mineral Resources Bulletin 15.
Quartz
Formula: SiO2
Reference: Hallberg, J.A. and Thompson, J.F.H. (1985) Geological setting of the Teutonic Bore massive sulfide deposit, Archean Yilgarn Block, Western Australia. Economic Geology, Vol. 80, pg. 1953-1964.
Rosasite
Formula: (Cu,Zn)2(CO3)(OH)2
Reference: Nickel, E.H. (1982) Secondary minerals from the oxidized zone of the Teutonic Bore sulphide deposit. The Australian Mineralogist, No. 40, December 1982, pg. 219-223.
Sauconite
Formula: Na0.3Zn3((Si,Al)4O10)(OH)2 · 4H2O
Reference: Nickel, E.H. (1982) Secondary minerals from the oxidized zone of the Teutonic Bore sulphide deposit. The Australian Mineralogist, No. 40, December 1982, pg. 219-223.
Siderite
Formula: FeCO3
Reference: Ferguson, K.M. (1999) Lead, Zinc and Silver Deposits of Western Australia. Geological Survey of Western Australia, Mineral Resources Bulletin 15.
Silver
Formula: Ag
Reference: Ben Grguric coll.
Smithsonite
Formula: ZnCO3
Reference: Nickel, E.H. (1982) Secondary minerals from the oxidized zone of the Teutonic Bore sulphide deposit. The Australian Mineralogist, No. 40, December 1982, pg. 219-223.
Sphalerite
Formula: ZnS
Reference: Ferguson, K.M. (1999) Lead, Zinc and Silver Deposits of Western Australia. Geological Survey of Western Australia, Mineral Resources Bulletin 15.
Stannite
Formula: Cu2FeSnS4
Reference: Ferguson, K.M. (1999) Lead, Zinc and Silver Deposits of Western Australia. Geological Survey of Western Australia, Mineral Resources Bulletin 15.
'Tetrahedrite'
Formula: Cu6(Cu4X2)Sb4S13
Reference: Ferguson, K.M. (1999) Lead, Zinc and Silver Deposits of Western Australia. Geological Survey of Western Australia, Mineral Resources Bulletin 15.
Tripuhyite
Formula: Fe3+Sb5+O4
Reference: Nickel, E.H. (1982) Secondary minerals from the oxidized zone of the Teutonic Bore sulphide deposit. The Australian Mineralogist, No. 40, December 1982, pg. 219-223.

Gallery:

List of minerals arranged by Strunz 10th Edition classification

Group 1 - Elements
Copper1.AA.05Cu
Gold1.AA.05Au
Silver1.AA.05Ag
Group 2 - Sulphides and Sulfosalts
Aikinite2.HB.05aPbCuBiS3
Arsenopyrite2.EB.20FeAsS
Bismuthinite2.DB.05Bi2S3
Chalcopyrite2.CB.10aCuFeS2
Cosalite2.JB.10Pb2Bi2S5
Famatinite2.KA.10Cu3SbS4
Galena2.CD.10PbS
Pyrite2.EB.05aFeS2
Pyrrhotite2.CC.10Fe1-xS
Sphalerite2.CB.05aZnS
Stannite2.CB.15aCu2FeSnS4
'Tetrahedrite'2.GB.05Cu6(Cu4X2)Sb4S13
Group 3 - Halides
Atacamite3.DA.10aCu2(OH)3Cl
Chlorargyrite3.AA.15AgCl
Iodargyrite3.AA.10AgI
Group 4 - Oxides and Hydroxides
Coronadite4.DK.05aPb(Mn4+6Mn3+2)O16
Cuprite4.AA.10Cu2O
Quartz4.DA.05SiO2
Tripuhyite4.DB.05Fe3+Sb5+O4
Group 5 - Nitrates and Carbonates
Ankerite5.AB.10Ca(Fe2+,Mg)(CO3)2
Azurite5.BA.05Cu3(CO3)2(OH)2
Calcite5.AB.05CaCO3
Cerussite5.AB.15PbCO3
Dolomite5.AB.10CaMg(CO3)2
Malachite5.BA.10Cu2(CO3)(OH)2
Rosasite5.BA.10(Cu,Zn)2(CO3)(OH)2
Siderite5.AB.05FeCO3
Smithsonite5.AB.05ZnCO3
Group 7 - Sulphates, Chromates, Molybdates and Tungstates
Alunite7.BC.10KAl3(SO4)2(OH)6
Fornacite7.FC.10Pb2Cu(CrO4)(AsO4)(OH)
Jarosite7.BC.10KFe3+3(SO4)2(OH)6
Natroalunite7.BC.10NaAl3(SO4)2(OH)6
Osarizawaite7.BC.10Pb(Al2Cu2+)(SO4)2(OH)6
Group 8 - Phosphates, Arsenates and Vanadates
Mimetite8.BN.05Pb5(AsO4)3Cl
Pharmacosiderite8.DK.10KFe3+4(AsO4)3(OH)4 · 6-7H2O
Plumbogummite8.BL.10PbAl3(PO4)(PO3OH)(OH)6
Group 9 - Silicates
Andalusite9.AF.10Al2(SiO4)O
Chloritoid9.AF.85(Fe2+,Mg,Mn2+)Al2(SiO4)O(OH)2
Hemimorphite9.BD.10Zn4Si2O7(OH)2 · H2O
Kaolinite9.ED.05Al2(Si2O5)(OH)4
Kyanite9.AF.15Al2(SiO4)O
Montmorillonite9.EC.40(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Muscovite9.EC.15KAl2(AlSi3O10)(OH)2
var: Sericite9.EC.15KAl2(AlSi3O10)(OH)2
Paragonite9.EC.15NaAl2(AlSi3O10)(OH)2
Sauconite9.EC.45Na0.3Zn3((Si,Al)4O10)(OH)2 · 4H2O
Unclassified Minerals, Rocks, etc.
'Chlorite Group'-

List of minerals arranged by Dana 8th Edition classification

Group 1 - NATIVE ELEMENTS AND ALLOYS
Metals, other than the Platinum Group
Copper1.1.1.3Cu
Gold1.1.1.1Au
Silver1.1.1.2Ag
Group 2 - SULFIDES
AmXp, with m:p = 1:1
Galena2.8.1.1PbS
Pyrrhotite2.8.10.1Fe1-xS
Sphalerite2.8.2.1ZnS
AmBnXp, with (m+n):p = 1:1
Chalcopyrite2.9.1.1CuFeS2
Stannite2.9.2.1Cu2FeSnS4
AmBnXp, with (m+n):p = 2:3
Bismuthinite2.11.2.3Bi2S3
AmBnXp, with (m+n):p = 1:2
Arsenopyrite2.12.4.1FeAsS
Pyrite2.12.1.1FeS2
Group 3 - SULFOSALTS
ø = 4
Famatinite3.2.2.2Cu3SbS4
3 <ø < 4
'Tetrahedrite'3.3.6.1Cu6(Cu4X2)Sb4S13
ø = 3
Aikinite3.4.5.1PbCuBiS3
2.5 < ø < 3
Cosalite3.5.9.1Pb2Bi2S5
Group 4 - SIMPLE OXIDES
A2X
Cuprite4.1.1.1Cu2O
Group 7 - MULTIPLE OXIDES
AB8X16
Coronadite7.9.1.4Pb(Mn4+6Mn3+2)O16
Group 9 - NORMAL HALIDES
AX
Chlorargyrite9.1.4.1AgCl
Iodargyrite9.1.5.1AgI
Group 10 - OXYHALIDES AND HYDROXYHALIDES
A2(O,OH)3Xq
Atacamite10.1.1.1Cu2(OH)3Cl
Group 14 - ANHYDROUS NORMAL CARBONATES
A(XO3)
Calcite14.1.1.1CaCO3
Cerussite14.1.3.4PbCO3
Siderite14.1.1.3FeCO3
Smithsonite14.1.1.6ZnCO3
AB(XO3)2
Ankerite14.2.1.2Ca(Fe2+,Mg)(CO3)2
Dolomite14.2.1.1CaMg(CO3)2
Group 16a - ANHYDROUS CARBONATES CONTAINING HYDROXYL OR HALOGEN
Azurite16a.2.1.1Cu3(CO3)2(OH)2
Malachite16a.3.1.1Cu2(CO3)(OH)2
Rosasite16a.3.1.2(Cu,Zn)2(CO3)(OH)2
Group 30 - ANHYDROUS SULFATES CONTAINING HYDROXYL OR HALOGEN
(AB)2(XO4)Zq
Alunite30.2.4.1KAl3(SO4)2(OH)6
Jarosite30.2.5.1KFe3+ 3(SO4)2(OH)6
Osarizawaite30.2.4.4Pb(Al2Cu2+)(SO4)2(OH)6
Group 41 - ANHYDROUS PHOSPHATES, ETC.CONTAINING HYDROXYL OR HALOGEN
A5(XO4)3Zq
Mimetite41.8.4.2Pb5(AsO4)3Cl
Group 42 - HYDRATED PHOSPHATES, ETC.CONTAINING HYDROXYL OR HALOGEN
(AB)2(XO4)Zq·xH2O
Plumbogummite42.7.3.5PbAl3(PO4)(PO3OH)(OH)6
(AB)5(XO4)3Zq·xH2O
Pharmacosiderite42.8.1a.1KFe3+4(AsO4)3(OH)4 · 6-7H2O
Group 43 - COMPOUND PHOSPHATES, ETC.
Anhydrous Compound Phosphates, etc·, Containing Hydroxyl or Halogen
Fornacite43.4.3.2Pb2Cu(CrO4)(AsO4)(OH)
Group 44 - ANTIMONATES
AX2O6
Tripuhyite44.2.1.3Fe3+Sb5+O4
Group 52 - NESOSILICATES Insular SiO4 Groups and O,OH,F,H2O
Insular SiO4 Groups and O, OH, F, and H2O with cations in [4] and >[4] coordination
Andalusite52.2.2b.1Al2(SiO4)O
Kyanite52.2.2c.1Al2(SiO4)O
Insular SiO4 Groups and O, OH, F, and H2O with cations in [6] coordination only
Chloritoid52.3.3.1(Fe2+,Mg,Mn2+)Al2(SiO4)O(OH)2
Group 56 - SOROSILICATES Si2O7 Groups, With Additional O, OH, F and H2O
Si2O7 Groups and O, OH, F, and H2O with cations in [4] coordination
Hemimorphite56.1.2.1Zn4Si2O7(OH)2 · H2O
Group 71 - PHYLLOSILICATES Sheets of Six-Membered Rings
Sheets of 6-membered rings with 2:1 layers
Muscovite71.2.2a.1KAl2(AlSi3O10)(OH)2
Paragonite71.2.2a.2NaAl2(AlSi3O10)(OH)2
Sheets of 6-membered rings with 2:1 clays
Montmorillonite71.3.1a.2(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Sauconite71.3.1b.3Na0.3Zn3((Si,Al)4O10)(OH)2 · 4H2O
Group 75 - TECTOSILICATES Si Tetrahedral Frameworks
Si Tetrahedral Frameworks - SiO2 with [4] coordinated Si
Quartz75.1.3.1SiO2
Unclassified Minerals, Mixtures, etc.
'Chlorite Group'-
Kaolinite-Al2(Si2O5)(OH)4
Muscovite
var: Sericite
-KAl2(AlSi3O10)(OH)2
Natroalunite-NaAl3(SO4)2(OH)6

List of minerals for each chemical element

HHydrogen
H MalachiteCu2(CO3)(OH)2
H AzuriteCu3(CO3)2(OH)2
H OsarizawaitePb(Al2Cu2+)(SO4)2(OH)6
H Chloritoid(Fe2+,Mg,Mn2+)Al2(SiO4)O(OH)2
H Rosasite(Cu,Zn)2(CO3)(OH)2
H AluniteKAl3(SO4)2(OH)6
H NatroaluniteNaAl3(SO4)2(OH)6
H JarositeKFe3+ 3(SO4)2(OH)6
H KaoliniteAl2(Si2O5)(OH)4
H Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
H SauconiteNa0.3Zn3((Si,Al)4O10)(OH)2 · 4H2O
H HemimorphiteZn4Si2O7(OH)2 · H2O
H PlumbogummitePbAl3(PO4)(PO3OH)(OH)6
H FornacitePb2Cu(CrO4)(AsO4)(OH)
H PharmacosideriteKFe43+(AsO4)3(OH)4 · 6-7H2O
H AtacamiteCu2(OH)3Cl
H Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
H MuscoviteKAl2(AlSi3O10)(OH)2
H ParagoniteNaAl2(AlSi3O10)(OH)2
CCarbon
C MalachiteCu2(CO3)(OH)2
C AzuriteCu3(CO3)2(OH)2
C DolomiteCaMg(CO3)2
C AnkeriteCa(Fe2+,Mg)(CO3)2
C SideriteFeCO3
C CalciteCaCO3
C SmithsoniteZnCO3
C CerussitePbCO3
C Rosasite(Cu,Zn)2(CO3)(OH)2
OOxygen
O QuartzSiO2
O CupriteCu2O
O MalachiteCu2(CO3)(OH)2
O AzuriteCu3(CO3)2(OH)2
O OsarizawaitePb(Al2Cu2+)(SO4)2(OH)6
O DolomiteCaMg(CO3)2
O AnkeriteCa(Fe2+,Mg)(CO3)2
O SideriteFeCO3
O MimetitePb5(AsO4)3Cl
O Chloritoid(Fe2+,Mg,Mn2+)Al2(SiO4)O(OH)2
O AndalusiteAl2(SiO4)O
O CalciteCaCO3
O SmithsoniteZnCO3
O CerussitePbCO3
O Rosasite(Cu,Zn)2(CO3)(OH)2
O AluniteKAl3(SO4)2(OH)6
O NatroaluniteNaAl3(SO4)2(OH)6
O JarositeKFe3+ 3(SO4)2(OH)6
O KaoliniteAl2(Si2O5)(OH)4
O Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
O SauconiteNa0.3Zn3((Si,Al)4O10)(OH)2 · 4H2O
O HemimorphiteZn4Si2O7(OH)2 · H2O
O CoronaditePb(Mn64+Mn23+)O16
O TripuhyiteFe3+Sb5+O4
O PlumbogummitePbAl3(PO4)(PO3OH)(OH)6
O FornacitePb2Cu(CrO4)(AsO4)(OH)
O PharmacosideriteKFe43+(AsO4)3(OH)4 · 6-7H2O
O AtacamiteCu2(OH)3Cl
O Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
O KyaniteAl2(SiO4)O
O MuscoviteKAl2(AlSi3O10)(OH)2
O ParagoniteNaAl2(AlSi3O10)(OH)2
NaSodium
Na NatroaluniteNaAl3(SO4)2(OH)6
Na Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Na SauconiteNa0.3Zn3((Si,Al)4O10)(OH)2 · 4H2O
Na ParagoniteNaAl2(AlSi3O10)(OH)2
MgMagnesium
Mg DolomiteCaMg(CO3)2
Mg AnkeriteCa(Fe2+,Mg)(CO3)2
Mg Chloritoid(Fe2+,Mg,Mn2+)Al2(SiO4)O(OH)2
Mg Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
AlAluminium
Al OsarizawaitePb(Al2Cu2+)(SO4)2(OH)6
Al Chloritoid(Fe2+,Mg,Mn2+)Al2(SiO4)O(OH)2
Al AndalusiteAl2(SiO4)O
Al AluniteKAl3(SO4)2(OH)6
Al NatroaluniteNaAl3(SO4)2(OH)6
Al KaoliniteAl2(Si2O5)(OH)4
Al Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Al SauconiteNa0.3Zn3((Si,Al)4O10)(OH)2 · 4H2O
Al PlumbogummitePbAl3(PO4)(PO3OH)(OH)6
Al Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
Al KyaniteAl2(SiO4)O
Al MuscoviteKAl2(AlSi3O10)(OH)2
Al ParagoniteNaAl2(AlSi3O10)(OH)2
SiSilicon
Si QuartzSiO2
Si Chloritoid(Fe2+,Mg,Mn2+)Al2(SiO4)O(OH)2
Si AndalusiteAl2(SiO4)O
Si KaoliniteAl2(Si2O5)(OH)4
Si Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Si SauconiteNa0.3Zn3((Si,Al)4O10)(OH)2 · 4H2O
Si HemimorphiteZn4Si2O7(OH)2 · H2O
Si Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
Si KyaniteAl2(SiO4)O
Si MuscoviteKAl2(AlSi3O10)(OH)2
Si ParagoniteNaAl2(AlSi3O10)(OH)2
PPhosphorus
P PlumbogummitePbAl3(PO4)(PO3OH)(OH)6
SSulfur
S OsarizawaitePb(Al2Cu2+)(SO4)2(OH)6
S PyriteFeS2
S SphaleriteZnS
S ChalcopyriteCuFeS2
S GalenaPbS
S ArsenopyriteFeAsS
S TetrahedriteCu6(Cu4X2)Sb4S13
S PyrrhotiteFe1-xS
S CosalitePb2Bi2S5
S StanniteCu2FeSnS4
S AikinitePbCuBiS3
S AluniteKAl3(SO4)2(OH)6
S NatroaluniteNaAl3(SO4)2(OH)6
S JarositeKFe3+ 3(SO4)2(OH)6
S FamatiniteCu3SbS4
S BismuthiniteBi2S3
ClChlorine
Cl MimetitePb5(AsO4)3Cl
Cl ChlorargyriteAgCl
Cl AtacamiteCu2(OH)3Cl
KPotassium
K AluniteKAl3(SO4)2(OH)6
K JarositeKFe3+ 3(SO4)2(OH)6
K PharmacosideriteKFe43+(AsO4)3(OH)4 · 6-7H2O
K Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
K MuscoviteKAl2(AlSi3O10)(OH)2
CaCalcium
Ca DolomiteCaMg(CO3)2
Ca AnkeriteCa(Fe2+,Mg)(CO3)2
Ca CalciteCaCO3
Ca Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
CrChromium
Cr FornacitePb2Cu(CrO4)(AsO4)(OH)
MnManganese
Mn Chloritoid(Fe2+,Mg,Mn2+)Al2(SiO4)O(OH)2
Mn CoronaditePb(Mn64+Mn23+)O16
FeIron
Fe AnkeriteCa(Fe2+,Mg)(CO3)2
Fe SideriteFeCO3
Fe PyriteFeS2
Fe ChalcopyriteCuFeS2
Fe ArsenopyriteFeAsS
Fe PyrrhotiteFe1-xS
Fe StanniteCu2FeSnS4
Fe Chloritoid(Fe2+,Mg,Mn2+)Al2(SiO4)O(OH)2
Fe JarositeKFe3+ 3(SO4)2(OH)6
Fe TripuhyiteFe3+Sb5+O4
Fe PharmacosideriteKFe43+(AsO4)3(OH)4 · 6-7H2O
CuCopper
Cu CopperCu
Cu CupriteCu2O
Cu MalachiteCu2(CO3)(OH)2
Cu AzuriteCu3(CO3)2(OH)2
Cu OsarizawaitePb(Al2Cu2+)(SO4)2(OH)6
Cu ChalcopyriteCuFeS2
Cu TetrahedriteCu6(Cu4X2)Sb4S13
Cu StanniteCu2FeSnS4
Cu AikinitePbCuBiS3
Cu Rosasite(Cu,Zn)2(CO3)(OH)2
Cu FornacitePb2Cu(CrO4)(AsO4)(OH)
Cu AtacamiteCu2(OH)3Cl
Cu FamatiniteCu3SbS4
ZnZinc
Zn SphaleriteZnS
Zn SmithsoniteZnCO3
Zn Rosasite(Cu,Zn)2(CO3)(OH)2
Zn SauconiteNa0.3Zn3((Si,Al)4O10)(OH)2 · 4H2O
Zn HemimorphiteZn4Si2O7(OH)2 · H2O
AsArsenic
As ArsenopyriteFeAsS
As MimetitePb5(AsO4)3Cl
As FornacitePb2Cu(CrO4)(AsO4)(OH)
As PharmacosideriteKFe43+(AsO4)3(OH)4 · 6-7H2O
AgSilver
Ag SilverAg
Ag ChlorargyriteAgCl
Ag IodargyriteAgI
SnTin
Sn StanniteCu2FeSnS4
SbAntimony
Sb TetrahedriteCu6(Cu4X2)Sb4S13
Sb TripuhyiteFe3+Sb5+O4
Sb FamatiniteCu3SbS4
IIodine
I IodargyriteAgI
AuGold
Au GoldAu
PbLead
Pb OsarizawaitePb(Al2Cu2+)(SO4)2(OH)6
Pb GalenaPbS
Pb CosalitePb2Bi2S5
Pb AikinitePbCuBiS3
Pb MimetitePb5(AsO4)3Cl
Pb CerussitePbCO3
Pb CoronaditePb(Mn64+Mn23+)O16
Pb PlumbogummitePbAl3(PO4)(PO3OH)(OH)6
Pb FornacitePb2Cu(CrO4)(AsO4)(OH)
BiBismuth
Bi CosalitePb2Bi2S5
Bi AikinitePbCuBiS3
Bi BismuthiniteBi2S3

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
Nickel, E. H. (1984). The mineralogy and geochemistry of the weathering profile of the Teutonic Bore Cu-Pb-Zn-Ag sulphide deposit. Journal of Geochemical Exploration, 22(1), 239-263.
Mining Annual Review (1985): 56: 365.
J.A. Hallberg and J.F.H. Thompson (1985): Geologic Setting of the Teutonic Bore Massive Sulfide Deposits, Archean Yilgarn Block, Western Australia. Economic Geology (1985): 80: 1953-1964.
Ferguson, K.M. (1999) Lead, Zinc and Silver Deposits of Western Australia. Geological Survey of Western Australia, Mineral Resources Bulletin 15.
Chen, M., Campbell, I. H., Xue, Y., Tian, W., Ireland, T. R., Holden, P., ... & Das, R. (2015). Multiple sulfur isotope analyses support a magmatic model for the volcanogenic massive sulfide deposits of the Teutonic Bore volcanic complex, Yilgarn Craton, Western Australia. Economic Geology, 110(6), 1411-1423.
Barley, M.E. (1998), Archaean Volcanic Hosted Massive Sulphides, U.W.A., Department of Geology and Geophysics, AGSO, Commonwealth of Australia, 17 (4) pp 69-73, 1998.

Other Regions, Features and Areas containing this locality

Australia
Australian PlateTectonic Plate

This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
 
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization. Public Relations by Blytheweigh.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2020, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: August 14, 2020 15:43:35 Page generated: May 17, 2020 07:06:29
Go to top of page