IMPORTANT MESSAGE. We need your support now to keep mindat.org running. Click here to find out why.
Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for Educators
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
StatisticsThe ElementsUsersBooks & MagazinesMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery

Lake Boga granite quarry, Lake Boga, Swan Hill Rural City, Victoria, Australia

This page is currently not sponsored. Click here to sponsor this page.
Key
Lock Map
Latitude & Longitude (WGS84): 35° 33' 6'' South , 143° 34' 53'' East
Latitude & Longitude (decimal): -35.55167,143.58139
GeoHash:G#: r1wjg20b8
Locality type:Quarry
Köppen climate type:BSk : Cold semi-arid (steppe) climate


"The original exposures of this granite were on Allotment 29, Section 4, Parish of Kunat Kunat, some 10km SSW of Lake Boga township in northwestern Victoria. The outcrops were only just exposed above the flat-lying Tertiary sands and nodular limestone. The first attempts at quarrying were between 1924 and 1927. Immediately after World War 2 quarrying recommenced and has been operating ever since.
Since the 1970's the quarry has been an important source of specimens for mineral collectors, especially for fine crystals of fluorapatite.
The Lake Boga granite is Devonian in age and belongs to the same suite as the nearest granites at Wycheproof and Pyramid Hill. The Lake Boga granite is extremely variable in texture in the uppermost 10 metres of its exposure, where the most common rock type is a pink to cream or grey equigranular leucocratic granite. Coarse patches and veins of pegmatite are widespread, with less common zones of banded aplite. Irregular masses of black schorl also occur. Miarolitic cavities up to 1 metre across and lined with fine crystals of smoky quartz, orthoclase, albite, muscovite and fluorapatite are associated with coarse pegmatite zones. Smaller cavities up to several centimetres across occur in an equigranular phase of the granite, marked by coarse segregations of muscovite and biotite. Many of the phosphate minerals occur in the cavities in this rock type.
At deeper levels, the granite shows only occasional pegmatoidal zones and cavities." (Birch 1993)

Lake Boga Granite Quarry has 4 type locality minerals
Ulrichite 1988
Bleasdalite 1998
Lakebogaite 2007
Kunatite 2008

Alternative Label Names

This is a list of additional names that have been recorded for mineral labels associated with this locality in the minID database. This may include previous versions of the locality name hierarchy from mindat.org, data entry errors, and it may also include unconfirmed sublocality names or other names that can only be matched to this level.

Lake Boga granite quarry, Lake Boga, Victoria, Australia
Lake Boga, Vict

Select Mineral List Type

Standard Detailed Strunz Dana Chemical Elements

Commodity List

This is a list of exploitable or exploited mineral commodities recorded at this locality.


Mineral List


69 valid minerals. 4 (TL) - type locality of valid minerals.

Detailed Mineral List:

Albite
Formula: Na(AlSi3O8)
Description: "Albite, previously recorded as oligoclase, forms white to translucent wedge-shaped crystals up to 2.5 cm long in cavities with quartz and orthoclase."
Reference: Am Min 93:691-697; W.D. Birch & D.A.Henry 1993. Phosphate Minerals of Victoria, The Mineralogical Society of Victoria special publication No. 3, pp. 14-27; D.A.Henry & W.D.Birch 1998. Sampleite and associated minerals from Lake Boga granite quarry, Victoria, Australia. Australian Mineralogist Vol. 3 Oct.-Dec. 1988, pp. 135-148
Anatase
Formula: TiO2
Description: "Bipyramidal bluish black crystals of anatase up to 1 mm long have been found in cavities in the Lake Boga granite. They may be associated with kidwellite."
Reference: W.D. Birch & D.A.Henry 1993. Phosphate Minerals of Victoria, The Mineralogical Society of Victoria special publication No. 3, pp. 14-27
Atacamite
Formula: Cu2(OH)3Cl
Reference: Uwe Kolitsch (SXRD-analysis)
Azurite
Formula: Cu3(CO3)2(OH)2
Description: "Powdery coatings, fibrous tuffs and thin films of malachite and azurite have been found on joints in the granite."
Reference: W.D. Birch & D.A.Henry 1993. Phosphate Minerals of Victoria, The Mineralogical Society of Victoria special publication No. 3, pp. 14-27
Beryl
Formula: Be3Al2(Si6O18)
Description: "Several colourless prismatic crystals of beryl up to 1.5 cm long have been found in one clay-filled cavity in the Lake Boga granite."
Reference: W.D. Birch & D.A.Henry 1993. Phosphate Minerals of Victoria, The Mineralogical Society of Victoria special publication No. 3, pp. 14-27
'Biotite'
Reference: Am Min 93:691-697; W.D. Birch & D.A.Henry 1993. Phosphate Minerals of Victoria, The Mineralogical Society of Victoria special publication No. 3, pp. 14-27
Bismoclite
Formula: BiOCl
Reference: Confirmed by Peter Elliot
Bismuth
Formula: Bi
Bleasdaleite (TL)
Formula: (Ca,Fe3+)2Cu5(Bi,Cu)(PO4)4(H2O,OH,Cl)13
Description: "In April 1995 a boulder was broken open of pegmatite in the quarry, exposing copper mineralisation consisting of massive supergene chalcocite partially altered to a suite of secondary copper and silver minerals, including one containing Ca,Cu,Bi,P and Cl. (Bleasdaleite). The chalcocite in the bleasdaleite-bearing boulder forms massive patches up to about 5 cm across, occupying space between large orthoclase crystals. The rock around these patches is stained green, possibly due to malachite. Thin sections show that much of the chalcocite has been corroded and altered to veinlets of covellite. Secondary minerals have precipitated on the corroded surface of the chalcocite-covelliet. Pseudomalachite and chalcosiderite/turquoise form globules and crusts, while rare ulrichit, libethenite, torbernite and iodargyrite are present as scattered crystals with dimensions less than 1 mm. Bleasdaleite itself occurs as thin, dark brown scaly crusts and hemispherical clusters up to about 0.1 mm across. Scanning electron microscopy reveals delicate tabular crystals forming open rosette-like clusters and linings. The crystals reach up to about 20 micron across but are less than 1 micron thick. The lustre on broken surfaces is resinous, streak pale brown. Thin sections show bleasdaleite crystals are transparent and also reveal a well developed (001) cleavage."
Reference: B. Birch, A. Pring and U. Kolitsch (1999): Bleasdaleite, (Ca,Fe3+)2Cu5(Bi,Cu)(PO4)4¬(H2O,OH,Cl)13, a new mineral from Lake Boga, Victoria, Australia. Australian Journal of Mineralogy 5, 69-75; [AmMin 85:1321];
Cacoxenite
Formula: Fe3+24AlO6(PO4)17(OH)12 · 75H2O
Reference: Steve Sorrell Collection
Chalcanthite
Formula: CuSO4 · 5H2O
Reference: No reference listed
Chalcocite
Formula: Cu2S
Description: "The chalcocite in the bleasdaleite-bearing boulder forms massive patches up to about 5 cm across, occupying space between large orthoclase crystals. The rock around these patches is stained green, possibly due to malachite. Thin sections show that much of the chalcocite has been corroded and altered to veinlets of covellite. Secondary minerals have precipitated on the corroded surface of the chalcocite-covellite."
Reference: [AmMin 85:1321]; W.D. Birch & D.A.Henry 1993. Phosphate Minerals of Victoria, The Mineralogical Society of Victoria special publication No. 3, pp. 14-27
Chalcopyrite
Formula: CuFeS2
Description: "Small grains of chalcopyrite are relatively common throughout the granite. In one cavity a crystal measuring 1.2 cm and coated with sooty blue chalcocite or covellite was collected. Grains of chalcopyrite or covellite was collected. Grains of chalcopyrite in the granite are often ringed with yellowish alteration halos, and on some surfaces thin stains of azurite and malachite occur. The chalcopyrite is the most probable source for copper in the later-formed phosphates and uranyl-phosphates. Brownish masses consisting of a mixture of iron oxides and chalcocite replacing chalcopyrite occur in some veins and cavities."
Reference: Am Min 93:691-697; W.D. Birch & D.A.Henry 1993. Phosphate Minerals of Victoria, The Mineralogical Society of Victoria special publication No. 3, pp. 14-27; D.A.Henry & W.D.Birch 1998. Sampleite and associated minerals from Lake Boga granite quarry, Victoria, Australia. Australian Mineralogist Vol. 3 Oct.-Dec. 1988, pp. 135-148
Chalcosiderite
Formula: CuFe3+6(PO4)4(OH)8 · 4H2O
Description: "Pale blue, pale green or bluish green globular crusts and individual spheres or hemispheres of minerals in the composition series between turquoise and chalcosiderite are widespread in the Lake Boga granite quarry. They occur most often lining small miarolitic cavities but may also be found on joint planes and in cavities etched in fluorapatite. Individual globules may reach close to 1 mm across. Well formed crystals have not been observed. Massive partial replacements of orthoclase crystals by turquoise have been collected, but are very rare. As an early-formed secondary hydrothermal mineral, turquoise/chalcosiderite is found with most of the other secondary phosphates from Lake Boga. Microprobe analyses of the bluish green crusts show the compositions fall between ferrian turquoise and aluminan chalcosiderite."
Reference: [AmMin 85:1321]; Am Min 93:691-697; W.D. Birch & D.A.Henry 1993. Phosphate Minerals of Victoria, The Mineralogical Society of Victoria special publication No. 3, pp. 14-27; D.A.Henry & W.D.Birch 1998. Sampleite and associated minerals from Lake Boga granite quarry, Victoria, Australia. Australian Mineralogist Vol. 3 Oct.-Dec. 1988, pp. 135-148
Cheralite
Formula: CaTh(PO4)2
Reference: Mills, S. J., Birch, W. D., Maas, R., Phillips, D. & Plimer, I. R. (2008) Lake Boga Granite, northwestern Victoria: mineralogy, geochemistry and geochronology, Australian Journal of Earth Sciences, 55(3), 281–299.; Mills, S. J. & Birch, W. D. (2010) Uranmineralien aus dem Lake-Boga-Granit, Victoria, Australien. Mineralien-Welt, 21(3), 62–67. (In German)
Chlorargyrite
Formula: AgCl
Description: "Highly lustrous single crystals of brownish green chlorargyrite less than 0.5 mm across occur very rarely in cavities in the granite. They may be found with orange-brown clay, turquoise/chalcosiderite and, more rarely, with torbernite. The source of the silver in the granite is unknown."
Reference: W.D. Birch & D.A.Henry 1993. Phosphate Minerals of Victoria, The Mineralogical Society of Victoria special publication No. 3, pp. 14-27
'Chlorite Group'
Reference: No reference listed
Chrysocolla
Formula: Cu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Reference: No reference listed
Connellite
Formula: Cu19(SO4)(OH)32Cl4 · 3H2O
Reference: No reference listed
Copper
Formula: Cu
Reference: Steve Sorrell Collection
Covellite
Formula: CuS
Description: "The chalcocite in the bleasdaleite-bearing boulder forms massive patches up to about 5 cm across, occupying space between large orthoclase crystals. The rock around these patches is stained green, possibly due to malachite. Thin sections show that much of the chalcocite has been corroded and altered to veinlets of covellite. Secondary minerals have precipitated on the corroded surface of the chalcocite-covellite."
Reference: W.D. Birch & D.A.Henry 1993. Phosphate Minerals of Victoria, The Mineralogical Society of Victoria special publication No. 3, pp. 14-27
Crandallite
Formula: CaAl3(PO4)(PO3OH)(OH)6
Description: "Crandalite occurs rarely as glistening white hemispheres up to 0.3 mm across in miarolitic cavities. As well, pale blue crandallite with a pearly lustre forms rare cavity infillings and prismatic radiating crystal sprays a few mm across, possibly pseudomorphs after wavellite. Microprobe analysis show this pale blue variety has a composition between crandallite and goyazite and contains a small amount of copper. It is best refered to as cuprian strontian crandallite."
Reference: W.D. Birch & D.A.Henry 1993. Phosphate Minerals of Victoria, The Mineralogical Society of Victoria special publication No. 3, pp. 14-27; D.A.Henry & W.D.Birch 1998. Sampleite and associated minerals from Lake Boga granite quarry, Victoria, Australia. Australian Mineralogist Vol. 3 Oct.-Dec. 1988, pp. 135-148
Cyrilovite
Formula: NaFe3+3(PO4)2(OH)4 · 2H2O
Description: "Cyrilovite forms bright sparkling yellow drusy crusts and dull brownish yellow globules in miarolitic cavities in the Lake Boga granite. The crusts are made up of transparent golden yellow crystals up to 0.05 mm across."
Reference: W.D. Birch & D.A.Henry 1993. Phosphate Minerals of Victoria, The Mineralogical Society of Victoria special publication No. 3, pp. 14-27; D.A.Henry & W.D.Birch 1998. Sampleite and associated minerals from Lake Boga granite quarry, Victoria, Australia. Australian Mineralogist Vol. 3 Oct.-Dec. 1988, pp. 135-148
Digenite
Formula: Cu9S5
Djurleite
Formula: Cu31S16
Ferberite
Formula: FeWO4
Description: "Small clusters of black tabular crystals of ferberite up to 2 mm across occur in miarolitic cavities in the Lake Boga granite." Ferberite has also been found in crystalline masses up to 5 cm across embedded in granite.
Reference: W.D. Birch & D.A.Henry 1993. Phosphate Minerals of Victoria, The Mineralogical Society of Victoria special publication No. 3, pp. 14-27
Fluorapatite
Formula: Ca5(PO4)3F
Reference: Am Min 93:691-697; Mills, S. J. & Birch, W. D. (2010) Uranmineralien aus dem Lake-Boga-Granit, Victoria, Australien. Mineralien-Welt, 21(3), 62–67. (In German); W.D. Birch & D.A.Henry 1993. Phosphate Minerals of Victoria, The Mineralogical Society of Victoria special publication No. 3, pp. 14-27; D.A.Henry & W.D.Birch 1998. Sampleite and associated minerals from Lake Boga granite quarry, Victoria, Australia. Australian Mineralogist Vol. 3 Oct.-Dec. 1988, pp. 135-148
Fluorapatite var: Carbonate-rich Fluorapatite
Formula: Ca5(PO4,CO3)3(F,O)
Description: "Attractive well-formed fluorapatite crystals are found in miarolitic cavities, particularly in the upper levels of the quarry. In general, crystals have simple hexagonal to near circular outlines, and range from tabular to blocky and, less often to prismatic. Complex terminations are absent, and crystals usually have a flat lustrous pinacoids face, often showing growth outlines. Some crystals show weakly developed low angle pyramidal faces. The prism faces are almost always striated. The largest crystal collected include tabular varieties 4.5 cm across and 1 cm thick, and prisms 2.5 cm long and 1.2 cm across. Colour in the larger crystals generally ranges from shades of dull greyish to bluish green and deep opaque blue. Most crystals show colour zoning involving these shades, as well as near colourless and pale purple zones. The most common scheme is for pale blue translucent crystals to have dark blue bands at the upper and lower pinacoids. Sparklings of smaller crystals from opaque cream or grey to colourless or transparent blue or mauve are also found. Apatite has also been found rarely at Lake Boga as lustrous, fibrous globular dark green linings to cavities."
Reference: W.D.Birch 1993. Phosphate Minerals of Victoria, The Mineralogical Society of Victoria special publication No.3 1993, pp. 14-27
Fluorite
Formula: CaF2
Description: "Thin seams of purple fluorite have been found on joint planes in the granite."
Reference: W.D. Birch & D.A.Henry 1993. Phosphate Minerals of Victoria, The Mineralogical Society of Victoria special publication No. 3, pp. 14-27; D.A.Henry & W.D.Birch 1998. Sampleite and associated minerals from Lake Boga granite quarry, Victoria, Australia. Australian Mineralogist Vol. 3 Oct.-Dec. 1988, pp. 135-148
Fluor-schorl
Formula: Na(Fe2+3)Al6(Si6O18)(BO3)3(OH)3F
Description: Fluor-schorl is the dominant tourmaline at Lake Boga occurring as black interlocking crystals masses up to 15 cm across in the granite, also as single black crystals up to 5 cm long in miarolitic cavities (pers. com. S.Mills)
Reference: Ertl, A., Kolitsch, U., Dyar, M.D., Meyer, H.-P., Rossman, G.R., Henry, D.J., Prem, M., Ludwig, T., Nasdala, L., Lengauer, C.L., Tillmanns, E. and Niedermayr, G. (2016): Fluor-schorl, a new member of the tourmaline supergroup, and new data on schorl from the cotype localities. Eur. J. Mineral. 28, 163-177.
Geerite
Formula: Cu8S5
'commodity:Granite'
Reference: From USGS MRDS database
Hematite
Formula: Fe2O3
Reference: No reference listed
Iodargyrite
Formula: AgI
Description: "A pegmatite boulder containing patches of massive chalcocite up to 4 cm across was found in April 1995. The chalcocite occupies cavities between large orthoclase crystals. Alteration of the chalcocite has produced a suite of secondary copper phosphate minerals in small cavities. In some cavities are colourless, waxy, platy to tabular crystals, up to about 1.0 mm across, which have been identified as a polymorph of silver iodide, probably iodargyrite."
Reference: [AmMin 85:1321]; W.D.Birch 1996. Portlandite and other recent mineral discoveries in the granites at Lake Boga, and Wycheproof and Pyramid Hill, Victoria. Australian Journal of Mineralogy Vol.2 No.2 Dec. 1996, pp. 47-50
Kaolinite
Formula: Al2(Si2O5)(OH)4
Reference: No reference listed
Kidwellite
Formula: NaFe3+9+x(PO4)6(OH)11 · 3H2O, x = 0.33
Description: "At Lake Boga, cream to pale yellow spherical clusters up to 0.3 mm across of delicate platy crystals of kidwellite have been found in miarolitic cavities. On a few specimens the mineral forms a continuous furry coating on the cavity walls. When broken, the spheres have a fibrous silky appearance in contrast to the waxy, globular, cream or pale yellow clay mineral which may be associated. Kidwellite occurs with cyrilovite, turquoise/chalcosiderite, torbernite or saleeite."
Reference: W.D. Birch & D.A.Henry 1993. Phosphate Minerals of Victoria, The Mineralogical Society of Victoria special publication No. 3, pp. 14-27
Kunatite (TL)
Formula: CuFe3+2(PO4)2(OH)2 · 4H2O
Description: "Kunatite was first found about 1990, and occurs on only 7 or 8 small pieces of granite matrix, which may have been the contents of a single miarolitic cavity. kunatite from Lake Boga occurs as acicular to lath-like microcrystals that are rapidially intergrown to form compactto slightly open spheres, hemispheres and flattened sprays up to about 0.25mm across. Individual fibrous crystals are up to 30 micron long and 5 micron thick. The only supergene mineral associated with kunatite is chalcosiderite/turquoise. Thin blades of manganoan ferberite occur on several of the specimens, but this is regarded as an accidental association. The matrix minerals are smoky quartz, white albite, cream orthoclase and muscovite."
Reference: S.J.Mills, U.Kolitsch, W.D.Birch J.Sejkora. Australian J. Mineralogy 14, 3-12(2008)
Lakebogaite (TL)
Formula: CaNaFe3+2H(UO2)2(PO4)4(OH)2 · 8H2O
Description: "Lakebogaite occurs as bright lemon-yellow transparent prismatic crystals up to 0.4 mm across. The crystals have a vitreous luster and a pale yellow streak. It is associated with meurigite-Na, torbernite and saleeite on a matrix of microcline, albite, smoky quarz, and muscovite."
Reference: IMA website; Am Min 93:691-697; Mills, S. J. & Birch, W. D. (2010) Uranmineralien aus dem Lake-Boga-Granit, Victoria, Australien. Mineralien-Welt, 21(3), 62–67. (In German)
Leucophosphite
Formula: KFe3+2(PO4)2(OH) · 2H2O
Description: "Leucophosphite from Lake Boga forms hemispherical clusters up to 1 mm across consisting of translucent, pale pink to brownish pink, tabular crystals which appear slightly twisted. They occur with globular cyrilovite, kidwellite and a pale yellow clay mineral in miarolitic cavities."
Reference: W.D. Birch & D.A.Henry 1993. Phosphate Minerals of Victoria, The Mineralogical Society of Victoria special publication No. 3, pp. 14-27
Libethenite
Formula: Cu2(PO4)(OH)
Description: "Crusts and hemispherical tufts and sprays of transparent dark green to olive green libethenite crystals occur in miarolitic cavities in the Lake Boga granite. Crystals are prismatic and up to 2.5 mm long, ranging from finely fibrous needles to more stubby individuals which are well-terminated. Small cavities may be completely lined with inwardly pointing libethenite crystals. The minerals most frequently associated with libethenite are turquoise/chalcosiderite, ulrichite, pseudomalachite and sampleite."
Reference: [AmMin 85:1321]; Am Min 93:691-697; W.D. Birch & D.A.Henry 1993. Phosphate Minerals of Victoria, The Mineralogical Society of Victoria special publication No. 3, pp. 14-27; D.A.Henry & W.D.Birch 1998. Sampleite and associated minerals from Lake Boga granite quarry, Victoria, Australia. Australian Mineralogist Vol. 3 Oct.-Dec. 1988, pp. 135-148
'Limonite'
Formula: (Fe,O,OH,H2O)
Malachite
Formula: Cu2(CO3)(OH)2
Description: "Powdery coatings, fibrous tuffs and thin films of malachite and azurite have been found on joints in the granite."
Reference: [AmMin 85:1321]; W.D. Birch & D.A.Henry 1993. Phosphate Minerals of Victoria, The Mineralogical Society of Victoria special publication No. 3, pp. 14-27
Meta-autunite
Formula: Ca(UO2)2(PO4)2 · 6-8H2O
Reference: Specimen in the Museum of Victoria collection
Metanatroautunite
Formula: Na(UO2)(PO4)(H2O)3
Habit: As clusters to 4 mm.
Colour: lemon yellow
Description: "The metanatroautunite forms crystals and clusters up to 4 mm across on limonite-coated joint planes and in miarolitic cavities. Crystals may appear to be aggregates of intergrown plates with slightly rounded edges. In some crystals with more blocky habits, these plates may be separated. The upper surface of these crystals tend to be slightly concave and crinkled partly due to dehydration. Rare intergrowths with saleeite or torbernite occur. Metanatroautunite is initially difficult to distinguish from saleeite at Lake Boga. However, metanatroautunite tends to be translucent with a pearly or slightly greasy lustre, and be bright lemon yellow. This colour may be slightly more intense on the edge than on the upper face. Saleeite at Lake Boga is generally transparent and more golden yellow."
Reference: S.J. Mills (2004)- Metanatroautunite ('sodium autunite') from the Lake Boga Granite, Victoria - Austalian Journal of Mineralogy, Vol. 10, n°1; Mills, S. J. & Birch, W. D. (2010) Uranmineralien aus dem Lake-Boga-Granit, Victoria, Australien. Mineralien-Welt, 21(3), 62–67. (In German)
Meurigite-Na
Formula: NaFe3+8(PO4)6(OH)7 · 6.5H2O
Reference: Mills, S. J., Birch, W. D., Kolitsch, U., Mumme, W. G. & Grey, I. E. (2008) Lakebogaite, CaNaFe3+2H(UO2)2(PO4)4(OH)2(H2O)8, a new uranyl phosphate with a unique crystal structure from Victoria, Australia, American Mineralogist, 93(4), 691–697.; Mills, S. J. & Birch, W. D. (2010) Uranmineralien aus dem Lake-Boga-Granit, Victoria, Australien. Mineralien-Welt, 21(3), 62–67. (In German)
Microcline
Formula: K(AlSi3O8)
Reference: Am Min 93:691-697
Molybdenite
Formula: MoS2
Description: "Very small platy crystals of molybdenite, usually less than 0.1 mm across, have been found in a few cavities in the granite."
Reference: W.D.Birch 1996. Portlandite and other recent mineral discoveries in the granites at Lake Boga, and Wycheproof and Pyramid Hill, Victoria. Australian Journal of Mineralogy Vol.2 No.2 Dec. 1996, pp. 47-50
Monazite-(Ce)
Formula: Ce(PO4)
Reference: Mills, S. J. & Birch, W. D. (2010) Uranmineralien aus dem Lake-Boga-Granit, Victoria, Australien. Mineralien-Welt, 21(3), 62–67. (In German)
Muscovite
Formula: KAl2(AlSi3O10)(OH)2
Reference: Am Min 93:691-697; W.D. Birch & D.A.Henry 1993. Phosphate Minerals of Victoria, The Mineralogical Society of Victoria special publication No. 3, pp. 14-27
Natrodufrénite
Formula: NaFe2+Fe3+5(PO4)4(OH)6 · 2H2O
Description: "Specimens showing dull greyish green globular coatings, occurring very rarely on joints stained with brown iron hydroxides were found in 1994.. he crusts have a slightly silky appearance due to their finely fibrous nature. Scanning electron micrographs show the globules consist of tiny radiating prismatic crystallites."
Reference: W.D.Birch 1996. Portlandite and other recent mineral discoveries in the granites at Lake Boga, and Wycheproof and Pyramid Hill, Victoria. Australian Journal of Mineralogy Vol.2 No.2 Dec. 1996, pp. 47-50
Nontronite
Formula: Na0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Reference: No reference listed
Opal
Formula: SiO2 · nH2O
Reference: No reference listed
Opal var: Opal-AN
Formula: SiO2 · nH2O
Description: "Rare hyalite has been recorded as joint fillings."
Reference: Steve Sorrell Collection W.D.Birch 1977. Minerals in the pegmatitic phase of the Lake Boga Granite. The Australian Mineralogist No. 10 June/July 1977, pp. 44-46
Orthoclase
Formula: K(AlSi3O8)
Description: "Blocky crystals of orthoclase line miarolitic cavities, but have often grown across the cavities and are poorly or non terminated. They are usually white to cream and perthitic, with the sodic phase often etched out leaving a skeletal structure. The crystals commonly show Carlsbad twinning. Large blocky terminated crystals measuring up to 10 x 11x 12cm have been collected."
Reference: W.D. Birch & D.A.Henry 1993. Phosphate Minerals of Victoria, The Mineralogical Society of Victoria special publication No. 3, pp. 14-27; D.A.Henry & W.D.Birch 1998. Sampleite and associated minerals from Lake Boga granite quarry, Victoria, Australia. Australian Mineralogist Vol. 3 Oct.-Dec. 1988, pp. 135-148
Portlandite
Formula: Ca(OH)2
Description: Specimen was not in situ. Confirmation needed. See discussion in http://www.mindat.org/mesg-7-55384.html "A pale grey chert like mass, measuring about 45 x 30 x 25 cm was found in August 1995. The specimen had apparently been dislodged from where it had been enclosed in granite in the northeast corner of the quarr, about 6 metres from the top of the eastern wall. Thin quartz/calcite veinlets cut the portlandite."
Reference: Bill Birch (1996) Australian Journal of Mineralogy, 2, #2, 47-50.; W.D.Birch 1996. Portlandite and other recent mineral discoveries in the granites at Lake Boga, and Wycheproof and Pyramid Hill, Victoria. Australian Journal of Mineralogy Vol.2 No.2 Dec. 1996, pp. 47-50
Powellite
Formula: Ca(MoO4)
Reference: Stuart Mills
Pseudomalachite
Formula: Cu5(PO4)2(OH)4
Description: "Pseudomalachite occurs as irregular globular aggregates and, more rarely, rough crystals up to a few mm across, in cavities in the Lake Boga granite. It is pearly to vitreous, and transparent to translucent dark blueish green. It is often associated libethenite and ulrichite. The mineral also occurs as massive cavity fillings and scaly coatings on joint planes, where it its often seen with sampleiite, and may also occur very rarely as layers between cleavage flakes of muscovite."
Reference: [AmMin 85:1321]; Am Min 93:691-697; W.D. Birch & D.A.Henry 1993. Phosphate Minerals of Victoria, The Mineralogical Society of Victoria special publication No. 3, pp. 14-27; D.A.Henry & W.D.Birch 1998. Sampleite and associated minerals from Lake Boga granite quarry, Victoria, Australia. Australian Mineralogist Vol. 3 Oct.-Dec. 1988, pp. 135-148
Pseudorutile
Formula: Fe2Ti3O9
Reference: Mills, S.J. (2004)
Pyrite
Formula: FeS2
Reference: No reference listed
Quartz
Formula: SiO2
Description: "Generally, quartz crystals in the miarolitic cavities are dark smoky to pale pinkish brown, well terminated, translucent to transparent and often gem quality. Crystals up to 23 cm long have been found, although they are more commonly 5-8 cm. They are often coated with a thin veneer of white clay and drusy fluorapatite crystals."
Reference: England, B.M. (1991) The State of the Science: Scanning Electron Microscopy. Mineralogical Record, 22(2), 123-132 (SEM image of ulrichite on quartz from the Lake Boga quarry on p. 127). Birch, W.D. and Henry, D.A. (1993) Phosphate Minerals of Victoria. The Mineralogical Society of Victoria special publication No. 3, 14-27.; Henry, D.A. and Birch, W.D. (1998) Sampleite and associated minerals from Lake Boga granite quarry, Victoria, Australia. Australian Mineralogist Vol. 3 Oct.-Dec. 1988, 135-148.
Quartz var: Smoky Quartz
Formula: SiO2
Reference: Am Min 93:691-697
Rockbridgeite
Formula: Fe2+Fe3+4(PO4)3(OH)5
Description: "Dark bluish green irregular masses of rockbridgeite have been found as earthy fillings and globular linings in miarolitic cavities up to about 1 cm across in a medium-grained aplitic phase of the Lake Boga Granite. Hemispheres and globular crusts of transparent yellow cyrilovite frequently coat the rockbridgeite."
Reference: W.D.Birch 1996. Portlandite and other recent mineral discoveries in the granites at Lake Boga, and Wycheproof and Pyramid Hill, Victoria. Australian Journal of Mineralogy Vol.2 No.2 Dec. 1996, pp. 47-50
Rutile
Formula: TiO2
Description: "Small lustrous bipyramidal black crystals of rutile occur on quartz in some cavities."
Reference: Uwe Kolitsch (SXRD-analysis); W.D. Birch & D.A.Henry 1993. Phosphate Minerals of Victoria, The Mineralogical Society of Victoria special publication No. 3, pp. 14-27; D.A.Henry & W.D.Birch 1998. Sampleite and associated minerals from Lake Boga granite quarry, Victoria, Australia. Australian Mineralogist Vol. 3 Oct.-Dec. 1988, pp. 135-148
Saléeite
Formula: Mg(UO2)2(PO4)2 · 10H2O
Description: "Saleeite crystals occur in miarolitic cavities and on limonite-encrusted joint planes in the Lake Boga granite. Pale to lemon or greenish yellow translucent to transparent platy crystals occur as fan-like clusters or flattened aggregates. They are usually less than 3 mm on edge but exceptional crystals may reach 9 mm. Thick tabular and unusual prismatic crystals are less common. Saleeite may overgrow torbernite crystals at Lake Boga."
Reference: Am Min 93:691-697; Mills, S. J. & Birch, W. D. (2010) Uranmineralien aus dem Lake-Boga-Granit, Victoria, Australien. Mineralien-Welt, 21(3), 62–67. (In German); W.D. Birch & D.A.Henry 1993. Phosphate Minerals of Victoria, The Mineralogical Society of Victoria special publication No. 3, pp. 14-27; D.A.Henry & W.D.Birch 1998. Sampleite and associated minerals from Lake Boga granite quarry, Victoria, Australia. Australian Mineralogist Vol. 3 Oct.-Dec. 1988, pp. 135-148
Sampleite
Formula: NaCaCu5(PO4)4Cl · 5H2O
Description: "This is one of the most attractive of the rare phosphates at Lake Boga, occurring as vivid sky blue, micaceous aggregates on joint planes and platy to powdery cavity infillings in the granite. Groups of free standing tabular transparent blue crystals up to 0.5 mm high are frequently observed. Sampleite is most closely associated with pseudomalachite, but may also be found with libethenite, turquoise/chalcosiderite, cyrilovite and more rarely, ulrichite."
Reference: Henry, D. A. and Birch, W. D. (1988): Sampleite and associated minerals from the Lake Boga granite quarry, Victoria, Australia. Austral. Mineral. 3, 135-148; Giester, G., Kolitsch, U., Leverett, P., Turner, P. & Williams, P.A. (2007): The crystal structures of lavendulan, sampleite, and a new polymorph of sampleite. European Journal of Mineralogy 19, 75-93.; W.D. Birch & D.A.Henry 1993. Phosphate Minerals of Victoria, The Mineralogical Society of Victoria special publication No. 3, pp. 14-27; D.A.Henry & W.D.Birch 1998. Sampleite and associated minerals from Lake Boga granite quarry, Victoria, Australia. Australian Mineralogist Vol. 3 Oct.-Dec. 1988, pp. 135-148
Schorl
Formula: Na(Fe2+3)Al6(Si6O18)(BO3)3(OH)3(OH)
Description: Schorl is confined to the miarolitic cavities forming fine fibrous needle like black/brown crystals. (pers.com. S.Mills)
Reference: S.Mills pers. com. to Peter Hall 2014
Siderite
Formula: FeCO3
Reference: No reference listed
Sphalerite
Formula: ZnS
Reference: Van King
Strengite
Formula: FePO4 · 2H2O
Reference: No reference listed
Topaz
Formula: Al2(SiO4)(F,OH)2
Reference: No reference listed
Torbernite
Formula: Cu(UO2)2(PO4)2 · 12H2O
Description: "Torbernite is the most widespread of the uranium-bearing phosphates at Lake Boga. It is found on joint planes and in small cavities and is frequently associated with limonite crusts and films. Crystals may also be found on clay filling cavities and between cleavage flakes in books of muscovite. Torbernite usually occurs as thin, lustrous, transparent pale green to emerald green tabular crystals up to 2.5 mm on edge. These may lay flat on joints or occur as free standing aggregates in cavities. Thick tabular to blocky crystals of a more intense green have also been found. Torbernite occurs with most of the other phosphates at Lake Boga."
Reference: [AmMin 85:1321]; Am Min 93:691-697; Mills, S. J. & Birch, W. D. (2010) Uranmineralien aus dem Lake-Boga-Granit, Victoria, Australien. Mineralien-Welt, 21(3), 62–67. (In German); W.D. Birch & D.A.Henry 1993. Phosphate Minerals of Victoria, The Mineralogical Society of Victoria special publication No. 3, pp. 14-27; D.A.Henry & W.D.Birch 1998. Sampleite and associated minerals from Lake Boga granite quarry, Victoria, Australia. Australian Mineralogist Vol. 3 Oct.-Dec. 1988, pp. 135-148
Turquoise
Formula: Cu(Al,Fe3+)6(PO4)4(OH)8 · 4H2O
Description: "Pale blue, pale green or bluish green globular crusts and individual spheres or hemispheres of minerals in the composition series between turquoise and chalcosiderite are widespread in the Lake Boga granite quarry. They occur most often lining small miarolitic cavities but may also be found on joint planes and in cavities etched in fluorapatite. Individual globules may reach close to 1 mm across. Well formed crystals have not been observed. Massive partial replacements of orthoclase crystals by turquoise have been collected, but are very rare. As an early-formed secondary hydrothermal mineral, turquoise/chalcosiderite is found with most of the other secondary phosphates from Lake Boga. Microprobe analyses of the bluish green crusts show the compositions fall between ferrian turquoise and aluminan chalcosiderite."
Reference: [AmMin 85:1321]; Am Min 93:691-697; W.D. Birch & D.A.Henry 1993. Phosphate Minerals of Victoria, The Mineralogical Society of Victoria special publication No. 3, pp. 14-27; D.A.Henry & W.D.Birch 1998. Sampleite and associated minerals from Lake Boga granite quarry, Victoria, Australia. Australian Mineralogist Vol. 3 Oct.-Dec. 1988, pp. 135-148
Ulrichite (TL)
Formula: CaCu(UO2)(PO4)2 · 4H2O
Description: "This attractive mineral was first collected at the Lake Boga quarry in the mid-1980s. A zone a few metres across at the base of the east wall of the quarry, at a depth of around 20 metres has yielded all the ulrichite so far collected. Ulrichite forms delicate radiating sprays of translucent to transparent, pale green to bright lime green, needle-like crystals up to 1 mm long and 0.05 mm thick. They occur in small close up, irregular miarolitic cavities in a fine-grained equigranular phase of the Lake Boga granite. Some of the cavities are lined or partly filled with a glistening reddish brown clay mineral. Ulrichite is amongst the earliest of the secondary minerals to crystalise at Lake Boga and occurs most frequently with turquoise/chalcosiderite. It is also observed with cyrilovite, libethenite, pseudomalachite and rarely, with torbernite. It has also been found on etched fluorapatite crystals."
Reference: Birch, W.D., Mumme, W.G., and Segnit, E.R. (1988) Ulrichite: a new copper calcium uranium phosphate from Lake Boga, Victoria, Australia. Australian Mineralogist, 3(3), 125-131.; England, B.M. (1991) The State of the Science: Scanning Electron Microscopy. Mineralogical Record, 22(2), 123-132 (SEM image of ulrichite on quartz from the Lake Boga quarry on p. 127).; Clark, A.M. (1993) Hey's mineral index: mineral species, varieties, and synonyms.; Birch, W.D. and Henry, D.A. (1993) Phosphate Minerals of Victoria. The Mineralogical Society of Victoria special publication N°. 3, 14-27.; Henry, D.A. and Birch, W.D. (1998) Sampleite and associated minerals from Lake Boga granite quarry, Victoria, Australia. Australian Mineralogist Vol. 3 Oct.-Dec. 1988, 135-148.
Uraninite
Formula: UO2
Reference: Am Min 93:691-697; Mills, S. J. & Birch, W. D. (2010) Uranmineralien aus dem Lake-Boga-Granit, Victoria, Australien. Mineralien-Welt, 21(3), 62–67. (In German)
Variscite
Formula: AlPO4 · 2H2O
Reference: No reference listed
Wavellite
Formula: Al3(PO4)2(OH,F)3 · 5H2O
Description: "Colourless to white, prismatic wavellite crystals up to 1 mm long occur rarely, forming fibrous radiating aggregates in cavities with pale blue turquoise. The mineral has also been found as flattened radiating aggregates of pale blue crystals on joint planes in the granite."
Reference: W.D. Birch & D.A.Henry 1993. Phosphate Minerals of Victoria, The Mineralogical Society of Victoria special publication No. 3, pp. 14-27; D.A.Henry & W.D.Birch 1998. Sampleite and associated minerals from Lake Boga granite quarry, Victoria, Australia. Australian Mineralogist Vol. 3 Oct.-Dec. 1988, pp. 135-148

List of minerals arranged by Strunz 10th Edition classification

Group 1 - Elements
'Bismuth'1.CA.05Bi
Copper1.AA.05Cu
Group 2 - Sulphides and Sulfosalts
Chalcocite2.BA.05Cu2S
Chalcopyrite2.CB.10aCuFeS2
Covellite2.CA.05aCuS
Digenite2.BA.10Cu9S5
Djurleite2.BA.05Cu31S16
Geerite2.BA.05Cu8S5
Molybdenite2.EA.30MoS2
Pyrite2.EB.05aFeS2
Sphalerite2.CB.05aZnS
Group 3 - Halides
'Atacamite'3.DA.10aCu2(OH)3Cl
'Bismoclite'3.DC.25BiOCl
Chlorargyrite3.AA.15AgCl
Connellite3.DA.25Cu19(SO4)(OH)32Cl4 · 3H2O
Fluorite3.AB.25CaF2
Iodargyrite3.AA.10AgI
Group 4 - Oxides and Hydroxides
'Anatase'4.DD.05TiO2
Ferberite4.DB.30FeWO4
Hematite4.CB.05Fe2O3
Opal4.DA.10SiO2 · nH2O
var: Opal-AN4.DA.10SiO2 · nH2O
Portlandite4.FE.05Ca(OH)2
Pseudorutile4.CB.25Fe2Ti3O9
Quartz4.DA.05SiO2
var: Smoky Quartz4.DA.05SiO2
Rutile4.DB.05TiO2
Uraninite4.DL.05UO2
Group 5 - Nitrates and Carbonates
'Azurite'5.BA.05Cu3(CO3)2(OH)2
Malachite5.BA.10Cu2(CO3)(OH)2
Siderite5.AB.05FeCO3
Group 7 - Sulphates, Chromates, Molybdates and Tungstates
Chalcanthite7.CB.20CuSO4 · 5H2O
Powellite7.GA.05Ca(MoO4)
Group 8 - Phosphates, Arsenates and Vanadates
'Bleasdaleite' (TL)8.DK.25(Ca,Fe3+)2Cu5(Bi,Cu)(PO4)4(H2O,OH,Cl)13
'Cacoxenite'8.DC.40Fe3+24AlO6(PO4)17(OH)12 · 75H2O
Chalcosiderite8.DD.15CuFe3+6(PO4)4(OH)8 · 4H2O
Cheralite8.AD.50CaTh(PO4)2
Crandallite8.BL.10CaAl3(PO4)(PO3OH)(OH)6
Cyrilovite8.DL.10NaFe3+3(PO4)2(OH)4 · 2H2O
Fluorapatite8.BN.05Ca5(PO4)3F
var: Carbonate-rich Fluorapatite8.BN.05Ca5(PO4,CO3)3(F,O)
Kidwellite8.DK.20NaFe3+9+x(PO4)6(OH)11 · 3H2O, x = 0.33
Kunatite (TL)8.DC.15CuFe3+2(PO4)2(OH)2 · 4H2O
Lakebogaite (TL)8.EA.20CaNaFe3+2H(UO2)2(PO4)4(OH)2 · 8H2O
Leucophosphite8.DH.10KFe3+2(PO4)2(OH) · 2H2O
Libethenite8.BB.30Cu2(PO4)(OH)
Meta-autunite8.EB.10Ca(UO2)2(PO4)2 · 6-8H2O
Meurigite-Na8.DJ.20NaFe3+8(PO4)6(OH)7 · 6.5H2O
Monazite-(Ce)8.AD.50Ce(PO4)
Natrodufrénite8.DK.15NaFe2+Fe3+5(PO4)4(OH)6 · 2H2O
Pseudomalachite8.BD.05Cu5(PO4)2(OH)4
Rockbridgeite8.BC.10Fe2+Fe3+4(PO4)3(OH)5
Saléeite8.EB.05Mg(UO2)2(PO4)2 · 10H2O
Sampleite8.DG.05NaCaCu5(PO4)4Cl · 5H2O
Strengite8.CD.10FePO4 · 2H2O
Torbernite8.EB.05Cu(UO2)2(PO4)2 · 12H2O
Turquoise8.DD.15Cu(Al,Fe3+)6(PO4)4(OH)8 · 4H2O
Ulrichite (TL)8.EA.15CaCu(UO2)(PO4)2 · 4H2O
Variscite8.CD.10AlPO4 · 2H2O
Wavellite8.DC.50Al3(PO4)2(OH,F)3 · 5H2O
Group 9 - Silicates
'Albite'9.FA.35Na(AlSi3O8)
'Beryl'9.CJ.05Be3Al2(Si6O18)
Chrysocolla9.ED.20Cu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Fluor-schorl9.CK.Na(Fe2+3)Al6(Si6O18)(BO3)3(OH)3F
Kaolinite9.ED.05Al2(Si2O5)(OH)4
Microcline9.FA.30K(AlSi3O8)
Muscovite9.EC.15KAl2(AlSi3O10)(OH)2
Nontronite9.EC.40Na0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Orthoclase9.FA.30K(AlSi3O8)
Schorl9.CK.05Na(Fe2+3)Al6(Si6O18)(BO3)3(OH)3(OH)
Topaz9.AF.35Al2(SiO4)(F,OH)2
Unclassified Minerals, Rocks, etc.
'Biotite'-
Chlorite Group-
Limonite-(Fe,O,OH,H2O)
Metanatroautunite-Na(UO2)(PO4)(H2O)3

List of minerals arranged by Dana 8th Edition classification

Group 1 - NATIVE ELEMENTS AND ALLOYS
Metals, other than the Platinum Group
Copper1.1.1.3Cu
Semi-metals and non-metals
Bismuth1.3.1.4Bi
Group 2 - SULFIDES
AmBnXp, with (m+n):p = 2:1
Chalcocite2.4.7.1Cu2S
Digenite2.4.7.3Cu9S5
Djurleite2.4.7.2Cu31S16
AmXp, with m:p = 1:1
Covellite2.8.12.1CuS
Sphalerite2.8.2.1ZnS
AmBnXp, with (m+n):p = 1:1
Chalcopyrite2.9.1.1CuFeS2
AmBnXp, with (m+n):p = 1:2
Molybdenite2.12.10.1MoS2
Pyrite2.12.1.1FeS2
Group 4 - SIMPLE OXIDES
A2X3
Hematite4.3.1.2Fe2O3
AX2
Anatase4.4.4.1TiO2
Rutile4.4.1.1TiO2
Group 5 - OXIDES CONTAINING URANIUM OR THORIUM
AXO2·xH2O
Uraninite5.1.1.1UO2
Group 6 - HYDROXIDES AND OXIDES CONTAINING HYDROXYL
X(OH)2
Portlandite6.2.1.4Ca(OH)2
Group 8 - MULTIPLE OXIDES CONTAINING NIOBIUM,TANTALUM OR TITANIUM
A2B3O9
Pseudorutile8.4.2.1Fe2Ti3O9
Group 9 - NORMAL HALIDES
AX
Chlorargyrite9.1.4.1AgCl
Iodargyrite9.1.5.1AgI
AX2
Fluorite9.2.1.1CaF2
Group 10 - OXYHALIDES AND HYDROXYHALIDES
A2(O,OH)3Xq
Atacamite10.1.1.1Cu2(OH)3Cl
A(O,OH)Xq
Bismoclite10.2.1.2BiOCl
Group 14 - ANHYDROUS NORMAL CARBONATES
A(XO3)
Siderite14.1.1.3FeCO3
Group 16a - ANHYDROUS CARBONATES CONTAINING HYDROXYL OR HALOGEN
Azurite16a.2.1.1Cu3(CO3)2(OH)2
Malachite16a.3.1.1Cu2(CO3)(OH)2
Group 29 - HYDRATED ACID AND NORMAL SULFATES
AXO4·xH2O
Chalcanthite29.6.7.1CuSO4 · 5H2O
Group 31 - HYDRATED SULFATES CONTAINING HYDROXYL OR HALOGEN
(AB)m(XO4)pZq·xH2O, where m:p > 6:1
Connellite31.1.1.1Cu19(SO4)(OH)32Cl4 · 3H2O
Group 38 - ANHYDROUS NORMAL PHOSPHATES, ARSENATES, AND VANADATES
AXO4
Cheralite38.4.3.5CaTh(PO4)2
Monazite-(Ce)38.4.3.1Ce(PO4)
Group 40 - HYDRATED NORMAL PHOSPHATES,ARSENATES AND VANADATES
AB2(XO4)2·xH2O, containing (UO2)2+
Meta-autunite40.2a.1.2Ca(UO2)2(PO4)2 · 6-8H2O
Metanatroautunite40.2a.5.1Na(UO2)(PO4)(H2O)3
Saléeite40.2a.11.1Mg(UO2)2(PO4)2 · 10H2O
Torbernite40.2a.13.1Cu(UO2)2(PO4)2 · 12H2O
Ulrichite (TL)40.2a.30.1CaCu(UO2)(PO4)2 · 4H2O
(AB)5(XO4)2·xH2O
Strengite40.4.1.2FePO4 · 2H2O
Variscite40.4.1.1AlPO4 · 2H2O
Group 41 - ANHYDROUS PHOSPHATES, ETC.CONTAINING HYDROXYL OR HALOGEN
(AB)5(XO4)2Zq
Pseudomalachite41.4.3.1Cu5(PO4)2(OH)4
A2(XO4)Zq
Libethenite41.6.6.2Cu2(PO4)(OH)
A5(XO4)3Zq
Fluorapatite41.8.1.1Ca5(PO4)3F
var: Carbonate-rich Fluorapatite41.8.1.4Ca5(PO4,CO3)3(F,O)
(AB)5(XO4)3Zq
Rockbridgeite41.9.2.1Fe2+Fe3+4(PO4)3(OH)5
Group 42 - HYDRATED PHOSPHATES, ETC.CONTAINING HYDROXYL OR HALOGEN
(AB)2(XO4)Zq·xH2O
Crandallite42.7.3.1CaAl3(PO4)(PO3OH)(OH)6
Cyrilovite42.7.8.1NaFe3+3(PO4)2(OH)4 · 2H2O
(AB)5(XO4)3Zq·xH2O
Kidwellite42.8.2.1NaFe3+9+x(PO4)6(OH)11 · 3H2O, x = 0.33
(AB)7(XO4)4Zq·xH2O
Chalcosiderite42.9.3.4CuFe3+6(PO4)4(OH)8 · 4H2O
Natrodufrénite42.9.1.3NaFe2+Fe3+5(PO4)4(OH)6 · 2H2O
Sampleite42.9.4.1NaCaCu5(PO4)4Cl · 5H2O
Turquoise42.9.3.1Cu(Al,Fe3+)6(PO4)4(OH)8 · 4H2O
A3(XO4)2Zq·xH2O
Wavellite42.10.2.1Al3(PO4)2(OH,F)3 · 5H2O
(AB)3(XO4)2Zq·xH2O
Kunatite (TL)42.11.20.7CuFe3+2(PO4)2(OH)2 · 4H2O
Leucophosphite42.11.6.1KFe3+2(PO4)2(OH) · 2H2O
Miscellaneous
Cacoxenite42.13.5.1Fe3+24AlO6(PO4)17(OH)12 · 75H2O
Lakebogaite (TL)42.13.18.1CaNaFe3+2H(UO2)2(PO4)4(OH)2 · 8H2O
Meurigite-Na42.13.14.2NaFe3+8(PO4)6(OH)7 · 6.5H2O
Group 48 - ANHYDROUS MOLYBDATES AND TUNGSTATES
AXO4
Ferberite48.1.1.2FeWO4
Powellite48.1.2.2Ca(MoO4)
Group 52 - NESOSILICATES Insular SiO4 Groups and O,OH,F,H2O
Insular SiO4 Groups and O, OH, F, and H2O with cations in [6] coordination only
Topaz52.3.1.1Al2(SiO4)(F,OH)2
Group 61 - CYCLOSILICATES Six-Membered Rings
Six-Membered Rings with [Si6O18] rings; possible (OH) and Al substitution
Beryl61.1.1.1Be3Al2(Si6O18)
Six-Membered Rings with borate groups
Schorl61.3.1.10Na(Fe2+3)Al6(Si6O18)(BO3)3(OH)3(OH)
Group 71 - PHYLLOSILICATES Sheets of Six-Membered Rings
Sheets of 6-membered rings with 2:1 layers
Muscovite71.2.2a.1KAl2(AlSi3O10)(OH)2
Sheets of 6-membered rings with 2:1 clays
Nontronite71.3.1a.3Na0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Group 74 - PHYLLOSILICATES Modulated Layers
Modulated Layers with joined strips
Chrysocolla74.3.2.1Cu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Group 75 - TECTOSILICATES Si Tetrahedral Frameworks
Si Tetrahedral Frameworks - SiO2 with [4] coordinated Si
Quartz75.1.3.1SiO2
Si Tetrahedral Frameworks - SiO2 with H2O and organics
Opal75.2.1.1SiO2 · nH2O
Group 76 - TECTOSILICATES Al-Si Framework
Al-Si Framework with Al-Si frameworks
Albite76.1.3.1Na(AlSi3O8)
Microcline76.1.1.5K(AlSi3O8)
Orthoclase76.1.1.1K(AlSi3O8)
Unclassified Minerals, Rocks, etc.
'Biotite'-
Bleasdaleite (TL)-(Ca,Fe3+)2Cu5(Bi,Cu)(PO4)4(H2O,OH,Cl)13
'Chlorite Group'-
Fluor-schorl-Na(Fe2+3)Al6(Si6O18)(BO3)3(OH)3F
Geerite-Cu8S5
Kaolinite-Al2(Si2O5)(OH)4
'Limonite'-(Fe,O,OH,H2O)
Opal
var: Opal-AN
-SiO2 · nH2O
Quartz
var: Smoky Quartz
-SiO2

List of minerals for each chemical element

HHydrogen
H AtacamiteCu2(OH)3Cl
H AzuriteCu3(CO3)2(OH)2
H Bleasdaleite(Ca,Fe3+)2Cu5(Bi,Cu)(PO4)4(H2O,OH,Cl)13
H CacoxeniteFe243+AlO6(PO4)17(OH)12 · 75H2O
H ChalcanthiteCuSO4 · 5H2O
H ChalcosideriteCuFe63+(PO4)4(OH)8 · 4H2O
H ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
H ConnelliteCu19(SO4)(OH)32Cl4 · 3H2O
H CrandalliteCaAl3(PO4)(PO3OH)(OH)6
H CyriloviteNaFe33+(PO4)2(OH)4 · 2H2O
H Fluor-schorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3F
H KaoliniteAl2(Si2O5)(OH)4
H KidwelliteNaFe3+9+x(PO4)6(OH)11 · 3H2O, x = 0.33
H KunatiteCuFe23+(PO4)2(OH)2 · 4H2O
H LakebogaiteCaNaFe23+H(UO2)2(PO4)4(OH)2 · 8H2O
H LeucophosphiteKFe23+(PO4)2(OH) · 2H2O
H LibetheniteCu2(PO4)(OH)
H Limonite(Fe,O,OH,H2O)
H MalachiteCu2(CO3)(OH)2
H Meta-autuniteCa(UO2)2(PO4)2 · 6-8H2O
H MetanatroautuniteNa(UO2)(PO4)(H2O)3
H Meurigite-NaNaFe83+(PO4)6(OH)7 · 6.5H2O
H MuscoviteKAl2(AlSi3O10)(OH)2
H NatrodufréniteNaFe2+Fe53+(PO4)4(OH)6 · 2H2O
H NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
H OpalSiO2 · nH2O
H Opal (var: Opal-AN)SiO2 · nH2O
H PortlanditeCa(OH)2
H PseudomalachiteCu5(PO4)2(OH)4
H RockbridgeiteFe2+Fe43+(PO4)3(OH)5
H SaléeiteMg(UO2)2(PO4)2 · 10H2O
H SampleiteNaCaCu5(PO4)4Cl · 5H2O
H SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
H StrengiteFePO4 · 2H2O
H TopazAl2(SiO4)(F,OH)2
H TorberniteCu(UO2)2(PO4)2 · 12H2O
H TurquoiseCu(Al,Fe3+)6(PO4)4(OH)8 · 4H2O
H UlrichiteCaCu(UO2)(PO4)2 · 4H2O
H VarisciteAlPO4 · 2H2O
H WavelliteAl3(PO4)2(OH,F)3 · 5H2O
BeBeryllium
Be BerylBe3Al2(Si6O18)
BBoron
B Fluor-schorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3F
B SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
CCarbon
C AzuriteCu3(CO3)2(OH)2
C Fluorapatite (var: Carbonate-rich Fluorapatite)Ca5(PO4,CO3)3(F,O)
C MalachiteCu2(CO3)(OH)2
C SideriteFeCO3
OOxygen
O AlbiteNa(AlSi3O8)
O AnataseTiO2
O AtacamiteCu2(OH)3Cl
O AzuriteCu3(CO3)2(OH)2
O BerylBe3Al2(Si6O18)
O BismocliteBiOCl
O Bleasdaleite(Ca,Fe3+)2Cu5(Bi,Cu)(PO4)4(H2O,OH,Cl)13
O CacoxeniteFe243+AlO6(PO4)17(OH)12 · 75H2O
O Fluorapatite (var: Carbonate-rich Fluorapatite)Ca5(PO4,CO3)3(F,O)
O ChalcanthiteCuSO4 · 5H2O
O ChalcosideriteCuFe63+(PO4)4(OH)8 · 4H2O
O CheraliteCaTh(PO4)2
O ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
O ConnelliteCu19(SO4)(OH)32Cl4 · 3H2O
O CrandalliteCaAl3(PO4)(PO3OH)(OH)6
O CyriloviteNaFe33+(PO4)2(OH)4 · 2H2O
O FerberiteFeWO4
O FluorapatiteCa5(PO4)3F
O Fluor-schorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3F
O HematiteFe2O3
O KaoliniteAl2(Si2O5)(OH)4
O KidwelliteNaFe3+9+x(PO4)6(OH)11 · 3H2O, x = 0.33
O KunatiteCuFe23+(PO4)2(OH)2 · 4H2O
O LakebogaiteCaNaFe23+H(UO2)2(PO4)4(OH)2 · 8H2O
O LeucophosphiteKFe23+(PO4)2(OH) · 2H2O
O LibetheniteCu2(PO4)(OH)
O Limonite(Fe,O,OH,H2O)
O MalachiteCu2(CO3)(OH)2
O Meta-autuniteCa(UO2)2(PO4)2 · 6-8H2O
O MetanatroautuniteNa(UO2)(PO4)(H2O)3
O Meurigite-NaNaFe83+(PO4)6(OH)7 · 6.5H2O
O MicroclineK(AlSi3O8)
O Monazite-(Ce)Ce(PO4)
O MuscoviteKAl2(AlSi3O10)(OH)2
O NatrodufréniteNaFe2+Fe53+(PO4)4(OH)6 · 2H2O
O NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
O OpalSiO2 · nH2O
O Opal (var: Opal-AN)SiO2 · nH2O
O OrthoclaseK(AlSi3O8)
O PortlanditeCa(OH)2
O PowelliteCa(MoO4)
O PseudomalachiteCu5(PO4)2(OH)4
O PseudorutileFe2Ti3O9
O QuartzSiO2
O RockbridgeiteFe2+Fe43+(PO4)3(OH)5
O RutileTiO2
O SaléeiteMg(UO2)2(PO4)2 · 10H2O
O SampleiteNaCaCu5(PO4)4Cl · 5H2O
O SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
O SideriteFeCO3
O Quartz (var: Smoky Quartz)SiO2
O StrengiteFePO4 · 2H2O
O TopazAl2(SiO4)(F,OH)2
O TorberniteCu(UO2)2(PO4)2 · 12H2O
O TurquoiseCu(Al,Fe3+)6(PO4)4(OH)8 · 4H2O
O UlrichiteCaCu(UO2)(PO4)2 · 4H2O
O UraniniteUO2
O VarisciteAlPO4 · 2H2O
O WavelliteAl3(PO4)2(OH,F)3 · 5H2O
FFluorine
F Fluorapatite (var: Carbonate-rich Fluorapatite)Ca5(PO4,CO3)3(F,O)
F FluorapatiteCa5(PO4)3F
F FluoriteCaF2
F Fluor-schorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3F
F TopazAl2(SiO4)(F,OH)2
F WavelliteAl3(PO4)2(OH,F)3 · 5H2O
NaSodium
Na AlbiteNa(AlSi3O8)
Na CyriloviteNaFe33+(PO4)2(OH)4 · 2H2O
Na Fluor-schorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3F
Na KidwelliteNaFe3+9+x(PO4)6(OH)11 · 3H2O, x = 0.33
Na LakebogaiteCaNaFe23+H(UO2)2(PO4)4(OH)2 · 8H2O
Na MetanatroautuniteNa(UO2)(PO4)(H2O)3
Na Meurigite-NaNaFe83+(PO4)6(OH)7 · 6.5H2O
Na NatrodufréniteNaFe2+Fe53+(PO4)4(OH)6 · 2H2O
Na NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Na SampleiteNaCaCu5(PO4)4Cl · 5H2O
Na SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
MgMagnesium
Mg SaléeiteMg(UO2)2(PO4)2 · 10H2O
AlAluminium
Al AlbiteNa(AlSi3O8)
Al BerylBe3Al2(Si6O18)
Al CacoxeniteFe243+AlO6(PO4)17(OH)12 · 75H2O
Al ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Al CrandalliteCaAl3(PO4)(PO3OH)(OH)6
Al Fluor-schorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3F
Al KaoliniteAl2(Si2O5)(OH)4
Al MicroclineK(AlSi3O8)
Al MuscoviteKAl2(AlSi3O10)(OH)2
Al NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Al OrthoclaseK(AlSi3O8)
Al SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
Al TopazAl2(SiO4)(F,OH)2
Al TurquoiseCu(Al,Fe3+)6(PO4)4(OH)8 · 4H2O
Al VarisciteAlPO4 · 2H2O
Al WavelliteAl3(PO4)2(OH,F)3 · 5H2O
SiSilicon
Si AlbiteNa(AlSi3O8)
Si BerylBe3Al2(Si6O18)
Si ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Si Fluor-schorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3F
Si KaoliniteAl2(Si2O5)(OH)4
Si MicroclineK(AlSi3O8)
Si MuscoviteKAl2(AlSi3O10)(OH)2
Si NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Si OpalSiO2 · nH2O
Si Opal (var: Opal-AN)SiO2 · nH2O
Si OrthoclaseK(AlSi3O8)
Si QuartzSiO2
Si SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
Si Quartz (var: Smoky Quartz)SiO2
Si TopazAl2(SiO4)(F,OH)2
PPhosphorus
P Bleasdaleite(Ca,Fe3+)2Cu5(Bi,Cu)(PO4)4(H2O,OH,Cl)13
P CacoxeniteFe243+AlO6(PO4)17(OH)12 · 75H2O
P Fluorapatite (var: Carbonate-rich Fluorapatite)Ca5(PO4,CO3)3(F,O)
P ChalcosideriteCuFe63+(PO4)4(OH)8 · 4H2O
P CheraliteCaTh(PO4)2
P CrandalliteCaAl3(PO4)(PO3OH)(OH)6
P CyriloviteNaFe33+(PO4)2(OH)4 · 2H2O
P FluorapatiteCa5(PO4)3F
P KidwelliteNaFe3+9+x(PO4)6(OH)11 · 3H2O, x = 0.33
P KunatiteCuFe23+(PO4)2(OH)2 · 4H2O
P LakebogaiteCaNaFe23+H(UO2)2(PO4)4(OH)2 · 8H2O
P LeucophosphiteKFe23+(PO4)2(OH) · 2H2O
P LibetheniteCu2(PO4)(OH)
P Meta-autuniteCa(UO2)2(PO4)2 · 6-8H2O
P MetanatroautuniteNa(UO2)(PO4)(H2O)3
P Meurigite-NaNaFe83+(PO4)6(OH)7 · 6.5H2O
P Monazite-(Ce)Ce(PO4)
P NatrodufréniteNaFe2+Fe53+(PO4)4(OH)6 · 2H2O
P PseudomalachiteCu5(PO4)2(OH)4
P RockbridgeiteFe2+Fe43+(PO4)3(OH)5
P SaléeiteMg(UO2)2(PO4)2 · 10H2O
P SampleiteNaCaCu5(PO4)4Cl · 5H2O
P StrengiteFePO4 · 2H2O
P TorberniteCu(UO2)2(PO4)2 · 12H2O
P TurquoiseCu(Al,Fe3+)6(PO4)4(OH)8 · 4H2O
P UlrichiteCaCu(UO2)(PO4)2 · 4H2O
P VarisciteAlPO4 · 2H2O
P WavelliteAl3(PO4)2(OH,F)3 · 5H2O
SSulfur
S ChalcanthiteCuSO4 · 5H2O
S ChalcociteCu2S
S ChalcopyriteCuFeS2
S ConnelliteCu19(SO4)(OH)32Cl4 · 3H2O
S CovelliteCuS
S DigeniteCu9S5
S DjurleiteCu31S16
S GeeriteCu8S5
S MolybdeniteMoS2
S PyriteFeS2
S SphaleriteZnS
ClChlorine
Cl AtacamiteCu2(OH)3Cl
Cl BismocliteBiOCl
Cl Bleasdaleite(Ca,Fe3+)2Cu5(Bi,Cu)(PO4)4(H2O,OH,Cl)13
Cl ChlorargyriteAgCl
Cl ConnelliteCu19(SO4)(OH)32Cl4 · 3H2O
Cl SampleiteNaCaCu5(PO4)4Cl · 5H2O
KPotassium
K LeucophosphiteKFe23+(PO4)2(OH) · 2H2O
K MicroclineK(AlSi3O8)
K MuscoviteKAl2(AlSi3O10)(OH)2
K OrthoclaseK(AlSi3O8)
CaCalcium
Ca Bleasdaleite(Ca,Fe3+)2Cu5(Bi,Cu)(PO4)4(H2O,OH,Cl)13
Ca Fluorapatite (var: Carbonate-rich Fluorapatite)Ca5(PO4,CO3)3(F,O)
Ca CheraliteCaTh(PO4)2
Ca CrandalliteCaAl3(PO4)(PO3OH)(OH)6
Ca FluorapatiteCa5(PO4)3F
Ca FluoriteCaF2
Ca LakebogaiteCaNaFe23+H(UO2)2(PO4)4(OH)2 · 8H2O
Ca Meta-autuniteCa(UO2)2(PO4)2 · 6-8H2O
Ca PortlanditeCa(OH)2
Ca PowelliteCa(MoO4)
Ca SampleiteNaCaCu5(PO4)4Cl · 5H2O
Ca UlrichiteCaCu(UO2)(PO4)2 · 4H2O
TiTitanium
Ti AnataseTiO2
Ti PseudorutileFe2Ti3O9
Ti RutileTiO2
FeIron
Fe CacoxeniteFe243+AlO6(PO4)17(OH)12 · 75H2O
Fe ChalcopyriteCuFeS2
Fe ChalcosideriteCuFe63+(PO4)4(OH)8 · 4H2O
Fe CyriloviteNaFe33+(PO4)2(OH)4 · 2H2O
Fe FerberiteFeWO4
Fe Fluor-schorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3F
Fe HematiteFe2O3
Fe KidwelliteNaFe3+9+x(PO4)6(OH)11 · 3H2O, x = 0.33
Fe KunatiteCuFe23+(PO4)2(OH)2 · 4H2O
Fe LakebogaiteCaNaFe23+H(UO2)2(PO4)4(OH)2 · 8H2O
Fe LeucophosphiteKFe23+(PO4)2(OH) · 2H2O
Fe Limonite(Fe,O,OH,H2O)
Fe Meurigite-NaNaFe83+(PO4)6(OH)7 · 6.5H2O
Fe NatrodufréniteNaFe2+Fe53+(PO4)4(OH)6 · 2H2O
Fe NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Fe PseudorutileFe2Ti3O9
Fe PyriteFeS2
Fe RockbridgeiteFe2+Fe43+(PO4)3(OH)5
Fe SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
Fe SideriteFeCO3
Fe StrengiteFePO4 · 2H2O
Fe TurquoiseCu(Al,Fe3+)6(PO4)4(OH)8 · 4H2O
CuCopper
Cu AtacamiteCu2(OH)3Cl
Cu AzuriteCu3(CO3)2(OH)2
Cu Bleasdaleite(Ca,Fe3+)2Cu5(Bi,Cu)(PO4)4(H2O,OH,Cl)13
Cu ChalcanthiteCuSO4 · 5H2O
Cu ChalcociteCu2S
Cu ChalcopyriteCuFeS2
Cu ChalcosideriteCuFe63+(PO4)4(OH)8 · 4H2O
Cu ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Cu ConnelliteCu19(SO4)(OH)32Cl4 · 3H2O
Cu CopperCu
Cu CovelliteCuS
Cu DigeniteCu9S5
Cu DjurleiteCu31S16
Cu GeeriteCu8S5
Cu KunatiteCuFe23+(PO4)2(OH)2 · 4H2O
Cu LibetheniteCu2(PO4)(OH)
Cu MalachiteCu2(CO3)(OH)2
Cu PseudomalachiteCu5(PO4)2(OH)4
Cu SampleiteNaCaCu5(PO4)4Cl · 5H2O
Cu TorberniteCu(UO2)2(PO4)2 · 12H2O
Cu TurquoiseCu(Al,Fe3+)6(PO4)4(OH)8 · 4H2O
Cu UlrichiteCaCu(UO2)(PO4)2 · 4H2O
ZnZinc
Zn SphaleriteZnS
MoMolybdenum
Mo MolybdeniteMoS2
Mo PowelliteCa(MoO4)
AgSilver
Ag ChlorargyriteAgCl
Ag IodargyriteAgI
IIodine
I IodargyriteAgI
CeCerium
Ce Monazite-(Ce)Ce(PO4)
WTungsten
W FerberiteFeWO4
BiBismuth
Bi BismocliteBiOCl
Bi BismuthBi
Bi Bleasdaleite(Ca,Fe3+)2Cu5(Bi,Cu)(PO4)4(H2O,OH,Cl)13
ThThorium
Th CheraliteCaTh(PO4)2
UUranium
U LakebogaiteCaNaFe23+H(UO2)2(PO4)4(OH)2 · 8H2O
U Meta-autuniteCa(UO2)2(PO4)2 · 6-8H2O
U MetanatroautuniteNa(UO2)(PO4)(H2O)3
U SaléeiteMg(UO2)2(PO4)2 · 10H2O
U TorberniteCu(UO2)2(PO4)2 · 12H2O
U UlrichiteCaCu(UO2)(PO4)2 · 4H2O
U UraniniteUO2

Geochronology

Mineralization age: Paleozoic : 391 ± 7 Ma to 309 ± 6 Ma

Important note: This table is based only on rock and mineral ages recorded below and is not necessarily a complete representation of the geochronology, but does give an indication of possible mineralization events relevant to this locality. As more age information is added this table may expand in the future. A break in the table simply indicates a lack of data entered here, not necessarily a break in the geologic sequence. Grey background entries are from different, related, localities.

Geologic TimeRocks, Minerals and Events
Phanerozoic
 Paleozoic
  Carboniferous
   Pennsylvanian
ⓘ Uraninite (youngest age)309 ± 6 Ma
    
   
  Devonian
   Late Devonian
ⓘ Muscovite (youngest age)362.8 ± 1 Ma
ⓘ Muscovite (oldest age)365.7 ± 1.2 Ma
ⓘ Biotite (youngest age)366.9 ± 0.9 Ma
ⓘ Biotite (oldest age)368.1 ± 3.6 Ma
   Middle Devonian
ⓘ Uraninite (oldest age)391 ± 7 Ma

Regional Geology

This geological map and associated information on rock units at or nearby to the coordinates given for this locality is based on relatively small scale geological maps provided by various national Geological Surveys. This does not necessarily represent the complete geology at this locality but it gives a background for the region in which it is found.

Click on geological units on the map for more information. Click here to view full-screen map on Macrostrat.org

Tertiary
2.588 - 66 Ma



ID: 3187964
Cenozoic sedimentary rocks

Age: Cenozoic (2.588 - 66 Ma)

Comments: Great Artesian Basin

Lithology: Laterite,clay,gravel,sand,silt

Reference: Chorlton, L.B. Generalized geology of the world: bedrock domains and major faults in GIS format: a small-scale world geology map with an extended geological attribute database. doi: 10.4095/223767. Geological Survey of Canada, Open File 5529. [154]

Late Devonian
358.9 - 382.7 Ma



ID: 923191
Lake Boga Granite

Age: Late Devonian (358.9 - 382.7 Ma)

Stratigraphic Name: Lake Boga Granite

Description: Two-mica granite; medium to coarse grained; porphyritic

Comments: igneous felsic intrusive; synthesis of multiple published descriptions

Lithology: Igneous felsic intrusive

Reference: Raymond, O.L., Liu, S., Gallagher, R., Zhang, W., Highet, L.M. Surface Geology of Australia 1:1 million scale dataset 2012 edition. Commonwealth of Australia (Geoscience Australia). [5]

Data and map coding provided by Macrostrat.org, used under Creative Commons Attribution 4.0 License

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
Birch, W.D., Mumme, W.G., and Segnit, E.R. (1988) Ulrichite: a new copper calcium uranium phosphate from Lake Boga, Victoria, Australia. Australian Mineralogist, 3(3), 125-131.
Henry, D.A. and Birch, W.D. (1988) Sampleite and associated minerals from the Lake Boga granite quarry, Victoria, Australia. Australian Mineralogist, 3, 135-148.
England, B.M. (1991) The State of the Science: Scanning Electron Microscopy. Mineralogical Record, 22(2), 123-132 (SEM image of ulrichite on quartz from the Lake Boga quarry on p. 127).
Birch, W.D. (1993) Phosphate minerals in granite rocks. In Birch, W.D. and Henry, D.A. (Eds.) (1993) Phosphate Minerals of Victoria. Special Publication N°3, The Mineralogical Society of Victoria, 5-39.
Birch, W.D. (1996) Portlandite and other recent mineral discoveries in the granites at Lake Boga, Wycheproof and Pyramid Hill, Victoria. Australian Journal of Mineralogy, 2(2), 47-50.
Birch, B., Pring, A., and Kolitsch, U. (1999) Bleasdaleite, (Ca,Fe 3+)2Cu5(Bi, Cu)(PO4)4(H2O,OH,Cl)13, a new mineral from Lake Boga, Victoria, Australia. Australian Journal of Mineralogy, 5, 69-75.
Mills, S.J. (2004) Metanatroautunite (‘sodium autunite’) from the Lake Boga Granite, Victoria. Australian Journal of Mineralogy, 10(1), 29–31.
Mills, S.J., Birch, W.D., Maas, R., Phillips, D., and Plimer, I.R. (2008) Lake Boga Granite, northwestern Victoria: mineralogy, geochemistry and geochronology. Australian Journal of Earth Sciences, 55(3), 281–299.
Mills, S.J., Birch, W.D., Kolitsch, U., Mumme, W.G., and Grey, I.E. (2008) Lakebogaite, CaNaFe3+2H(UO2)2(PO4)4(OH)2(H2O)8, a new uranyl phosphate with a unique crystal structure from Victoria, Australia. American Mineralogist, 93(4), 691–697.
Birch, W.D. (2008) Victoria's Uranium secret. Australasian Science Magazine, September, 22-24.
Mills, S.J., Birch, W.D., Kolitsch, U., and Sejkora, J. (2008) Kunatite, CuFe3+2(PO4)2(OH)2.4H2O, a new member of the whitmoreite group from Lake Boga, Victoria, Australia. Australian Journal of Mineralogy, 14(1), 3–12.
Mills, S.J. and Birch, W.D. (2010) Uranmineralien aus dem Lake-Boga-Granit, Victoria, Australien. Mineralien-Welt, 21(3), 62–67 (in German).
Mills, S.J., Birch, W.D., and Kampf, A.R. (2012) The crystal structure of metanatroautunite, Na[(UO2)(PO4)](H2O)3, from the Lake Boga granite, Victoria, Australia. American Mineralogist, 97(4), 735–738.

External Links



This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2018, except where stated. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: November 14, 2018 11:12:11 Page generated: November 13, 2018 06:43:28
Go to top of page