SUPPORT US. If mindat.org is important to you, click here to donate to our Fall 2019 fundraiser!
Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsBooks & Magazines
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryMineral Photography

Farallón Negro, Belén Department, Catamarca Province, Argentinai
Regional Level Types
Farallón Negro- not defined -
Belén DepartmentDepartment
Catamarca ProvinceProvince
ArgentinaCountry

This page is currently not sponsored. Click here to sponsor this page.
Key
Latitude & Longitude (WGS84):
27° South , 66° West (est.)
Estimate based on other nearby localities or region boundaries.
Margin of Error:
~5km


HISTORY OF THE FARALLON NEGRO MINING DISTRICT. CATAMARCA, ARGENTINA:
The history of one of more significant the mining district of the Argentine northwest is described briefly. According to the tradition of the people of the region the mining history of this zone goes back to the Hispanic time, when first that worked in the extraction of their metals they were the natives of the region. Testimony of these workings is you open in them superficial, trenches and caverns that are even conserved and in found archaeological rest in old mining galleries. Marayes partially destroyed, existing ruins of constructions and ways in the Aconquija are given to workings realised by the native thing directed by jesuits and spaniards in centuries XVI and XVII. From mid century XIX already the Agua de Dionisio were mentioned and mines detected in the Belén Department register. All these primitive workings were made mainly with the purpose of to obtain silver, which in those times had high value. At the beginning of century XX some investigators elaborated missed opinions and so the seams took bad fame, the one that lasted until making forget them in the time. Just in 1936, with the works of Peirano, one of the great mining professionals of our country, the first technical report was had on the mining possibilities of the district.
According to legends and the tradition of the people of the region, the mining history of Agua de Dionisio may refer the indigenous tribes in the past to the conquest, having then increased that activity with the arrival of the Spaniards, and although there are no valid indications that confirm, this may have been possible, to serve sample numerous washouts, work and liberalizations surface (not even filled out completely favored by the location of your entries) and the few archaeological remains that were found. We must remember that in areas near cerro shrines (La Restauradora mine) is demonstrated this age in the wreckage where benefited veins of gold-bearing ore. In some parts of the district, near the hot spring Agua de Dionisio and nearby Hualfín, are several marayes semi destroyed without knowing the date of its facilities, but comparing them with others in the region, they would correspond to farm work carried out by the Jesuits and Spanish in the centuries 16Th and 17TH, who is credited also ruins of buildings and roads in the Aconquija. Since the end of the 19th century, several authors made brief references to the mines in Agua de Dionisio, being Espeche(1875) and Peirano(1938), the first giving specifics on the area to occupy the Belén Department. In short, very little was known of the area in the first part of the last century, since outside of those named there are few data of other authors who leave writings on the region, as the complaint of other mines of silver (1883-1889), gold and silver (1894) and gold, silver and lead (1904) and some reports of Hunicken 1894. Only after 1936, when Dr. Abel Peirano visits the region for the first time, guided by the locals Santiago Abarza and Domingo Iturralde, is the first technical report on the possibilities of the district. During the year 1941 does register in the registration of Catamarca mines the requests and explorations carried out the experimental mine section of the Institute of Geology and mining of the UNT. Starts the construction of a camp in water covered in 1948 and is the first work mining on the reef with a vertical pique reached 68 m of depth. Also perform other tasks in the area of Santo Domingo and La Josefa and the construction of two shafts of 150 and 24 m depth in the Farallón Negro grain.
This mineral was in the experimental pilot plant of cyanidation, flotation and installed amalgamation in Agua Tapada, getting here the first ingot of gold and silver. In 1951, the PEN dictates the Decree-Law No. 1934 declaring reserve area an area of 1,428 km2; in 1953, by Decree No. 8635 reduces the reservation to 343,98 km2. In June 1956 the National University of Tucumán raises a note to the Executive National requesting the creation of a "autarchic entity" depending on the University, for the exploitation of Agua de Dionisio deposits. Serious disputes arising between the UNT and the province of Catamarca They demanded the intervention of the national Government, who achieved the agreement of the parties through the "Farallón Negro Act" on 7 June 1958, establishing that the nation will fund a "autarchic entity" for exploration and exploitation of the deposits. In October 1958, the Congress approves the law 14771 creates Mineral Agua de Dioniso Deposits, becoming the city of Catamarca on 25 March 1959. Your Directory integrates with two members appointed by the Superior Council of the National University of Tucumán, two representatives appointed by the Government of Catamarca and a President appointed by the power National Executive. This organism is which is currently responsible for the integral development of the entire area mineralized, both how scattered vein (except the surrounding area which covers the exploitation of Bajo La Alumbrera) covering an area of 343,98 km2 in total.

MINERALOGIC STUDY OF HYDROTHERMAL ALTERATION OF WALL ROCK OF THE FARALLÓN NEGRO RAMA NORTE VEIN, CATAMARCA PROVINCE, ARGENTINA:
The Agua de Dionisio mining district is located in Belén department, Catamarca province, at 2.600 m.a.s.l. The stratigraphic secuence is conformed by low grade metamorphic rocks, continental clastic sedimentites,rocks of Farallón Negro volcanic complex, sandstones and tuffites. Preliminary study of mineralogy, texture and alteration characteristics of the wall rock of Farallón Negro Rama Norte vein was completed. The Farallón Negro Rama Norte vein has banding texture, with alternance of Mn oxides and quartz-calcite fined bands. The wall rock is a medium grained, hypidiomorphic monzonite. This rock is composed by potash feldspar, plagioclase,biotite,pyroxene, quartz, apatite, and opaque minerals. Based on study it was determined that the monzonite wall rock presents sericitic and propylitic hydrothermal alteration of moderate intensity.
Native gold is disseminated within the manganese ore as small sheets of a few millimeters.

Regions containing this locality

South America PlateTectonic Plate
South AmericaContinent

Select Mineral List Type

Standard Detailed Strunz Dana Chemical Elements

Commodity List

This is a list of exploitable or exploited mineral commodities recorded from this region.


Mineral List

Mineral list contains entries from the region specified including sub-localities

49 valid minerals.

Rock Types Recorded

Note: this is a very new system on mindat.org and data is currently VERY limited. Please bear with us while we work towards adding this information!

Rock list contains entries from the region specified including sub-localities

Select Rock List Type

Alphabetical List Tree Diagram

Detailed Mineral List:

Acanthite
Formula: Ag2S
Actinolite
Formula: ☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2
Reference: Proffett, J. M. (2003). Geology of the Bajo de la Alumbrera porphyry copper-gold deposit, Argentina. Economic Geology, 98(8), 1535-1574.
Albite
Formula: Na(AlSi3O8)
'Albite-Anorthite Series'
Anhydrite
Formula: CaSO4
Reference: Singer, D.A., Berger, V.I., and Moring, B.C. (2008): US Geological Survey Open-File Report 2008-1155.; GUTIERREZ, A. A.; CHONG D., G. y ESPINOZA R., S.. Niveles de exposición de yacimientos del distrito minero Agua de Dionisio (YMAD), Catamarca. Rev. Asoc. Geol. Argent. [online]. 2006, vol.61, n.2, pp. 269-27; Proffett, J. M. (2003). Geology of the Bajo de la Alumbrera porphyry copper-gold deposit, Argentina. Economic Geology, 98(8), 1535-1574.
'Apatite'
Formula: Ca5(PO4)3(Cl/F/OH)
Augite
Formula: (CaxMgyFez)(Mgy1Fez1)Si2O6
Reference: F. Martínez. ESTUDIO MINERALÓGICO PRELIMINAR DE LA ALTERACIÓN HIDROTERMAL DE LA ROCA DE CAJA DE LA VETA FARALLÓN NEGRO RAMA NORTE, PROVINCIA DE CATAMARCA, ARGENTINA. Fundación Miguel Lillo. Facundomartinezz22@hotmail.com
Baryte
Formula: BaSO4
Reference: Singer, D.A., Berger, V.I., and Moring, B.C. (2008): US Geological Survey Open-File Report 2008-1155.
'Biotite'
Formula: K(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
Localities: Reported from at least 6 localities in this region.
Bornite
Formula: Cu5FeS4
Calcite
Formula: CaCO3
Localities: Reported from at least 6 localities in this region.
Calcite var: Manganoan Calcite
Formula: (Ca,Mn)CO3
Cerussite
Formula: PbCO3
Chalcanthite
Formula: CuSO4 · 5H2O
Reference: Raúl Jorge Tauber Larry
Chalcocite
Formula: Cu2S
Chalcophanite
Formula: ZnMn4+3O7 · 3H2O
Reference: Milka K. de Brodtkorb (2002) Las Especies Minerales de la Republica Argentina. Vol. 1 (elements, sulphides and sulphosalts). (Asociacion Mineralogica Argentina); DE BRODTKORB, Milka K. Precious metaltellurides and other Te-bearing minerals in different paragenesis of Argentina: A review. Rev. Asoc. Geol. Argent. [online]. 2009, vol.64, n.3, pp. 365-372.
Chalcopyrite
Formula: CuFeS2
Localities: Reported from at least 7 localities in this region.
'Chlorite Group'
Localities: Reported from at least 6 localities in this region.
Chrysocolla
Formula: Cu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Reference: Raúl Jorge Tauber Larry
Covellite
Formula: CuS
Cryptomelane
Formula: K(Mn4+7Mn3+)O16
Cuprite
Formula: Cu2O
Reference: Milka K. de Brodtkorb (2002) Las Especies Minerales de la Republica Argentina. Vol. 1 (elements, sulphides and sulphosalts). (Asociacion Mineralogica Argentina)
Delafossite
Formula: CuFeO2
Dickite
Formula: Al2(Si2O5)(OH)4
Reference: Singer, D.A., Berger, V.I., and Moring, B.C. (2008): US Geological Survey Open-File Report 2008-1155.; Proffett, J. M. (2003). Geology of the Bajo de la Alumbrera porphyry copper-gold deposit, Argentina. Economic Geology, 98(8), 1535-1574.
Digenite
Formula: Cu9S5
Reference: Singer, D.A., Berger, V.I., and Moring, B.C. (2008): US Geological Survey Open-File Report 2008-1155.; Proffett, J. M. (2003). Geology of the Bajo de la Alumbrera porphyry copper-gold deposit, Argentina. Economic Geology, 98(8), 1535-1574.
Diopside
Formula: CaMgSi2O6
Reference: F. Martínez. ESTUDIO MINERALÓGICO PRELIMINAR DE LA ALTERACIÓN HIDROTERMAL DE LA ROCA DE CAJA DE LA VETA FARALLÓN NEGRO RAMA NORTE, PROVINCIA DE CATAMARCA, ARGENTINA. Fundación Miguel Lillo. Facundomartinezz22@hotmail.com
Epidote
Formula: {Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Galena
Formula: PbS
Localities: Reported from at least 6 localities in this region.
Goethite
Formula: α-Fe3+O(OH)
Gold
Formula: Au
Goslarite
Formula: ZnSO4 · 7H2O
Gypsum
Formula: CaSO4 · 2H2O
Hematite
Formula: Fe2O3
Localities: Reported from at least 6 localities in this region.
Hematite var: Specularite
Formula: Fe2O3
Reference: Singer, D.A., Berger, V.I., and Moring, B.C. (2008): US Geological Survey Open-File Report 2008-1155.
'Hornblende'
Reference: Proffett, J. M. (2003). Geology of the Bajo de la Alumbrera porphyry copper-gold deposit, Argentina. Economic Geology, 98(8), 1535-1574.
Jarosite
Formula: KFe3+ 3(SO4)2(OH)6
Kaolinite
Formula: Al2(Si2O5)(OH)4
Reference: Singer, D.A., Berger, V.I., and Moring, B.C. (2008): US Geological Survey Open-File Report 2008-1155.; Proffett, J. M. (2003). Geology of the Bajo de la Alumbrera porphyry copper-gold deposit, Argentina. Economic Geology, 98(8), 1535-1574.
'K Feldspar'
Kutnohorite
Formula: CaMn2+(CO3)2
'Limonite'
Formula: (Fe,O,OH,H2O)
Magnetite
Formula: Fe2+Fe3+2O4
Malachite
Formula: Cu2(CO3)(OH)2
'Manganese Oxides'
Manganite
Formula: Mn3+O(OH)
Microcline
Formula: K(AlSi3O8)
Reference: F. Martínez. ESTUDIO MINERALÓGICO PRELIMINAR DE LA ALTERACIÓN HIDROTERMAL DE LA ROCA DE CAJA DE LA VETA FARALLÓN NEGRO RAMA NORTE, PROVINCIA DE CATAMARCA, ARGENTINA. Fundación Miguel Lillo. Facundomartinezz22@hotmail.com
Molybdenite
Formula: MoS2
Muscovite
Formula: KAl2(AlSi3O10)(OH)2
Localities: Reported from at least 7 localities in this region.
Muscovite var: Sericite
Formula: KAl2(AlSi3O10)(OH)2
Localities: Reported from at least 7 localities in this region.
Nagyágite
Formula: [Pb3(Pb,Sb)3S6](Au,Te)3
Natrojarosite
Formula: NaFe3(SO4)2(OH)6
Reference: GUTIERREZ, A. A.; CHONG D., G. y ESPINOZA R., S.. Niveles de exposición de yacimientos del distrito minero Agua de Dionisio (YMAD), Catamarca. Rev. Asoc. Geol. Argent. [online]. 2006, vol.61, n.2, pp. 269-27
Polybasite
Formula: [(Ag,Cu)6(Sb,As)2S7][Ag9CuS4]
'Psilomelane'
Formula: Mn, O
Reference: Natalia Salado Paz, Ana S Fogliata, Julio C Avila, Nicolás Montenegro (2011): Veta Esperanza Sudeste, un caso particular de enriquecimiento Supergénico en el yacimiento Alto de la blenda, distrito minero Agua de Dionisio, provincia de Catamarca [Veta Esperanza Sudeste, a particular case of supergenic enrichment in the Alto de la Blenda deposit, Agua de Dionisio mining district, Catamarca Province]. Revista de la Asociación Geológica Argentina 68(2), 185-194.
Pyrite
Formula: FeS2
Localities: Reported from at least 7 localities in this region.
Pyrolusite
Formula: Mn4+O2
'Pyroxene Group'
Reference: F. Martínez. ESTUDIO MINERALÓGICO PRELIMINAR DE LA ALTERACIÓN HIDROTERMAL DE LA ROCA DE CAJA DE LA VETA FARALLÓN NEGRO RAMA NORTE, PROVINCIA DE CATAMARCA, ARGENTINA. Fundación Miguel Lillo. Facundomartinezz22@hotmail.com
Quartz
Formula: SiO2
Rhodochrosite
Formula: MnCO3
Siderite
Formula: FeCO3
Silver
Formula: Ag
Reference: DE BRODTKORB, Milka K. Precious metaltellurides and other Te-bearing minerals in different paragenesis of Argentina: A review. Rev. Asoc. Geol. Argent. [online]. 2009, vol.64, n.3, pp. 365-372.; Paar, W. H., Putz, H., Topa, D., de Brodtkorb, M. K., & Sureda, R. J. (2005, January). Occurrence and paragenesis of tellurium in mineral deposits of Argentina. In Mineral Deposit Research: Meeting the Global Challenge (pp. 1419-1422). Springer Berlin Heidelberg.
'Smectite Group'
Formula: A0.3D2-3[T4O10]Z2 · nH2O
Reference: GUTIERREZ, A. A.; CHONG D., G. y ESPINOZA R., S.. Niveles de exposición de yacimientos del distrito minero Agua de Dionisio (YMAD), Catamarca. Rev. Asoc. Geol. Argent. [online]. 2006, vol.61, n.2, pp. 269-27
Sphalerite
Formula: ZnS
Localities: Reported from at least 6 localities in this region.
Tennantite
Formula: Cu6Cu4(Fe2+,Zn)2As4S12S
Tetrahedrite
Formula: Cu6Cu4(Fe2+,Zn)2Sb4S12S
Reference: Singer, D.A., Berger, V.I., and Moring, B.C. (2008): US Geological Survey Open-File Report 2008-1155.; GUTIERREZ, A. A.; CHONG D., G. y ESPINOZA R., S.. Niveles de exposición de yacimientos del distrito minero Agua de Dionisio (YMAD), Catamarca. Rev. Asoc. Geol. Argent. [online]. 2006, vol.61, n.2, pp. 269-27
'Wad'

List of minerals arranged by Strunz 10th Edition classification

Group 1 - Elements
Gold1.AA.05Au
Silver1.AA.05Ag
Group 2 - Sulphides and Sulfosalts
Acanthite2.BA.35Ag2S
Bornite2.BA.15Cu5FeS4
Chalcocite2.BA.05Cu2S
Chalcopyrite2.CB.10aCuFeS2
Covellite2.CA.05aCuS
Digenite2.BA.10Cu9S5
Galena2.CD.10PbS
Molybdenite2.EA.30MoS2
Nagyágite2.HB.20a[Pb3(Pb,Sb)3S6](Au,Te)3
Polybasite2.GB.15[(Ag,Cu)6(Sb,As)2S7][Ag9CuS4]
Pyrite2.EB.05aFeS2
Sphalerite2.CB.05aZnS
Tennantite2.GB.05Cu6Cu4(Fe2+,Zn)2As4S12S
Tetrahedrite2.GB.05Cu6Cu4(Fe2+,Zn)2Sb4S12S
Group 4 - Oxides and Hydroxides
Chalcophanite4.FL.20ZnMn4+3O7 · 3H2O
Cryptomelane4.DK.05aK(Mn4+7Mn3+)O16
Cuprite4.AA.10Cu2O
Delafossite4.AB.15CuFeO2
Goethite4.00.α-Fe3+O(OH)
Hematite4.CB.05Fe2O3
var: Specularite4.CB.05Fe2O3
Magnetite4.BB.05Fe2+Fe3+2O4
Manganite4.FD.15Mn3+O(OH)
Pyrolusite4.DB.05Mn4+O2
Quartz4.DA.05SiO2
Group 5 - Nitrates and Carbonates
Calcite5.AB.05CaCO3
var: Manganoan Calcite5.AB.05(Ca,Mn)CO3
Cerussite5.AB.15PbCO3
Kutnohorite5.AB.10CaMn2+(CO3)2
Malachite5.BA.10Cu2(CO3)(OH)2
Rhodochrosite5.AB.05MnCO3
Siderite5.AB.05FeCO3
Group 7 - Sulphates, Chromates, Molybdates and Tungstates
Anhydrite7.AD.30CaSO4
Baryte7.AD.35BaSO4
Chalcanthite7.CB.20CuSO4 · 5H2O
Goslarite7.CB.40ZnSO4 · 7H2O
Gypsum7.CD.40CaSO4 · 2H2O
Jarosite7.BC.10KFe3+3(SO4)2(OH)6
Natrojarosite7.BC.10NaFe3(SO4)2(OH)6
Group 9 - Silicates
Actinolite9.DE.10☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2
Albite9.FA.35Na(AlSi3O8)
Augite9.DA.15(CaxMgyFez)(Mgy1Fez1)Si2O6
Chrysocolla9.ED.20Cu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Dickite9.ED.05Al2(Si2O5)(OH)4
Diopside9.DA.15CaMgSi2O6
Epidote9.BG.05a{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Kaolinite9.ED.05Al2(Si2O5)(OH)4
Microcline9.FA.30K(AlSi3O8)
Muscovite9.EC.15KAl2(AlSi3O10)(OH)2
var: Sericite9.EC.15KAl2(AlSi3O10)(OH)2
Unclassified Minerals, Rocks, etc.
'Albite-Anorthite Series'-
'Apatite'-Ca5(PO4)3(Cl/F/OH)
'Biotite'-K(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
'Chlorite Group'-
'Hornblende'-
'K Feldspar'-
'Limonite'-(Fe,O,OH,H2O)
'Manganese Oxides'-
'Psilomelane'-Mn, O
'Pyroxene Group'-
'Smectite Group'-A0.3D2-3[T4O10]Z2 · nH2O
'Wad'-

List of minerals arranged by Dana 8th Edition classification

Group 1 - NATIVE ELEMENTS AND ALLOYS
Metals, other than the Platinum Group
Gold1.1.1.1Au
Silver1.1.1.2Ag
Group 2 - SULFIDES
AmBnXp, with (m+n):p = 2:1
Acanthite2.4.1.1Ag2S
Chalcocite2.4.7.1Cu2S
Digenite2.4.7.3Cu9S5
AmBnXp, with (m+n):p = 3:2
Bornite2.5.2.1Cu5FeS4
AmXp, with m:p = 1:1
Covellite2.8.12.1CuS
Galena2.8.1.1PbS
Sphalerite2.8.2.1ZnS
AmBnXp, with (m+n):p = 1:1
Chalcopyrite2.9.1.1CuFeS2
AmBnXp, with (m+n):p = 2:3
Nagyágite2.11.10.1[Pb3(Pb,Sb)3S6](Au,Te)3
AmBnXp, with (m+n):p = 1:2
Molybdenite2.12.10.1MoS2
Pyrite2.12.1.1FeS2
Group 3 - SULFOSALTS
ø > 4
Polybasite3.1.7.2[(Ag,Cu)6(Sb,As)2S7][Ag9CuS4]
3 <ø < 4
Tennantite3.3.6.2Cu6Cu4(Fe2+,Zn)2As4S12S
Tetrahedrite3.3.6.1Cu6Cu4(Fe2+,Zn)2Sb4S12S
Group 4 - SIMPLE OXIDES
A2X
Cuprite4.1.1.1Cu2O
A2X3
Hematite4.3.1.2Fe2O3
AX2
Pyrolusite4.4.1.4Mn4+O2
Group 6 - HYDROXIDES AND OXIDES CONTAINING HYDROXYL
XO(OH)
Goethite6.1.1.2α-Fe3+O(OH)
Manganite6.1.3.1Mn3+O(OH)
Group 7 - MULTIPLE OXIDES
ABX2
Delafossite7.1.1.1CuFeO2
AB2X4
Magnetite7.2.2.3Fe2+Fe3+2O4
AB3X7
Chalcophanite7.8.2.1ZnMn4+3O7 · 3H2O
AB8X16
Cryptomelane7.9.1.2K(Mn4+7Mn3+)O16
Group 14 - ANHYDROUS NORMAL CARBONATES
A(XO3)
Calcite14.1.1.1CaCO3
Cerussite14.1.3.4PbCO3
Rhodochrosite14.1.1.4MnCO3
Siderite14.1.1.3FeCO3
AB(XO3)2
Kutnohorite14.2.1.3CaMn2+(CO3)2
Group 16a - ANHYDROUS CARBONATES CONTAINING HYDROXYL OR HALOGEN
Malachite16a.3.1.1Cu2(CO3)(OH)2
Group 28 - ANHYDROUS ACID AND NORMAL SULFATES
AXO4
Anhydrite28.3.2.1CaSO4
Baryte28.3.1.1BaSO4
Group 29 - HYDRATED ACID AND NORMAL SULFATES
AXO4·xH2O
Chalcanthite29.6.7.1CuSO4 · 5H2O
Goslarite29.6.11.2ZnSO4 · 7H2O
Gypsum29.6.3.1CaSO4 · 2H2O
Group 30 - ANHYDROUS SULFATES CONTAINING HYDROXYL OR HALOGEN
(AB)2(XO4)Zq
Jarosite30.2.5.1KFe3+ 3(SO4)2(OH)6
Group 58 - SOROSILICATES Insular, Mixed, Single, and Larger Tetrahedral Groups
Insular, Mixed, Single, and Larger Tetrahedral Groups with cations in [6] and higher coordination; single and double groups (n = 1, 2)
Epidote58.2.1a.7{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Group 65 - INOSILICATES Single-Width,Unbranched Chains,(W=1)
Single-Width Unbranched Chains, W=1 with chains P=2
Augite65.1.3a.3(CaxMgyFez)(Mgy1Fez1)Si2O6
Diopside65.1.3a.1CaMgSi2O6
Group 71 - PHYLLOSILICATES Sheets of Six-Membered Rings
Sheets of 6-membered rings with 1:1 layers
Dickite71.1.1.1Al2(Si2O5)(OH)4
Sheets of 6-membered rings with 2:1 layers
Muscovite71.2.2a.1KAl2(AlSi3O10)(OH)2
Group 74 - PHYLLOSILICATES Modulated Layers
Modulated Layers with joined strips
Chrysocolla74.3.2.1Cu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Group 75 - TECTOSILICATES Si Tetrahedral Frameworks
Si Tetrahedral Frameworks - SiO2 with [4] coordinated Si
Quartz75.1.3.1SiO2
Group 76 - TECTOSILICATES Al-Si Framework
Al-Si Framework with Al-Si frameworks
Albite76.1.3.1Na(AlSi3O8)
Microcline76.1.1.5K(AlSi3O8)
Unclassified Minerals, Mixtures, etc.
Actinolite-☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2
'Albite-Anorthite Series'-
'Apatite'-Ca5(PO4)3(Cl/F/OH)
'Biotite'-K(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
Calcite
var: Manganoan Calcite
-(Ca,Mn)CO3
'Chlorite Group'-
Hematite
var: Specularite
-Fe2O3
'Hornblende'-
'K Feldspar'-
Kaolinite-Al2(Si2O5)(OH)4
'Limonite'-(Fe,O,OH,H2O)
'Manganese Oxides'-
Muscovite
var: Sericite
-KAl2(AlSi3O10)(OH)2
Natrojarosite-NaFe3(SO4)2(OH)6
'Psilomelane'-Mn, O
'Pyroxene Group'-
'Smectite Group'-A0.3D2-3[T4O10]Z2 · nH2O
'Wad'-

List of minerals for each chemical element

HHydrogen
H ManganiteMn3+O(OH)
H ChalcophaniteZnMn34+O7 · 3H2O
H Limonite(Fe,O,OH,H2O)
H GypsumCaSO4 · 2H2O
H GoslariteZnSO4 · 7H2O
H BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
H Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
H Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
H ApatiteCa5(PO4)3(Cl/F/OH)
H Goethiteα-Fe3+O(OH)
H JarositeKFe3+ 3(SO4)2(OH)6
H KaoliniteAl2(Si2O5)(OH)4
H DickiteAl2(Si2O5)(OH)4
H MalachiteCu2(CO3)(OH)2
H Smectite GroupA0.3D2-3[T4O10]Z2 · nH2O
H NatrojarositeNaFe3(SO4)2(OH)6
H ChalcanthiteCuSO4 · 5H2O
H ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
H MuscoviteKAl2(AlSi3O10)(OH)2
H Actinolite☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2
CCarbon
C CalciteCaCO3
C Calcite (var: Manganoan Calcite)(Ca,Mn)CO3
C RhodochrositeMnCO3
C KutnohoriteCaMn2+(CO3)2
C CerussitePbCO3
C SideriteFeCO3
C MalachiteCu2(CO3)(OH)2
OOxygen
O CalciteCaCO3
O Calcite (var: Manganoan Calcite)(Ca,Mn)CO3
O RhodochrositeMnCO3
O KutnohoriteCaMn2+(CO3)2
O QuartzSiO2
O ManganiteMn3+O(OH)
O ChalcophaniteZnMn34+O7 · 3H2O
O CryptomelaneK(Mn74+Mn3+)O16
O PyrolusiteMn4+O2
O HematiteFe2O3
O Limonite(Fe,O,OH,H2O)
O CupriteCu2O
O GypsumCaSO4 · 2H2O
O CerussitePbCO3
O GoslariteZnSO4 · 7H2O
O MagnetiteFe2+Fe23+O4
O BaryteBaSO4
O BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
O Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
O Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
O AnhydriteCaSO4
O ApatiteCa5(PO4)3(Cl/F/OH)
O Goethiteα-Fe3+O(OH)
O Hematite (var: Specularite)Fe2O3
O JarositeKFe3+ 3(SO4)2(OH)6
O KaoliniteAl2(Si2O5)(OH)4
O DickiteAl2(Si2O5)(OH)4
O SideriteFeCO3
O DelafossiteCuFeO2
O MalachiteCu2(CO3)(OH)2
O Smectite GroupA0.3D2-3[T4O10]Z2 · nH2O
O AlbiteNa(AlSi3O8)
O NatrojarositeNaFe3(SO4)2(OH)6
O MicroclineK(AlSi3O8)
O DiopsideCaMgSi2O6
O Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
O ChalcanthiteCuSO4 · 5H2O
O ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
O PsilomelaneMn, O
O MuscoviteKAl2(AlSi3O10)(OH)2
O Actinolite☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2
FFluorine
F BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
F ApatiteCa5(PO4)3(Cl/F/OH)
NaSodium
Na AlbiteNa(AlSi3O8)
Na NatrojarositeNaFe3(SO4)2(OH)6
MgMagnesium
Mg BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
Mg DiopsideCaMgSi2O6
Mg Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
Mg Actinolite☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2
AlAluminium
Al BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
Al Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Al Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
Al KaoliniteAl2(Si2O5)(OH)4
Al DickiteAl2(Si2O5)(OH)4
Al AlbiteNa(AlSi3O8)
Al MicroclineK(AlSi3O8)
Al ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Al MuscoviteKAl2(AlSi3O10)(OH)2
SiSilicon
Si QuartzSiO2
Si BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
Si Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Si Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
Si KaoliniteAl2(Si2O5)(OH)4
Si DickiteAl2(Si2O5)(OH)4
Si AlbiteNa(AlSi3O8)
Si MicroclineK(AlSi3O8)
Si DiopsideCaMgSi2O6
Si Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
Si ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Si MuscoviteKAl2(AlSi3O10)(OH)2
Si Actinolite☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2
PPhosphorus
P ApatiteCa5(PO4)3(Cl/F/OH)
SSulfur
S Nagyágite[Pb3(Pb,Sb)3S6](Au,Te)3
S PyriteFeS2
S SphaleriteZnS
S ChalcopyriteCuFeS2
S GalenaPbS
S TennantiteCu6Cu4(Fe2+,Zn)2As4S12S
S Polybasite[(Ag,Cu)6(Sb,As)2S7][Ag9CuS4]
S AcanthiteAg2S
S CovelliteCuS
S GypsumCaSO4 · 2H2O
S GoslariteZnSO4 · 7H2O
S BorniteCu5FeS4
S MolybdeniteMoS2
S BaryteBaSO4
S AnhydriteCaSO4
S ChalcociteCu2S
S DigeniteCu9S5
S JarositeKFe3+ 3(SO4)2(OH)6
S TetrahedriteCu6Cu4(Fe2+,Zn)2Sb4S12S
S NatrojarositeNaFe3(SO4)2(OH)6
S ChalcanthiteCuSO4 · 5H2O
ClChlorine
Cl ApatiteCa5(PO4)3(Cl/F/OH)
KPotassium
K CryptomelaneK(Mn74+Mn3+)O16
K BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
K Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
K JarositeKFe3+ 3(SO4)2(OH)6
K MicroclineK(AlSi3O8)
K MuscoviteKAl2(AlSi3O10)(OH)2
CaCalcium
Ca CalciteCaCO3
Ca Calcite (var: Manganoan Calcite)(Ca,Mn)CO3
Ca KutnohoriteCaMn2+(CO3)2
Ca GypsumCaSO4 · 2H2O
Ca Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Ca AnhydriteCaSO4
Ca ApatiteCa5(PO4)3(Cl/F/OH)
Ca DiopsideCaMgSi2O6
Ca Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
Ca Actinolite☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2
MnManganese
Mn Calcite (var: Manganoan Calcite)(Ca,Mn)CO3
Mn RhodochrositeMnCO3
Mn KutnohoriteCaMn2+(CO3)2
Mn ManganiteMn3+O(OH)
Mn ChalcophaniteZnMn34+O7 · 3H2O
Mn CryptomelaneK(Mn74+Mn3+)O16
Mn PyrolusiteMn4+O2
Mn PsilomelaneMn, O
FeIron
Fe PyriteFeS2
Fe ChalcopyriteCuFeS2
Fe TennantiteCu6Cu4(Fe2+,Zn)2As4S12S
Fe HematiteFe2O3
Fe Limonite(Fe,O,OH,H2O)
Fe MagnetiteFe2+Fe23+O4
Fe BorniteCu5FeS4
Fe BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
Fe Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Fe Goethiteα-Fe3+O(OH)
Fe Hematite (var: Specularite)Fe2O3
Fe JarositeKFe3+ 3(SO4)2(OH)6
Fe SideriteFeCO3
Fe DelafossiteCuFeO2
Fe TetrahedriteCu6Cu4(Fe2+,Zn)2Sb4S12S
Fe NatrojarositeNaFe3(SO4)2(OH)6
Fe Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
Fe Actinolite☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2
CuCopper
Cu ChalcopyriteCuFeS2
Cu TennantiteCu6Cu4(Fe2+,Zn)2As4S12S
Cu Polybasite[(Ag,Cu)6(Sb,As)2S7][Ag9CuS4]
Cu CovelliteCuS
Cu CupriteCu2O
Cu BorniteCu5FeS4
Cu ChalcociteCu2S
Cu DigeniteCu9S5
Cu DelafossiteCuFeO2
Cu MalachiteCu2(CO3)(OH)2
Cu TetrahedriteCu6Cu4(Fe2+,Zn)2Sb4S12S
Cu ChalcanthiteCuSO4 · 5H2O
Cu ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
ZnZinc
Zn SphaleriteZnS
Zn TennantiteCu6Cu4(Fe2+,Zn)2As4S12S
Zn ChalcophaniteZnMn34+O7 · 3H2O
Zn GoslariteZnSO4 · 7H2O
Zn TetrahedriteCu6Cu4(Fe2+,Zn)2Sb4S12S
AsArsenic
As TennantiteCu6Cu4(Fe2+,Zn)2As4S12S
As Polybasite[(Ag,Cu)6(Sb,As)2S7][Ag9CuS4]
MoMolybdenum
Mo MolybdeniteMoS2
AgSilver
Ag Polybasite[(Ag,Cu)6(Sb,As)2S7][Ag9CuS4]
Ag AcanthiteAg2S
Ag SilverAg
SbAntimony
Sb Nagyágite[Pb3(Pb,Sb)3S6](Au,Te)3
Sb Polybasite[(Ag,Cu)6(Sb,As)2S7][Ag9CuS4]
Sb TetrahedriteCu6Cu4(Fe2+,Zn)2Sb4S12S
TeTellurium
Te Nagyágite[Pb3(Pb,Sb)3S6](Au,Te)3
BaBarium
Ba BaryteBaSO4
AuGold
Au GoldAu
Au Nagyágite[Pb3(Pb,Sb)3S6](Au,Te)3
PbLead
Pb Nagyágite[Pb3(Pb,Sb)3S6](Au,Te)3
Pb GalenaPbS
Pb CerussitePbCO3

Geochronology

Mineralization age: Llandovery : 437 ± 13 Ma

Important note: This table is based only on rock and mineral ages recorded below and is not necessarily a complete representation of the geochronology, but does give an indication of possible mineralization events relevant to this locality. As more age information is added this table may expand in the future. A break in the table simply indicates a lack of data entered here, not necessarily a break in the geologic sequence. Grey background entries are from different, related, localities.

Geologic TimeRocks, Minerals and Events
Phanerozoic
 Paleozoic
  Silurian
   Llandovery
ⓘ Muscovite437 ± 13 MaBajo de la Alumbrera Mine, Agua de Dionisio mining district (YMAD), Farallón Negro, Belén Department, Catamarca Province, Argentina
ⓘ Biotite437 ± 13 MaBajo de la Alumbrera Mine, Agua de Dionisio mining district (YMAD), Farallón Negro, Belén Department, Catamarca Province, Argentina

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
GUTIERREZ, A. A.; CHONG D., G. and ESPINOZA R., S.. Exposures levels of the deposits of the Agua de Dionisio (YMAD) mining district, Catamarca. Rev. Asoc. Geol. Argent. [online]. 2006, vol.61, n.2, pp. 269-278.
M. Gianfrancisco. HISTORIA DEL DISTRITO MINERO FARALLÓN NEGRO, CATAMARCA, ARGENTINA. Facultad de Ciencias Naturales e Instituto Miguel
Lillo. mgian@csnat.unt.edu.ar
F. Martínez. ESTUDIO MINERALÓGICO PRELIMINAR DE LA ALTERACIÓN HIDROTERMAL DE LA ROCA DE CAJA DE LA VETA FARALLÓN NEGRO RAMA NORTE, PROVINCIA DE CATAMARCA, ARGENTINA. Fundación Miguel Lillo. Facundomartinezz22@hotmail.com

Localities in this Region


This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
 
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization. Public Relations by Blytheweigh.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2019, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: December 16, 2019 00:25:18 Page generated: August 8, 2019 12:26:56
Go to top of page