Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat Articles
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsThe ElementsUsersBooks & MagazinesMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery

Libiola Mine, Sestri Levante, Genova Province, Liguria, Italyi
Regional Level Types
Libiola MineMine
Sestri Levante- not defined -
Genova ProvinceProvince
LiguriaAdministrative Region
ItalyCountry

This page is currently not sponsored. Click here to sponsor this page.
Key
Lock Map
Latitude & Longitude (WGS84):
44° 18' 17'' North , 9° 26' 54'' East
Latitude & Longitude (decimal):
Locality type:
Nearest Settlements:
PlacePopulationDistance
Tassani123 (2014)1.0km
Montedomenico222 (2014)1.2km
Cardini125 (2014)1.3km
Bargone321 (2014)2.7km
Frisolino110 (2014)3.4km
Name(s) in local language(s):
Miniera di Libiola, Sestri Levante, Genova, Liguria, Italia


Old abandoned copper mine (mined since 1864, abandoned in 1961).
Mining dates back to the early Copper Age; compare Monte Loreto.

The mining site is located on the west boundary of the Valgraveglia ophiolite complex, about 6 km northeast of Sestri Levante. Libiola was the
biggest mine in the eastern Liguria district and probably the most productive in the northern Apennine, having supplied more than 1.5 Mt of ore with an average grade of 7 wt% Cu between 1864 and 1961, when it was definitively closed (Galli and Penco, 1996). The sulfide deposit consists of a suite of massive sulfide lenses (25-35 wt% total S) stacked one on the other at the top of a huge dome of pillow basalt, underlain and partly overthrust by massive serpentinite and laminated gabbro. At the footwall of massive orebodies, the sulfide "infiltrates" among pillows and pillow-breccia fragments, giving rise to an interstitial ore (<10 wt% total S) that grades into a network of millimetric veins, filling cracks and fissures within completely chloritised basalt (stringer ore). The sulfide assemblage is dominated by pyrite and chalcopyrite with subordinate sphalerite and pyrrhotite, in a gangue of quartz, calcite, and chlorite. The biogenic features observed in stratiform deposits are absent, although pyrite framboids have been observed in several samples. Ilmenite, rutile, and titanite occur in the chlorite gangue of the stringers (Garuti & Zaccarini, 2005; Garuti et al., 2008). Gold and silver minerals have been reported to be relatively common (Galli, 1959; Ferrario and Garuti, 1980) frequently accompanied by uraninite (Garuti and Zaccarini, 2005). A second type of very low grade mineralisation occurs associated with shear zones in serpentinite, possibly representing syn-tectonic remobilisation of magmatic sulfides, as indicated by the occurrence of accessory pentlandite (Bertolani, 1952).

Regions containing this locality

Eurasian PlateTectonic Plate
EuropeContinent

Select Mineral List Type

Standard Detailed Strunz Dana Chemical Elements

Mineral List


70 valid minerals.

Rock Types Recorded

Note: this is a very new system on mindat.org and data is currently VERY limited. Please bear with us while we work towards adding this information!

Select Rock List Type

Alphabetical List Tree Diagram

Detailed Mineral List:

Acanthite
Formula: Ag2S
Reference: Garuti, G. and Zaccarini, F. (2005) Minerals of Au, Ag, and U in volcanic-rock-associated massive sulfide deposits of the Northern Apennine ophiolite, Italy. Canadian Mineralogist, 43, 935-950.
Allophane
Formula: (Al2O3)(SiO2)1.3-2 · 2.5-3H2O
Reference: Antofilli M., Borgo E., Palenzona A. (1983): I Nostri Minerali. Geologia e Mineralogia in Liguria. Sagep, Ed., Genova, 295 pp.
Alunogen
Formula: Al2(SO4)3 · 17H2O
Reference: Antofilli M., Borgo E., Palenzona A. (1983): I Nostri Minerali. Geologia e Mineralogia in Liguria. Sagep, Ed., Genova, 295 pp.
Andradite
Formula: Ca3Fe3+2(SiO4)3
Reference: Antofilli M., Borgo E., Palenzona A. (1983): I Nostri Minerali. Geologia e Mineralogia in Liguria. Sagep, Ed., Genova, 295 pp.
Antlerite
Formula: Cu3(SO4)(OH)4
Reference: Palenzona, A. & Borgo, E. (1988): I Nostri Minerali. Geologia e Mineralogia in Liguria. Aggiornamento 1988. Sagep, Ed., Genova
Aragonite
Formula: CaCO3
Reference: Carbone, C. , Marescotti, P., Cabella, R., Lucchetti, G. (2002): Sulfide alteration and related secondary minerals from the Libiola mine (Eastern Liguria, Italy). Poster at the 82° SIMP Congress , Arcavacata di Rende (CS) 18-20/09/2002. Abstract in Plinius 28 , 88-89.
Azurite
Formula: Cu3(CO3)2(OH)2
Reference: Antofilli M., Borgo E., Palenzona A. (1983): I Nostri Minerali. Geologia e Mineralogia in Liguria. Sagep, Ed., Genova, 295 pp.
Bernalite
Formula: Fe(OH)3 · nH2O (n = 0.0 to 0.25)
Reference: Dott. Cristina Carbone-Dipteris-Genova: analysis June 2007 (paper in preparation); Carbone, C. (2008). Crystallochemical and minerogenetic study of oxide and oxy-hydroxides related to AMD (acid mine drainage) processes in Libiola mine (Sestri Levante). Plinius No. 34
Bieberite
Formula: CoSO4 · 7H2O
Reference: Carbone, C. , Marescotti, P., Cabella, R., Lucchetti, G. (2002): Sulfide alteration and related secondary minerals from the Libiola mine (Eastern Liguria, Italy). Poster at the 82° SIMP Congress , Arcavacata di Rende (CS) 18-20/09/2002. Abstract in Plinius 28 , 88-89.
Bonattite
Formula: CuSO4 · 3H2O
Reference: Carbone, C. , Marescotti, P., Cabella, R., Lucchetti, G. (2002): Sulfide alteration and related secondary minerals from the Libiola mine (Eastern Liguria, Italy). Poster at the 82° SIMP Congress , Arcavacata di Rende (CS) 18-20/09/2002. Abstract in Plinius 28 , 88-89.
Bornite
Formula: Cu5FeS4
Reference: Antofilli M., Borgo E., Palenzona A. (1983): I Nostri Minerali. Geologia e Mineralogia in Liguria. Sagep, Ed., Genova, 295 pp.
Botryogen
Formula: MgFe3+(SO4)2(OH) · 7H2O
Reference: Antofilli M., Borgo E., Palenzona A. (1983): I Nostri Minerali. Geologia e Mineralogia in Liguria. Sagep, Ed., Genova, 295 pp. ; Handbook of Mineralogy
Brochantite
Formula: Cu4(SO4)(OH)6
Reference: Carbone, C. , Marescotti, P., Cabella, R., Lucchetti, G. (2002): Sulfide alteration and related secondary minerals from the Libiola mine (Eastern Liguria, Italy). Poster at the 82° SIMP Congress , Arcavacata di Rende (CS) 18-20/09/2002. Abstract in Plinius 28 , 88-89.
Calcite
Formula: CaCO3
Reference: Antofilli M., Borgo E., Palenzona A. (1983): I Nostri Minerali. Geologia e Mineralogia in Liguria. Sagep, Ed., Genova, 295 pp. ; Garuti, G., Bartoli, O., Scacchetti, M., and Zaccarini, F. (2008) Geological setting and structural styles of Volcanic Massive Sulfide deposits in the northern Apennines (Italy): evidence for seafloor and sub-seafloor hydrothermal activity in unconventional ophiolites of the Mesozoic Tethys. Boletín de la Sociedad Geológica Mexicana, 60, 1, 121-145.; Garuti, G. and Zaccarini, F. (2005) Minerals of Au, Ag, and U in volcanic-rock-associated massive sulfide deposits of the Northern Apennine ophiolite, Italy. Canadian Mineralogist, 43, 935-950.
Calcite var: Cobaltoan Calcite
Formula: (Ca,Co)CO3
Reference: Antofilli M., Borgo E., Palenzona A. (1983): I Nostri Minerali. Geologia e Mineralogia in Liguria. Sagep, Ed., Genova, 295 pp.
Carbonatecyanotrichite
Formula: Cu4Al2(CO3,SO4)(OH)12 · 2H2O
Reference: Palenzona, A. & Borgo, E. (1991): I Nostri Minerali. Geologia e Mineralogia in Liguria. Aggiornamento 1990. Sagep, Ed., Genova
Chalcanthite
Formula: CuSO4 · 5H2O
Reference: Antofilli M., Borgo E., Palenzona A. (1983): I Nostri Minerali. Geologia e Mineralogia in Liguria. Sagep, Ed., Genova, 295 pp.
Chalcoalumite
Formula: CuAl4(SO4)(OH)12 · 3H2O
Reference: Palenzona, A. & Borgo, E. (1988): I Nostri Minerali. Geologia e Mineralogia in Liguria. Aggiornamento 1988. Sagep, Ed., Genova
Chalcocite
Formula: Cu2S
Reference: Antofilli M., Borgo E., Palenzona A. (1983): I Nostri Minerali. Geologia e Mineralogia in Liguria. Sagep, Ed., Genova, 295 pp.
Chalcopyrite
Formula: CuFeS2
Reference: Antofilli M., Borgo E., Palenzona A. (1983): I Nostri Minerali. Geologia e Mineralogia in Liguria. Sagep, Ed., Genova, 295 pp. ; Carbone, C. (2008). Crystallochemical and minerogenetic study of oxide and oxy-hydroxides related to AMD (acid mine drainage) processes in Libiola mine (Sestri Levante). Plinius No. 34; Garuti, G., Bartoli, O., Scacchetti, M., and Zaccarini, F. (2008) Geological setting and structural styles of Volcanic Massive Sulfide deposits in the northern Apennines (Italy): evidence for seafloor and sub-seafloor hydrothermal activity in unconventional ophiolites of the Mesozoic Tethys. Boletín de la Sociedad Geológica Mexicana, 60, 1, 121-145.; Garuti, G. and Zaccarini, F. (2005) Minerals of Au, Ag, and U in volcanic-rock-associated massive sulfide deposits of the Northern Apennine ophiolite, Italy. Canadian Mineralogist, 43, 935-950.
'Chlorite Group'
Reference: Garuti, G., Bartoli, O., Scacchetti, M., and Zaccarini, F. (2008) Geological setting and structural styles of Volcanic Massive Sulfide deposits in the northern Apennines (Italy): evidence for seafloor and sub-seafloor hydrothermal activity in unconventional ophiolites of the Mesozoic Tethys. Boletín de la Sociedad Geológica Mexicana, 60, 1, 121-145.; Garuti, G. and Zaccarini, F. (2005) Minerals of Au, Ag, and U in volcanic-rock-associated massive sulfide deposits of the Northern Apennine ophiolite, Italy. Canadian Mineralogist, 43, 935-950.
Chromite
Formula: Fe2+Cr3+2O4
Reference: Palenzona, A., & Martinelli, A. (2007). Uvarovite in Liguria. Prie, 3 (2007), 16-18
Chrysocolla
Formula: Cu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Reference: Antofilli M., Borgo E., Palenzona A. (1983): I Nostri Minerali. Geologia e Mineralogia in Liguria. Sagep, Ed., Genova, 295 pp.
Copiapite
Formula: Fe2+Fe3+4(SO4)6(OH)2 · 20H2O
Reference: Antofilli M., Borgo E., Palenzona A. (1983): I Nostri Minerali. Geologia e Mineralogia in Liguria. Sagep, Ed., Genova, 295 pp.
Copper
Formula: Cu
Reference: Antofilli M., Borgo E., Palenzona A. (1983): I Nostri Minerali. Geologia e Mineralogia in Liguria. Sagep, Ed., Genova, 295 pp. ; Carbone, C. (2008). Crystallochemical and minerogenetic study of oxide and oxy-hydroxides related to AMD (acid mine drainage) processes in Libiola mine (Sestri Levante). Plinius No. 34
Covellite
Formula: CuS
Reference: Palenzona, A. & Borgo, E. (1988): I Nostri Minerali. Geologia e Mineralogia in Liguria. Aggiornamento 1988. Sagep, Ed., Genova
Cronstedtite
Formula: Fe2+2Fe3+((Si,Fe3+)2O5)(OH)4
Reference: Carbone, C. , Marescotti, P., Cabella, R., Lucchetti, G. (2002): Sulfide alteration and related secondary minerals from the Libiola mine (Eastern Liguria, Italy). Poster at the 82° SIMP Congress , Arcavacata di Rende (CS) 18-20/09/2002. Abstract in Plinius 28 , 88-89.
Cubanite
Formula: CuFe2S3
Reference: Palenzona, A. & Borgo, E. (1988): I Nostri Minerali. Geologia e Mineralogia in Liguria. Aggiornamento 1988. Sagep, Ed., Genova
Cuprite
Formula: Cu2O
Reference: Antofilli M., Borgo E., Palenzona A. (1983): I Nostri Minerali. Geologia e Mineralogia in Liguria. Sagep, Ed., Genova, 295 pp.
Cyanotrichite
Formula: Cu4Al2(SO4)(OH)12 · 2H2O
Reference: Palenzona, A. & Borgo, E. (1991): I Nostri Minerali. Geologia e Mineralogia in Liguria. Aggiornamento 1990. Sagep, Ed., Genova
Devilline
Formula: CaCu4(SO4)2(OH)6 · 3H2O
Reference: A. Palenzona (2005): personal communication to C. Balestra
Diopside
Formula: CaMgSi2O6
Reference: Antofilli M., Borgo E., Palenzona A. (1983): I Nostri Minerali. Geologia e Mineralogia in Liguria. Sagep, Ed., Genova, 295 pp.
Epsomite
Formula: MgSO4 · 7H2O
Reference: Antofilli M., Borgo E., Palenzona A. (1983): I Nostri Minerali. Geologia e Mineralogia in Liguria. Sagep, Ed., Genova, 295 pp.
Felsőbányaite
Formula: Al4(SO4)(OH)10 · 4H2O
Reference: Dott. Cristina Carbone-Dipteris-Genova: analysis June 2007 (paper in preparation)
Ferrihydrite
Formula: Fe3+10O14(OH)2
Reference: Carbone, C. , Marescotti, P., Cabella, R., Lucchetti, G. (2002): Sulfide alteration and related secondary minerals from the Libiola mine (Eastern Liguria, Italy). Poster at the 82° SIMP Congress , Arcavacata di Rende (CS) 18-20/09/2002. Abstract in Plinius 28 , 88-89.; E. Dinelli, N. Morandi & F. Tateo (1998): Fine-grained weathering products in waste disposal from two sulphide mines in the northern Apennines, Italy. Clay Minerals 33,423-433.; Carbone, C. (2008). Crystallochemical and minerogenetic study of oxide and oxy-hydroxides related to AMD (acid mine drainage) processes in Libiola mine (Sestri Levante). Plinius No. 34
'Ferro-Actinolite-Tremolite Series'
Reference: Antofilli M., Borgo E., Palenzona A. (1983): I Nostri Minerali. Geologia e Mineralogia in Liguria. Sagep, Ed., Genova, 295 pp.
Goethite
Formula: α-Fe3+O(OH)
Reference: Antofilli M., Borgo E., Palenzona A. (1983): I Nostri Minerali. Geologia e Mineralogia in Liguria. Sagep, Ed., Genova, 295 pp. ; Carbone, C. (2008). Crystallochemical and minerogenetic study of oxide and oxy-hydroxides related to AMD (acid mine drainage) processes in Libiola mine (Sestri Levante). Plinius No. 34
Gold
Formula: Au
Reference: Antofilli M., Borgo E., Palenzona A. (1983): I Nostri Minerali. Geologia e Mineralogia in Liguria. Sagep, Ed., Genova, 295 pp. ; Garuti, G., Bartoli, O., Scacchetti, M., and Zaccarini, F. (2008) Geological setting and structural styles of Volcanic Massive Sulfide deposits in the northern Apennines (Italy): evidence for seafloor and sub-seafloor hydrothermal activity in unconventional ophiolites of the Mesozoic Tethys. Boletín de la Sociedad Geológica Mexicana, 60, 1, 121-145.; Garuti, G. and Zaccarini, F. (2005) Minerals of Au, Ag, and U in volcanic-rock-associated massive sulfide deposits of the Northern Apennine ophiolite, Italy. Canadian Mineralogist, 43, 935-950.
Greenalite
Formula: (Fe2+,Fe3+)2-3Si2O5(OH)4
Reference: Carbone, C. , Marescotti, P., Cabella, R., Lucchetti, G. (2002): Sulfide alteration and related secondary minerals from the Libiola mine (Eastern Liguria, Italy). Poster at the 82° SIMP Congress , Arcavacata di Rende (CS) 18-20/09/2002. Abstract in Plinius 28 , 88-89.
Gypsum
Formula: CaSO4 · 2H2O
Reference: Antofilli M., Borgo E., Palenzona A. (1983): I Nostri Minerali. Geologia e Mineralogia in Liguria. Sagep, Ed., Genova, 295 pp.
'Halloysite'
Formula: Al2(Si2O5)(OH)4
Reference: Dott. Cristina Carbone-Dipteris-Genova: analysis June 2007 (paper in preparation)
Halotrichite
Formula: FeAl2(SO4)4 · 22H2O
Reference: Carbone, C. , Marescotti, P., Cabella, R., Lucchetti, G. (2002): Sulfide alteration and related secondary minerals from the Libiola mine (Eastern Liguria, Italy). Poster at the 82° SIMP Congress , Arcavacata di Rende (CS) 18-20/09/2002. Abstract in Plinius 28 , 88-89.
Hematite
Formula: Fe2O3
Reference: Carbone, C. , Marescotti, P., Cabella, R., Lucchetti, G. (2002): Sulfide alteration and related secondary minerals from the Libiola mine (Eastern Liguria, Italy). Poster at the 82° SIMP Congress , Arcavacata di Rende (CS) 18-20/09/2002. Abstract in Plinius 28 , 88-89.
Hydrowoodwardite
Formula: (Cu1-xAlx)(OH)2[SO4]x/2 · nH2O
Reference: Carbone, C. (2008). Crystallochemical and minerogenetic study of oxide and oxy-hydroxides related to AMD (acid mine drainage) processes in Libiola mine (Sestri Levante). Plinius No. 34
Ilmenite
Formula: Fe2+TiO3
Reference: Garuti, G. & Zaccarini, F. (2005): Minerals of Au, Ag and U in volcanic-rock-associated massive sulfide deposits of the Northern Apennine ophiolite, Italy. Canadian Mineralogist, 43 935-950.; Garuti, G., Bartoli, O., Scacchetti, M., and Zaccarini, F. (2008) Geological setting and structural styles of Volcanic Massive Sulfide deposits in the northern Apennines (Italy): evidence for seafloor and sub-seafloor hydrothermal activity in unconventional ophiolites of the Mesozoic Tethys. Boletín de la Sociedad Geológica Mexicana, 60, 1, 121-145.; Garuti, G. and Zaccarini, F. (2005) Minerals of Au, Ag, and U in volcanic-rock-associated massive sulfide deposits of the Northern Apennine ophiolite, Italy. Canadian Mineralogist, 43, 935-950.
Jarosite
Formula: KFe3+ 3(SO4)2(OH)6
Reference: Antofilli M., Borgo E., Palenzona A. (1983): I Nostri Minerali. Geologia e Mineralogia in Liguria. Sagep, Ed., Genova, 295 pp.; Carbone, C. (2008). Crystallochemical and minerogenetic study of oxide and oxy-hydroxides related to AMD (acid mine drainage) processes in Libiola mine (Sestri Levante). Plinius No. 34
Kaolinite
Formula: Al2(Si2O5)(OH)4
Reference: Belmonte, D. (2005): personal communication to C. Balestra
Langite
Formula: Cu4(SO4)(OH)6 · 2H2O
Reference: AA.VV. (1998): Minerali liguri in pillole. Notiziario di Mineralogia del Ferrania Club, 12/1998, 13.
Lepidocrocite
Formula: γ-Fe3+O(OH)
Reference: Carbone, C. , Marescotti, P., Cabella, R., Lucchetti, G. (2002): Sulfide alteration and related secondary minerals from the Libiola mine (Eastern Liguria, Italy). Poster at the 82° SIMP Congress , Arcavacata di Rende (CS) 18-20/09/2002. Abstract in Plinius 28 , 88-89.; Carbone, C. (2008). Crystallochemical and minerogenetic study of oxide and oxy-hydroxides related to AMD (acid mine drainage) processes in Libiola mine (Sestri Levante). Plinius No. 34
Magnetite
Formula: Fe2+Fe3+2O4
Reference: Antofilli M., Borgo E., Palenzona A. (1983): I Nostri Minerali. Geologia e Mineralogia in Liguria. Sagep, Ed., Genova, 295 pp.
Malachite
Formula: Cu2(CO3)(OH)2
Reference: Antofilli M., Borgo E., Palenzona A. (1983): I Nostri Minerali. Geologia e Mineralogia in Liguria. Sagep, Ed., Genova, 295 pp.
Marcasite
Formula: FeS2
Reference: Palenzona, A. & Borgo, E. (1988): I Nostri Minerali. Geologia e Mineralogia in Liguria. Aggiornamento 1988. Sagep, Ed., Genova
Melanterite
Formula: Fe2+(H2O)6SO4 · H2O
Reference: Antofilli M., Borgo E., Palenzona A. (1983): I Nostri Minerali. Geologia e Mineralogia in Liguria. Sagep, Ed., Genova, 295 pp.
Melanterite var: Cuprian Melanterite
Formula: (Fe,Cu)SO4 · 7H2O
Reference: Antofilli M., Borgo E., Palenzona A. (1983): I Nostri Minerali. Geologia e Mineralogia in Liguria. Sagep, Ed., Genova, 295 pp.
Montmorillonite
Formula: (Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Reference: Carbone, C. , Marescotti, P., Cabella, R., Lucchetti, G. (2002): Sulfide alteration and related secondary minerals from the Libiola mine (Eastern Liguria, Italy). Poster at the 82° SIMP Congress , Arcavacata di Rende (CS) 18-20/09/2002. Abstract in Plinius 28 , 88-89.
Nontronite
Formula: Na0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Reference: Carbone, C. , Marescotti, P., Cabella, R., Lucchetti, G. (2002): Sulfide alteration and related secondary minerals from the Libiola mine (Eastern Liguria, Italy). Poster at the 82° SIMP Congress , Arcavacata di Rende (CS) 18-20/09/2002. Abstract in Plinius 28 , 88-89.
Pentlandite
Formula: (FexNiy)Σ9S8
Reference: Antofilli M., Borgo E., Palenzona A. (1983): I Nostri Minerali. Geologia e Mineralogia in Liguria. Sagep, Ed., Genova, 295 pp. ; Garuti, G., Bartoli, O., Scacchetti, M., and Zaccarini, F. (2008) Geological setting and structural styles of Volcanic Massive Sulfide deposits in the northern Apennines (Italy): evidence for seafloor and sub-seafloor hydrothermal activity in unconventional ophiolites of the Mesozoic Tethys. Boletín de la Sociedad Geológica Mexicana, 60, 1, 121-145.; Bertolani, M. (1952) I giacimenti cupriferi nelle ofioliti di Sestri Levante (Liguria). Periodico di Mineralogia, 21, 2-3, 149-170.
Pickeringite
Formula: MgAl2(SO4)4 · 22H2O
Reference: Carbone, C. , Marescotti, P., Cabella, R., Lucchetti, G. (2002): Sulfide alteration and related secondary minerals from the Libiola mine (Eastern Liguria, Italy). Poster at the 82° SIMP Congress , Arcavacata di Rende (CS) 18-20/09/2002. Abstract in Plinius 28 , 88-89.
Pyrite
Formula: FeS2
Reference: Antofilli M., Borgo E., Palenzona A. (1983): I Nostri Minerali. Geologia e Mineralogia in Liguria. Sagep, Ed., Genova, 295 pp. ; Carbone, C. (2008). Crystallochemical and minerogenetic study of oxide and oxy-hydroxides related to AMD (acid mine drainage) processes in Libiola mine (Sestri Levante). Plinius No. 34; Garuti, G., Bartoli, O., Scacchetti, M., and Zaccarini, F. (2008) Geological setting and structural styles of Volcanic Massive Sulfide deposits in the northern Apennines (Italy): evidence for seafloor and sub-seafloor hydrothermal activity in unconventional ophiolites of the Mesozoic Tethys. Boletín de la Sociedad Geológica Mexicana, 60, 1, 121-145.; Garuti, G. and Zaccarini, F. (2005) Minerals of Au, Ag, and U in volcanic-rock-associated massive sulfide deposits of the Northern Apennine ophiolite, Italy. Canadian Mineralogist, 43, 935-950.
Pyrolusite
Formula: Mn4+O2
Reference: Antofilli M., Borgo E., Palenzona A. (1983): I Nostri Minerali. Geologia e Mineralogia in Liguria. Sagep, Ed., Genova, 295 pp.
Pyrophyllite
Formula: Al2Si4O10(OH)2
Reference: Antofilli M., Borgo E., Palenzona A. (1983): I Nostri Minerali. Geologia e Mineralogia in Liguria. Sagep, Ed., Genova, 295 pp.
Pyrrhotite
Formula: Fe7S8
Reference: Palenzona, A. & Borgo, E. (1988): I Nostri Minerali. Geologia e Mineralogia in Liguria. Aggiornamento 1988. Sagep, Ed., Genova ; Garuti, G., Bartoli, O., Scacchetti, M., and Zaccarini, F. (2008) Geological setting and structural styles of Volcanic Massive Sulfide deposits in the northern Apennines (Italy): evidence for seafloor and sub-seafloor hydrothermal activity in unconventional ophiolites of the Mesozoic Tethys. Boletín de la Sociedad Geológica Mexicana, 60, 1, 121-145.; Garuti, G. and Zaccarini, F. (2005) Minerals of Au, Ag, and U in volcanic-rock-associated massive sulfide deposits of the Northern Apennine ophiolite, Italy. Canadian Mineralogist, 43, 935-950.
Quartz
Formula: SiO2
Reference: Carbone, C. (2008). Crystallochemical and minerogenetic study of oxide and oxy-hydroxides related to AMD (acid mine drainage) processes in Libiola mine (Sestri Levante). Plinius No. 34; Garuti, G., Bartoli, O., Scacchetti, M., and Zaccarini, F. (2008) Geological setting and structural styles of Volcanic Massive Sulfide deposits in the northern Apennines (Italy): evidence for seafloor and sub-seafloor hydrothermal activity in unconventional ophiolites of the Mesozoic Tethys. Boletín de la Sociedad Geológica Mexicana, 60, 1, 121-145.; Garuti, G. and Zaccarini, F. (2005) Minerals of Au, Ag, and U in volcanic-rock-associated massive sulfide deposits of the Northern Apennine ophiolite, Italy. Canadian Mineralogist, 43, 935-950.
Rutile
Formula: TiO2
Reference: Garuti, G., Bartoli, O., Scacchetti, M., and Zaccarini, F. (2008) Geological setting and structural styles of Volcanic Massive Sulfide deposits in the northern Apennines (Italy): evidence for seafloor and sub-seafloor hydrothermal activity in unconventional ophiolites of the Mesozoic Tethys. Boletín de la Sociedad Geológica Mexicana, 60, 1, 121-145.; Garuti, G. and Zaccarini, F. (2005) Minerals of Au, Ag, and U in volcanic-rock-associated massive sulfide deposits of the Northern Apennine ophiolite, Italy. Canadian Mineralogist, 43, 935-950.
Schwertmannite
Formula: Fe3+16(OH,SO4)12-13O16 · 10-12H2O
Reference: Carbone, C. (2005): Seminar on “Minerali di neo-formazione nei processi di acid-rock drainage”. Genova, Italy, 17/01/2005.; Carbone, C. (2008). Crystallochemical and minerogenetic study of oxide and oxy-hydroxides related to AMD (acid mine drainage) processes in Libiola mine (Sestri Levante). Plinius No. 34
Siderotil
Formula: FeSO4 · 5H2O
Reference: Carbone, C. , Marescotti, P., Cabella, R., Lucchetti, G. (2002): Sulfide alteration and related secondary minerals from the Libiola mine (Eastern Liguria, Italy). Poster at the 82° SIMP Congress , Arcavacata di Rende (CS) 18-20/09/2002. Abstract in Plinius 28 , 88-89.
Silver
Formula: Ag
Reference: Antofilli M., Borgo E., Palenzona A. (1983): I Nostri Minerali. Geologia e Mineralogia in Liguria. Sagep, Ed., Genova, 295 pp.
Smithsonite
Formula: ZnCO3
Reference: Bracco, R. (2005): personal communication.
Sphalerite
Formula: ZnS
Reference: Antofilli M., Borgo E., Palenzona A. (1983): I Nostri Minerali. Geologia e Mineralogia in Liguria. Sagep, Ed., Genova, 295 pp. ; Garuti, G., Bartoli, O., Scacchetti, M., and Zaccarini, F. (2008) Geological setting and structural styles of Volcanic Massive Sulfide deposits in the northern Apennines (Italy): evidence for seafloor and sub-seafloor hydrothermal activity in unconventional ophiolites of the Mesozoic Tethys. Boletín de la Sociedad Geológica Mexicana, 60, 1, 121-145.; Garuti, G. and Zaccarini, F. (2005) Minerals of Au, Ag, and U in volcanic-rock-associated massive sulfide deposits of the Northern Apennine ophiolite, Italy. Canadian Mineralogist, 43, 935-950.
Spherocobaltite
Formula: CoCO3
Reference: Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 176.
Tenorite
Formula: CuO
Reference: Antofilli M., Borgo E., Palenzona A. (1983): I Nostri Minerali. Geologia e Mineralogia in Liguria. Sagep, Ed., Genova, 295 pp.
Titanite
Formula: CaTi(SiO4)O
Reference: Antofilli, Borgo & Palenzona, 1985. I nostri minerali. Geologia e mineralogia in Liguria. Edizioni Melita, La Spezia. ; Garuti, G., Bartoli, O., Scacchetti, M., and Zaccarini, F. (2008) Geological setting and structural styles of Volcanic Massive Sulfide deposits in the northern Apennines (Italy): evidence for seafloor and sub-seafloor hydrothermal activity in unconventional ophiolites of the Mesozoic Tethys. Boletín de la Sociedad Geológica Mexicana, 60, 1, 121-145.; Garuti, G. and Zaccarini, F. (2005) Minerals of Au, Ag, and U in volcanic-rock-associated massive sulfide deposits of the Northern Apennine ophiolite, Italy. Canadian Mineralogist, 43, 935-950.
Uraninite
Formula: UO2
Reference: Garuti, G. & Zaccarini, F. (2005): Minerals of Au, Ag and U in volcanic-rock-associated massive sulfide deposits of the Northern Apennine ophiolite, Italy. Canadian Mineralogist, 43 935-950.; Garuti, G., Bartoli, O., Scacchetti, M., and Zaccarini, F. (2008) Geological setting and structural styles of Volcanic Massive Sulfide deposits in the northern Apennines (Italy): evidence for seafloor and sub-seafloor hydrothermal activity in unconventional ophiolites of the Mesozoic Tethys. Boletín de la Sociedad Geológica Mexicana, 60, 1, 121-145.; Garuti, G. and Zaccarini, F. (2005) Minerals of Au, Ag, and U in volcanic-rock-associated massive sulfide deposits of the Northern Apennine ophiolite, Italy. Canadian Mineralogist, 43, 935-950.
Uvarovite
Formula: Ca3Cr2(SiO4)3
Reference: Palenzona, A., & Martinelli, A. (2007). Uvarovite in Liguria. Prie, 3 (2007), 16-18
Valleriite
Formula: (Fe2+,Cu)4(Mg,Al)3S4(OH,O)6
Reference: AA. VV., 1996. Collezionare minerali. Hobby & Work.

List of minerals arranged by Strunz 10th Edition classification

Group 1 - Elements
Copper1.AA.05Cu
Gold1.AA.05Au
Silver1.AA.05Ag
Group 2 - Sulphides and Sulfosalts
Acanthite2.BA.35Ag2S
Bornite2.BA.15Cu5FeS4
Chalcocite2.BA.05Cu2S
Chalcopyrite2.CB.10aCuFeS2
Covellite2.CA.05aCuS
Cubanite2.CB.55aCuFe2S3
Marcasite2.EB.10aFeS2
Pentlandite2.BB.15(FexNiy)Σ9S8
Pyrite2.EB.05aFeS2
Pyrrhotite2.CC.10Fe7S8
Sphalerite2.CB.05aZnS
Valleriite2.FD.30(Fe2+,Cu)4(Mg,Al)3S4(OH,O)6
Group 4 - Oxides and Hydroxides
Bernalite4.FC.05Fe(OH)3 · nH2O (n = 0.0 to 0.25)
Chromite4.BB.05Fe2+Cr3+2O4
Cuprite4.AA.10Cu2O
Ferrihydrite4.FE.35Fe3+10O14(OH)2
Goethite4.00.α-Fe3+O(OH)
Hematite4.CB.05Fe2O3
Ilmenite4.CB.05Fe2+TiO3
Lepidocrocite4.FE.15γ-Fe3+O(OH)
Magnetite4.BB.05Fe2+Fe3+2O4
Pyrolusite4.DB.05Mn4+O2
Quartz4.DA.05SiO2
Rutile4.DB.05TiO2
Tenorite4.AB.10CuO
Uraninite4.DL.05UO2
Group 5 - Nitrates and Carbonates
Aragonite5.AB.15CaCO3
Azurite5.BA.05Cu3(CO3)2(OH)2
Calcite5.AB.05CaCO3
var: Cobaltoan Calcite5.AB.05(Ca,Co)CO3
Malachite5.BA.10Cu2(CO3)(OH)2
Smithsonite5.AB.05ZnCO3
Spherocobaltite5.AB.05CoCO3
Group 7 - Sulphates, Chromates, Molybdates and Tungstates
Alunogen7.CB.45Al2(SO4)3 · 17H2O
Antlerite7.BB.15Cu3(SO4)(OH)4
Bieberite7.CB.35CoSO4 · 7H2O
Bonattite7.CB.10CuSO4 · 3H2O
Botryogen7.DC.25MgFe3+(SO4)2(OH) · 7H2O
Brochantite7.BB.25Cu4(SO4)(OH)6
Carbonatecyanotrichite7.DE.10Cu4Al2(CO3,SO4)(OH)12 · 2H2O
Chalcanthite7.CB.20CuSO4 · 5H2O
Chalcoalumite7.DD.75CuAl4(SO4)(OH)12 · 3H2O
Copiapite7.DB.35Fe2+Fe3+4(SO4)6(OH)2 · 20H2O
Cyanotrichite7.DE.10Cu4Al2(SO4)(OH)12 · 2H2O
Devilline7.DD.30CaCu4(SO4)2(OH)6 · 3H2O
Epsomite7.CB.40MgSO4 · 7H2O
Felsőbányaite7.DD.05Al4(SO4)(OH)10 · 4H2O
Gypsum7.CD.40CaSO4 · 2H2O
Halotrichite7.CB.85FeAl2(SO4)4 · 22H2O
Hydrowoodwardite7.DD.35(Cu1-xAlx)(OH)2[SO4]x/2 · nH2O
Jarosite7.BC.10KFe3+ 3(SO4)2(OH)6
Langite7.DD.10Cu4(SO4)(OH)6 · 2H2O
Melanterite7.CB.35Fe2+(H2O)6SO4 · H2O
var: Cuprian Melanterite7.CB.35(Fe,Cu)SO4 · 7H2O
Pickeringite7.CB.85MgAl2(SO4)4 · 22H2O
Schwertmannite7.DE.15Fe3+16(OH,SO4)12-13O16 · 10-12H2O
Siderotil7.CB.20FeSO4 · 5H2O
Group 9 - Silicates
Allophane9.ED.20(Al2O3)(SiO2)1.3-2 · 2.5-3H2O
Andradite9.AD.25Ca3Fe3+2(SiO4)3
Chrysocolla9.ED.20Cu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Cronstedtite9.ED.15Fe2+2Fe3+((Si,Fe3+)2O5)(OH)4
Diopside9.DA.15CaMgSi2O6
Greenalite9.ED.15(Fe2+,Fe3+)2-3Si2O5(OH)4
'Halloysite'9.ED.10Al2(Si2O5)(OH)4
Kaolinite9.ED.05Al2(Si2O5)(OH)4
Montmorillonite9.EC.40(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Nontronite9.EC.40Na0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Pyrophyllite9.EC.10Al2Si4O10(OH)2
Titanite9.AG.15CaTi(SiO4)O
Uvarovite9.AD.25Ca3Cr2(SiO4)3
Unclassified Minerals, Rocks, etc.
'Chlorite Group'-
'Ferro-Actinolite-Tremolite Series'-

List of minerals arranged by Dana 8th Edition classification

Group 1 - NATIVE ELEMENTS AND ALLOYS
Metals, other than the Platinum Group
Copper1.1.1.3Cu
Gold1.1.1.1Au
Silver1.1.1.2Ag
Group 2 - SULFIDES
AmBnXp, with (m+n):p = 2:1
Acanthite2.4.1.1Ag2S
Chalcocite2.4.7.1Cu2S
AmBnXp, with (m+n):p = 3:2
Bornite2.5.2.1Cu5FeS4
AmBnXp, with (m+n):p = 9:8
Pentlandite2.7.1.1(FexNiy)Σ9S8
AmXp, with m:p = 1:1
Covellite2.8.12.1CuS
Pyrrhotite2.8.10.1Fe7S8
Sphalerite2.8.2.1ZnS
AmBnXp, with (m+n):p = 1:1
Chalcopyrite2.9.1.1CuFeS2
Cubanite2.9.13.1CuFe2S3
AmBnXp, with (m+n):p = 1:2
Marcasite2.12.2.1FeS2
Pyrite2.12.1.1FeS2
Hydroxysulfides and Hydrated Sulfides
Valleriite2.14.1.1(Fe2+,Cu)4(Mg,Al)3S4(OH,O)6
Group 4 - SIMPLE OXIDES
A2X
Cuprite4.1.1.1Cu2O
AX
Tenorite4.2.3.1CuO
A2X3
Ferrihydrite4.3.2.2Fe3+10O14(OH)2
Hematite4.3.1.2Fe2O3
Ilmenite4.3.5.1Fe2+TiO3
AX2
Pyrolusite4.4.1.4Mn4+O2
Rutile4.4.1.1TiO2
Group 5 - OXIDES CONTAINING URANIUM OR THORIUM
AXO2·xH2O
Uraninite5.1.1.1UO2
Group 6 - HYDROXIDES AND OXIDES CONTAINING HYDROXYL
XO(OH)
Goethite6.1.1.2α-Fe3+O(OH)
Lepidocrocite6.1.2.2γ-Fe3+O(OH)
X(OH)3
Bernalite6.3.5.3Fe(OH)3 · nH2O (n = 0.0 to 0.25)
Miscellaneous
Schwertmannite6.4.10.1Fe3+16(OH,SO4)12-13O16 · 10-12H2O
Group 7 - MULTIPLE OXIDES
AB2X4
Chromite7.2.3.3Fe2+Cr3+2O4
Magnetite7.2.2.3Fe2+Fe3+2O4
Group 14 - ANHYDROUS NORMAL CARBONATES
A(XO3)
Calcite14.1.1.1CaCO3
Smithsonite14.1.1.6ZnCO3
Spherocobaltite14.1.1.5CoCO3
Group 16a - ANHYDROUS CARBONATES CONTAINING HYDROXYL OR HALOGEN
Azurite16a.2.1.1Cu3(CO3)2(OH)2
Malachite16a.3.1.1Cu2(CO3)(OH)2
Group 16b - HYDRATED CARBONATES CONTAINING HYDROXYL OR HALOGEN
Carbonatecyanotrichite16b.7.7.1Cu4Al2(CO3,SO4)(OH)12 · 2H2O
Group 29 - HYDRATED ACID AND NORMAL SULFATES
AXO4·xH2O
Bieberite29.6.10.4CoSO4 · 7H2O
Chalcanthite29.6.7.1CuSO4 · 5H2O
Epsomite29.6.11.1MgSO4 · 7H2O
Gypsum29.6.3.1CaSO4 · 2H2O
Melanterite29.6.10.1Fe2+(H2O)6SO4 · H2O
Siderotil29.6.7.2FeSO4 · 5H2O
AB2(XO4)4·H2O
Halotrichite29.7.3.2FeAl2(SO4)4 · 22H2O
Pickeringite29.7.3.1MgAl2(SO4)4 · 22H2O
A2(XO4)3·H2O
Alunogen29.8.6.1Al2(SO4)3 · 17H2O
Group 30 - ANHYDROUS SULFATES CONTAINING HYDROXYL OR HALOGEN
(AB)m(XO4)pZq, where m:p>2:1
Antlerite30.1.12.1Cu3(SO4)(OH)4
Brochantite30.1.3.1Cu4(SO4)(OH)6
(AB)2(XO4)Zq
Jarosite30.2.5.1KFe3+ 3(SO4)2(OH)6
Group 31 - HYDRATED SULFATES CONTAINING HYDROXYL OR HALOGEN
(AB)6(XO4)Zq·xH2O
Cyanotrichite31.2.1.1Cu4Al2(SO4)(OH)12 · 2H2O
(AB)5(XO4)Zq·xH2O
Chalcoalumite31.3.1.1CuAl4(SO4)(OH)12 · 3H2O
(AB)4(XO4)Zq·xH2O
Felsőbányaite31.4.4.1Al4(SO4)(OH)10 · 4H2O
Langite31.4.3.1Cu4(SO4)(OH)6 · 2H2O
(AB)5(XO4)2Zq·xH2O
Devilline31.6.1.1CaCu4(SO4)2(OH)6 · 3H2O
(AB)(XO4)Zq·xH2O
Botryogen31.9.6.1MgFe3+(SO4)2(OH) · 7H2O
Miscellaneous
Copiapite31.10.5.1Fe2+Fe3+4(SO4)6(OH)2 · 20H2O
Group 51 - NESOSILICATES Insular SiO4 Groups Only
Insular SiO4 Groups Only with cations in [6] and >[6] coordination
Andradite51.4.3b.1Ca3Fe3+2(SiO4)3
Uvarovite51.4.3b.3Ca3Cr2(SiO4)3
Group 52 - NESOSILICATES Insular SiO4 Groups and O,OH,F,H2O
Insular SiO4 Groups and O, OH, F, and H2O with cations in [6] and/or >[6] coordination
Titanite52.4.3.1CaTi(SiO4)O
Group 65 - INOSILICATES Single-Width,Unbranched Chains,(W=1)
Single-Width Unbranched Chains, W=1 with chains P=2
Diopside65.1.3a.1CaMgSi2O6
Group 71 - PHYLLOSILICATES Sheets of Six-Membered Rings
Sheets of 6-membered rings with 1:1 layers
Allophane71.1.5.1(Al2O3)(SiO2)1.3-2 · 2.5-3H2O
Cronstedtite71.1.4.7Fe2+2Fe3+((Si,Fe3+)2O5)(OH)4
Greenalite71.1.2b.4(Fe2+,Fe3+)2-3Si2O5(OH)4
'Halloysite'71.1.1.4Al2(Si2O5)(OH)4
Sheets of 6-membered rings with 2:1 layers
Pyrophyllite71.2.1.1Al2Si4O10(OH)2
Sheets of 6-membered rings with 2:1 clays
Montmorillonite71.3.1a.2(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Nontronite71.3.1a.3Na0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Group 74 - PHYLLOSILICATES Modulated Layers
Modulated Layers with joined strips
Chrysocolla74.3.2.1Cu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Group 75 - TECTOSILICATES Si Tetrahedral Frameworks
Si Tetrahedral Frameworks - SiO2 with [4] coordinated Si
Quartz75.1.3.1SiO2
Unclassified Minerals, Mixtures, etc.
Aragonite-CaCO3
Bonattite-CuSO4 · 3H2O
Calcite
var: Cobaltoan Calcite
-(Ca,Co)CO3
'Chlorite Group'-
'Ferro-Actinolite-Tremolite Series'-
Hydrowoodwardite-(Cu1-xAlx)(OH)2[SO4]x/2 · nH2O
Kaolinite-Al2(Si2O5)(OH)4
Melanterite
var: Cuprian Melanterite
-(Fe,Cu)SO4 · 7H2O

List of minerals for each chemical element

HHydrogen
H BotryogenMgFe3+(SO4)2(OH) · 7H2O
H BieberiteCoSO4 · 7H2O
H LangiteCu4(SO4)(OH)6 · 2H2O
H JarositeKFe3+ 3(SO4)2(OH)6
H AzuriteCu3(CO3)2(OH)2
H Goethiteα-Fe3+O(OH)
H Allophane(Al2O3)(SiO2)1.3-2 · 2.5-3H2O
H CopiapiteFe2+Fe43+(SO4)6(OH)2 · 20H2O
H EpsomiteMgSO4 · 7H2O
H MalachiteCu2(CO3)(OH)2
H MelanteriteFe2+(H2O)6SO4 · H2O
H Melanterite (var: Cuprian Melanterite)(Fe,Cu)SO4 · 7H2O
H ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
H ChalcanthiteCuSO4 · 5H2O
H AlunogenAl2(SO4)3 · 17H2O
H GypsumCaSO4 · 2H2O
H Valleriite(Fe2+,Cu)4(Mg,Al)3S4(OH,O)6
H PyrophylliteAl2Si4O10(OH)2
H BonattiteCuSO4 · 3H2O
H BrochantiteCu4(SO4)(OH)6
H CronstedtiteFe22+Fe3+((Si,Fe3+)2O5)(OH)4
H FerrihydriteFe103+O14(OH)2
H Greenalite(Fe2+,Fe3+)2-3Si2O5(OH)4
H HalotrichiteFeAl2(SO4)4 · 22H2O
H Lepidocrociteγ-Fe3+O(OH)
H Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
H NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
H PickeringiteMgAl2(SO4)4 · 22H2O
H SiderotilFeSO4 · 5H2O
H SchwertmanniteFe163+(OH,SO4)12-13O16 · 10-12H2O
H AntleriteCu3(SO4)(OH)4
H ChalcoalumiteCuAl4(SO4)(OH)12 · 3H2O
H CyanotrichiteCu4Al2(SO4)(OH)12 · 2H2O
H CarbonatecyanotrichiteCu4Al2(CO3,SO4)(OH)12 · 2H2O
H DevillineCaCu4(SO4)2(OH)6 · 3H2O
H KaoliniteAl2(Si2O5)(OH)4
H BernaliteFe(OH)3 · nH2O (n = 0.0 to 0.25)
H FelsőbányaiteAl4(SO4)(OH)10 · 4H2O
H HalloysiteAl2(Si2O5)(OH)4
H Hydrowoodwardite(Cu1-xAlx)(OH)2[SO4]x/2 · nH2O
CCarbon
C AragoniteCaCO3
C AzuriteCu3(CO3)2(OH)2
C Calcite (var: Cobaltoan Calcite)(Ca,Co)CO3
C MalachiteCu2(CO3)(OH)2
C CalciteCaCO3
C CarbonatecyanotrichiteCu4Al2(CO3,SO4)(OH)12 · 2H2O
C SmithsoniteZnCO3
C SpherocobaltiteCoCO3
OOxygen
O BotryogenMgFe3+(SO4)2(OH) · 7H2O
O BieberiteCoSO4 · 7H2O
O AragoniteCaCO3
O LangiteCu4(SO4)(OH)6 · 2H2O
O JarositeKFe3+ 3(SO4)2(OH)6
O AndraditeCa3Fe23+(SiO4)3
O AzuriteCu3(CO3)2(OH)2
O DiopsideCaMgSi2O6
O Goethiteα-Fe3+O(OH)
O Allophane(Al2O3)(SiO2)1.3-2 · 2.5-3H2O
O Calcite (var: Cobaltoan Calcite)(Ca,Co)CO3
O CopiapiteFe2+Fe43+(SO4)6(OH)2 · 20H2O
O CupriteCu2O
O EpsomiteMgSO4 · 7H2O
O MalachiteCu2(CO3)(OH)2
O MelanteriteFe2+(H2O)6SO4 · H2O
O Melanterite (var: Cuprian Melanterite)(Fe,Cu)SO4 · 7H2O
O ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
O ChalcanthiteCuSO4 · 5H2O
O AlunogenAl2(SO4)3 · 17H2O
O CalciteCaCO3
O GypsumCaSO4 · 2H2O
O MagnetiteFe2+Fe23+O4
O PyrolusiteMn4+O2
O TitaniteCaTi(SiO4)O
O Valleriite(Fe2+,Cu)4(Mg,Al)3S4(OH,O)6
O PyrophylliteAl2Si4O10(OH)2
O TenoriteCuO
O BonattiteCuSO4 · 3H2O
O BrochantiteCu4(SO4)(OH)6
O CronstedtiteFe22+Fe3+((Si,Fe3+)2O5)(OH)4
O FerrihydriteFe103+O14(OH)2
O Greenalite(Fe2+,Fe3+)2-3Si2O5(OH)4
O HalotrichiteFeAl2(SO4)4 · 22H2O
O HematiteFe2O3
O Lepidocrociteγ-Fe3+O(OH)
O Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
O NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
O PickeringiteMgAl2(SO4)4 · 22H2O
O SiderotilFeSO4 · 5H2O
O SchwertmanniteFe163+(OH,SO4)12-13O16 · 10-12H2O
O IlmeniteFe2+TiO3
O UraniniteUO2
O AntleriteCu3(SO4)(OH)4
O ChalcoalumiteCuAl4(SO4)(OH)12 · 3H2O
O CyanotrichiteCu4Al2(SO4)(OH)12 · 2H2O
O CarbonatecyanotrichiteCu4Al2(CO3,SO4)(OH)12 · 2H2O
O DevillineCaCu4(SO4)2(OH)6 · 3H2O
O KaoliniteAl2(Si2O5)(OH)4
O SmithsoniteZnCO3
O UvaroviteCa3Cr2(SiO4)3
O ChromiteFe2+Cr23+O4
O BernaliteFe(OH)3 · nH2O (n = 0.0 to 0.25)
O FelsőbányaiteAl4(SO4)(OH)10 · 4H2O
O HalloysiteAl2(Si2O5)(OH)4
O SpherocobaltiteCoCO3
O Hydrowoodwardite(Cu1-xAlx)(OH)2[SO4]x/2 · nH2O
O QuartzSiO2
O RutileTiO2
NaSodium
Na Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Na NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
MgMagnesium
Mg BotryogenMgFe3+(SO4)2(OH) · 7H2O
Mg DiopsideCaMgSi2O6
Mg EpsomiteMgSO4 · 7H2O
Mg Valleriite(Fe2+,Cu)4(Mg,Al)3S4(OH,O)6
Mg Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Mg PickeringiteMgAl2(SO4)4 · 22H2O
AlAluminium
Al Allophane(Al2O3)(SiO2)1.3-2 · 2.5-3H2O
Al ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Al AlunogenAl2(SO4)3 · 17H2O
Al Valleriite(Fe2+,Cu)4(Mg,Al)3S4(OH,O)6
Al PyrophylliteAl2Si4O10(OH)2
Al HalotrichiteFeAl2(SO4)4 · 22H2O
Al Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Al NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Al PickeringiteMgAl2(SO4)4 · 22H2O
Al ChalcoalumiteCuAl4(SO4)(OH)12 · 3H2O
Al CyanotrichiteCu4Al2(SO4)(OH)12 · 2H2O
Al CarbonatecyanotrichiteCu4Al2(CO3,SO4)(OH)12 · 2H2O
Al KaoliniteAl2(Si2O5)(OH)4
Al FelsőbányaiteAl4(SO4)(OH)10 · 4H2O
Al HalloysiteAl2(Si2O5)(OH)4
Al Hydrowoodwardite(Cu1-xAlx)(OH)2[SO4]x/2 · nH2O
SiSilicon
Si AndraditeCa3Fe23+(SiO4)3
Si DiopsideCaMgSi2O6
Si Allophane(Al2O3)(SiO2)1.3-2 · 2.5-3H2O
Si ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Si TitaniteCaTi(SiO4)O
Si PyrophylliteAl2Si4O10(OH)2
Si CronstedtiteFe22+Fe3+((Si,Fe3+)2O5)(OH)4
Si Greenalite(Fe2+,Fe3+)2-3Si2O5(OH)4
Si Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Si NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Si KaoliniteAl2(Si2O5)(OH)4
Si UvaroviteCa3Cr2(SiO4)3
Si HalloysiteAl2(Si2O5)(OH)4
Si QuartzSiO2
SSulfur
S BotryogenMgFe3+(SO4)2(OH) · 7H2O
S BieberiteCoSO4 · 7H2O
S LangiteCu4(SO4)(OH)6 · 2H2O
S JarositeKFe3+ 3(SO4)2(OH)6
S PyriteFeS2
S BorniteCu5FeS4
S ChalcopyriteCuFeS2
S CopiapiteFe2+Fe43+(SO4)6(OH)2 · 20H2O
S EpsomiteMgSO4 · 7H2O
S MelanteriteFe2+(H2O)6SO4 · H2O
S Melanterite (var: Cuprian Melanterite)(Fe,Cu)SO4 · 7H2O
S ChalcanthiteCuSO4 · 5H2O
S AlunogenAl2(SO4)3 · 17H2O
S SphaleriteZnS
S ChalcociteCu2S
S GypsumCaSO4 · 2H2O
S Pentlandite(FexNiy)Σ9S8
S Valleriite(Fe2+,Cu)4(Mg,Al)3S4(OH,O)6
S BonattiteCuSO4 · 3H2O
S BrochantiteCu4(SO4)(OH)6
S HalotrichiteFeAl2(SO4)4 · 22H2O
S PickeringiteMgAl2(SO4)4 · 22H2O
S SiderotilFeSO4 · 5H2O
S SchwertmanniteFe163+(OH,SO4)12-13O16 · 10-12H2O
S AntleriteCu3(SO4)(OH)4
S ChalcoalumiteCuAl4(SO4)(OH)12 · 3H2O
S CovelliteCuS
S CubaniteCuFe2S3
S MarcasiteFeS2
S PyrrhotiteFe7S8
S CyanotrichiteCu4Al2(SO4)(OH)12 · 2H2O
S DevillineCaCu4(SO4)2(OH)6 · 3H2O
S FelsőbányaiteAl4(SO4)(OH)10 · 4H2O
S Hydrowoodwardite(Cu1-xAlx)(OH)2[SO4]x/2 · nH2O
S AcanthiteAg2S
KPotassium
K JarositeKFe3+ 3(SO4)2(OH)6
CaCalcium
Ca AragoniteCaCO3
Ca AndraditeCa3Fe23+(SiO4)3
Ca DiopsideCaMgSi2O6
Ca Calcite (var: Cobaltoan Calcite)(Ca,Co)CO3
Ca CalciteCaCO3
Ca GypsumCaSO4 · 2H2O
Ca TitaniteCaTi(SiO4)O
Ca Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Ca DevillineCaCu4(SO4)2(OH)6 · 3H2O
Ca UvaroviteCa3Cr2(SiO4)3
TiTitanium
Ti TitaniteCaTi(SiO4)O
Ti IlmeniteFe2+TiO3
Ti RutileTiO2
CrChromium
Cr UvaroviteCa3Cr2(SiO4)3
Cr ChromiteFe2+Cr23+O4
MnManganese
Mn PyrolusiteMn4+O2
FeIron
Fe BotryogenMgFe3+(SO4)2(OH) · 7H2O
Fe JarositeKFe3+ 3(SO4)2(OH)6
Fe AndraditeCa3Fe23+(SiO4)3
Fe Goethiteα-Fe3+O(OH)
Fe PyriteFeS2
Fe BorniteCu5FeS4
Fe ChalcopyriteCuFeS2
Fe CopiapiteFe2+Fe43+(SO4)6(OH)2 · 20H2O
Fe MelanteriteFe2+(H2O)6SO4 · H2O
Fe Melanterite (var: Cuprian Melanterite)(Fe,Cu)SO4 · 7H2O
Fe MagnetiteFe2+Fe23+O4
Fe Pentlandite(FexNiy)Σ9S8
Fe Valleriite(Fe2+,Cu)4(Mg,Al)3S4(OH,O)6
Fe CronstedtiteFe22+Fe3+((Si,Fe3+)2O5)(OH)4
Fe FerrihydriteFe103+O14(OH)2
Fe Greenalite(Fe2+,Fe3+)2-3Si2O5(OH)4
Fe HalotrichiteFeAl2(SO4)4 · 22H2O
Fe HematiteFe2O3
Fe Lepidocrociteγ-Fe3+O(OH)
Fe NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Fe SiderotilFeSO4 · 5H2O
Fe SchwertmanniteFe163+(OH,SO4)12-13O16 · 10-12H2O
Fe IlmeniteFe2+TiO3
Fe CubaniteCuFe2S3
Fe MarcasiteFeS2
Fe PyrrhotiteFe7S8
Fe ChromiteFe2+Cr23+O4
Fe BernaliteFe(OH)3 · nH2O (n = 0.0 to 0.25)
CoCobalt
Co BieberiteCoSO4 · 7H2O
Co Calcite (var: Cobaltoan Calcite)(Ca,Co)CO3
Co SpherocobaltiteCoCO3
NiNickel
Ni Pentlandite(FexNiy)Σ9S8
CuCopper
Cu LangiteCu4(SO4)(OH)6 · 2H2O
Cu AzuriteCu3(CO3)2(OH)2
Cu BorniteCu5FeS4
Cu ChalcopyriteCuFeS2
Cu CupriteCu2O
Cu MalachiteCu2(CO3)(OH)2
Cu Melanterite (var: Cuprian Melanterite)(Fe,Cu)SO4 · 7H2O
Cu ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Cu ChalcanthiteCuSO4 · 5H2O
Cu ChalcociteCu2S
Cu CopperCu
Cu Valleriite(Fe2+,Cu)4(Mg,Al)3S4(OH,O)6
Cu TenoriteCuO
Cu BonattiteCuSO4 · 3H2O
Cu BrochantiteCu4(SO4)(OH)6
Cu AntleriteCu3(SO4)(OH)4
Cu ChalcoalumiteCuAl4(SO4)(OH)12 · 3H2O
Cu CovelliteCuS
Cu CubaniteCuFe2S3
Cu CyanotrichiteCu4Al2(SO4)(OH)12 · 2H2O
Cu CarbonatecyanotrichiteCu4Al2(CO3,SO4)(OH)12 · 2H2O
Cu DevillineCaCu4(SO4)2(OH)6 · 3H2O
Cu Hydrowoodwardite(Cu1-xAlx)(OH)2[SO4]x/2 · nH2O
ZnZinc
Zn SphaleriteZnS
Zn SmithsoniteZnCO3
AgSilver
Ag SilverAg
Ag AcanthiteAg2S
AuGold
Au GoldAu
UUranium
U UraniniteUO2

Regional Geology

This geological map and associated information on rock units at or nearby to the coordinates given for this locality is based on relatively small scale geological maps provided by various national Geological Surveys. This does not necessarily represent the complete geology at this locality but it gives a background for the region in which it is found.

Click on geological units on the map for more information. Click here to view full-screen map on Macrostrat.org

Cretaceous
66 - 145 Ma



ID: 3186389
Mesozoic sedimentary rocks

Age: Cretaceous (66 - 145 Ma)

Lithology: Sedimentary rocks

Reference: Chorlton, L.B. Generalized geology of the world: bedrock domains and major faults in GIS format: a small-scale world geology map with an extended geological attribute database. doi: 10.4095/223767. Geological Survey of Canada, Open File 5529. [154]

Cretaceous
66 - 145 Ma



ID: 3140994
Cretaceous limestone

Age: Cretaceous (66 - 145 Ma)

Lithology: Major:{limestone}, Minor{sandstone,marlstone}

Reference: Asch, K. The 1:5M International Geological Map of Europe and Adjacent Areas: Development and Implementation of a GIS-enabled Concept. Geologisches Jahrbuch, SA 3. [147]

Data and map coding provided by Macrostrat.org, used under Creative Commons Attribution 4.0 License

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
Bertolani, M. (1952) I giacimenti cupriferi nelle ofioliti di Sestri Levante (Liguria). Periodico di Mineralogia, 21, 2-3, 149-170.
Galli, M. (1959) Sulla presenza di Argento nativo nella miniera di Libiola. Annali del Museo Civico di Storia Naturale di Genova, 71, 119-129.
Ferrario, A., and Garuti, G. (1980) Copper deposits in the basal breccias and volcano-sedimentary sequences of the Eastern Ligurian ophiolites (Italy). Mineralium Deposita, 15, 291-303.
Antofilli M., Borgo E., Palenzona A. (1983): I Nostri Minerali. Geologia e Mineralogia in Liguria. Sagep, Ed., Genova, 295 pp.
Galli, M., and Penco, A.M. (1966) Le miniere di rame e di manganese della Liguria orientale. Atti dell'Accademia Ligure di Scienze e Lettere, serie V, 53, 215-247.
Dinelli, E., Morandi, N., and Tateo, F. (1998) Fine-grained weathering products in waste disposal from two sulphide mines in the northern Apennines, Italy. Clay Minerals, 33, 423-433.
Garuti, G., and Zaccarini, F. (2005) Minerals of Au, Ag, and U in volcanic-rock-associated massive sulfide deposits of the Northern Apennine ophiolite, Italy. Canadian Mineralogist, 43, 935-950.
Maggi, R., and Pearce, M. (2005): Mid fourth-millenium copper mining in Liguria north-west Italy: The earliest known copper mines in western Europe. Antiquity 79, 66-77. [http://beniculturali.altaviadeimontiliguri.it/beniAVML/resources/cms/documents/MaggiPearceAntiquityML.pdf]
Carbone, C. (2008) Crystallochemical and minerogenetic study of oxide and oxy-hydroxides related to AMD (acid mine drainage) processes in Libiola mine (Sestri Levante). Plinius No. 34
Garuti, G., Bartoli, O., Scacchetti, M., and Zaccarini, F. (2008) Geological setting and structural styles of Volcanic Massive Sulfide deposits in the northern Apennines (Italy): evidence for seafloor and sub-seafloor hydrothermal activity in unconventional ophiolites of the Mesozoic Tethys. Boletín de la Sociedad Geológica Mexicana, 60, 1, 121-145.


This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization. Public Relations by Blytheweigh.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2019, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: May 26, 2019 22:42:19 Page generated: May 26, 2019 17:12:09
Go to top of page