SUPPORT US. If mindat.org is important to you, click here to donate to our Fall 2019 fundraiser!
Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsBooks & Magazines
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryMineral Photography

State Forest Quarry #2 (State Forest No. 2 Mica Mine), Cobalt, East Hampton (Chatham), Middlesex Co., Connecticut, USAi
Regional Level Types
State Forest Quarry #2 (State Forest No. 2 Mica Mine)- not defined -
Cobalt- not defined -
East Hampton (Chatham)- not defined -
Middlesex Co.County
ConnecticutState
USACountry

This page is currently not sponsored. Click here to sponsor this page.
Key
Latitude & Longitude (WGS84):
41° 34' 27'' North , 72° 33' 8'' West
Latitude & Longitude (decimal):
Nearest Settlements:
PlacePopulationDistance
East Hampton2,691 (2017)4.1km
Lake Pocotopaug3,436 (2017)4.4km
Portland5,862 (2017)7.4km
Cromwell13,750 (2017)8.1km
Middletown46,756 (2017)8.3km


A granite pegmatite mined for mica during WWII. The only real description is given by Cameron et al (1954):

During the summer of 1942, it was worked by J. Carini, South Glastonbury, who recovered a few tons of mica. From February to August 1943, the mine was operated by F. and J. Burrone Bros., North Branford, and a small production of mica was maintained...[In May 1943] the only working was an opencut about 80 feet long, 10 to 20 feet wide and 10 to 20 feet deep, but the cut was largely backfilled.

The mine is in a tabular pegmatite enclosed in, and roughly concordant with, northward-dipping quartz-mica schist (Bolton schist). The body strikes N. 5° W. to N. 50° W. and has been traced for about 90 feet. The dip of the hanging wall ranges from 18° NE. to vertical, but in general is 40° to 45° NE. The footwall is uneven but is probably about parallel to the hanging wall. The pegmatite ends at the northwest end of the cut in a blunt nose that plunges steeply northward. Just southeast of the quarry rim, the pegmatite seems to plunge beneath schist, but this may be due to a roll in the wall similar to several found during mining.

The pegmatite shows border, wall, and intermediate zones and a discontinuous core. The border zone, 2 to 3 inches thick, consists of fine-grained quartz and muscovite, with accessory apatite and tourmaline. The wall zone consists of coarse plagioclase and quartz, with scattered muscovite books 2 to 10 inches broad and ¼ to 5 inches thick. Accessory minerals are biotite [annite], apatite, tourmaline, and garnet. The wall zone is 3.5 to 4 feet thick along the hanging wall where exposed. The corresponding part of the pegmatite along the footwall was not exposed.

The intermediate zone consists of coarse quartz, [microcline] perthite, and plagioclase with subordinate muscovite and accessory biotite [annite], apatite, tourmaline, and beryl. The zone encloses lenses of quartz with books of muscovite around their margins. The quartz lenses are probably segments of a discontinuous core, with a poorly defined discontinuous muscovite-bearing core-margin zone.


The pegmatite has since become locally well known for a small triphylite mass that altered into a suite of secondary minerals very similar to those found at the Palermo Mines in North Groton, New Hampshire, USA. The triphylite was discovered by Dick Schooner around 1955 as "an irregular mass, approximately two feet across, in the left hand wall of the open pit, just above the tunnel" (Schooner 1958). The abundant gray microcline at this locality should not be confused with triphylite.

Select Mineral List Type

Standard Detailed Strunz Dana Chemical Elements

Commodity List

This is a list of exploitable or exploited mineral commodities recorded at this locality.


Mineral List


46 valid minerals. 4 erroneous literature entries.

Detailed Mineral List:

Albite
Formula: Na(AlSi3O8)
Habit: anhedral
Colour: white, pale gray
Reference: Januzzi (1976): Mineral Localities of CT and Southeastern NY State; Cameron et al (1954): USGS Prof Paper 255
Almandine
Formula: Fe2+3Al2(SiO4)3
Description: an accessory mineral in the pegmatite
Reference: Rocks & Min.: 70:403; Cameron et al (1954): USGS Prof Paper 255
Annite
Formula: KFe2+3(AlSi3O10)(OH)2
Description: fka biotite, an accessory mineral in the intermediate zone of the pegmatite.
Reference: Januzzi (1976): Mineral Localities of CT and Southeastern NY State; Cameron et al (1954): USGS Prof Paper 255
Arrojadite-(KFe) ?
Formula: {KNa}{Fe2+◻}{Ca}{Na2◻}{Fe2+13}{Al}(PO4)11(HPO4)(OH)2
Description: reported by Dick Schooner, no details in the reference.
Reference: Januzzi (1976) p.234-5.
Arsenolite ?
Formula: As2O3
Description: a possible secondary mineral formed from the abundant arsenopyrite in this pegmatite, but speculative and unconfirmed.
Reference: Schooner (1958); Januzzi (1976)
Arsenopyrite
Formula: FeAsS
Habit: anhedral, massive
Colour: gray
Description: plentiful as small grains and masses
Reference: Rocks & Min.: 70:403
Autunite
Formula: Ca(UO2)2(PO4)2 · 11H2O
Reference: Kevin Czaja Collection
Beraunite ?
Formula: Fe2+Fe3+5(PO4)4(OH)5 · 6H2O
Habit: radiating acicular crystals in micro hemisperical aggregates
Colour: green, but may just be a thin coating of something on messelite
Description: reported by Dick Schooner, no details in the reference. Identified by Van King from posted photographs but an XRD test made in the National Museum Prague (dr. Jiri Sejkora) of the green material with some matrix found "no beraunite but something similar to messelite" and apatite, which are the matrix species.
Reference: Januzzi (1976) p.234-5.
Bertrandite
Formula: Be4(Si2O7)(OH)2
Reference: Mineralogical Record (1975) 6:114-123
Beryl
Formula: Be3Al2(Si6O18)
Habit: columnar
Colour: pale yellow to light green
Description: "Light-green beryl occurs in crystals 1 to 5 inches in diameter and 1 to 17 inches long. Most of the crystals are large enough to be sorted by hand but some are intimately intergrown with quartz and plagioclase. Beryl was found chiefly in the nose of the pegmatite at the northwest; end of the quarry, in the intermediate zone." (Cameron et al 1954)
Reference: Rocks & Min.: 70:403; Cameron et al (1954): USGS Prof Paper 255; Schooner (1958)
Chalcopyrite
Formula: CuFeS2
Habit: massive
Colour: iridescent
Description: associated with triphylite and siderite
Reference: Schooner (1958)
Columbite-(Fe)
Formula: Fe2+Nb2O6
Reference: Van King
Diadochite
Formula: Fe3+2(PO4)(SO4)(OH) · 5H2O
Habit: coatings and micro globules
Colour: orange
Description: Orange coatings on triphylite, messelite, and other related phosphates
Reference: Schooner (1961); Januzzi (1976) p. 234.
Ferrisicklerite
Formula: Li1-x(Fe3+xFe2+1-x)PO4
Description: sparingly with the triphylite
Reference: Schooner (1958)
Fluorapatite
Formula: Ca5(PO4)3F
Colour: gray
Fluorescence: yellow
Description: an accessory mineral in the pegmatite.
Reference: Cameron et al (1954): USGS Prof Paper 255; Harold Moritz collection
Galena
Formula: PbS
Description: associated with the triphylite secondaries.
Reference: Schooner (1958)
Goethite
Formula: α-Fe3+O(OH)
Habit: encrustations
Colour: dark brown to black
Description: from the alteration of sulfides
Reference: Januzzi (1976): Mineral Localities of CT and Southeastern NY State; Harold Moritz collection.
Herderite
Formula: CaBePO4(F,OH)
Description: undoubtedly hydroxylherderite as there is still but one or two chemically verified herderite specimen in the world and even the so-called type locality for true herderite does not have the species by modern chemical analyses. "Chemical analysis of herderite, collected by the author, at the State Forest Mine in East Hampton, Connecticut, indicate that it is the hydroxyl variety" (Januzzi 1994).
Reference: Januzzi (1994); Schooner (1958)
Heterosite
Formula: (Fe3+,Mn3+)PO4
Description: alteration of triphylite associated with ferrisicklerite
Reference: Schooner (1958); Januzzi (1976) p. 234.
Hydroxylapatite
Formula: Ca5(PO4)3(OH)
Habit: micro hexagonal prisms
Colour: colorless to white
Description: in pockets of altered triphylite with beraunite, whitmoreite, messelite, etc. Tested by XRD at the National Museum Prague (dr. Jiri Sejkora).
Reference: Harold Moritz collection
Hydroxylherderite
Formula: CaBe(PO4)(OH,F)
Habit: flat prisms with dome terminations
Colour: pale yellow
Description: Specimens analyzed by Leavens, et al. (1978) from New England were analyzed and found to be true hydroxylherderite. As the study was made after the reference cited and as there are only one or two analyzed true herderites in the world, the entry was changed to conform to modern nomenclature. Leavens, et al., 1978, Compositional and Refractive Index Variations of the Herderite-Hydroxyl-herderite Series, American Mineralogist, v 63, p. 913-917. "Chemical analysis of herderite, collected by the author, at the State Forest Mine in East Hampton, Connecticut, indicate that it is the hydroxyl variety" (Januzzi 1994). Described (as herderite) by Schooner (1958) as "twenty five 1/32 inch pale yellow tabular crystals in a vug of albite and altered siderite, near a contact with semi-columnar beryl"
Reference: Schooner (1958); Januzzi (1994); Harold Moritz collection
Laueite
Formula: Mn2+Fe3+2(PO4)2(OH)2 · 8H2O
Habit: microscopic elongated prisms
Colour: red-orange
Description: "Tiny orange crystals are associated with strunzite fibers in vugs of altered messelite, with siderite and mitridatite" (Schooner 1961)
Reference: Schooner (1958, 1961): Rocks & Min.: 70:403
'Limonite'
Formula: (Fe,O,OH,H2O)
Reference: Januzzi, 1976. Mineral Localities of CT and Southeastern NY State; USGS Prof Paper 255
Ludlamite
Formula: Fe2+3(PO4)2 · 4H2O
Habit: cleavable masses
Colour: pale green
Description: "Light green cleavages were associated with siderite and triphylite. It also formed thin borders along messelite areas in hydrothermally altered triphylite." (Schooner 1961)
Reference: Schooner (1961)
Malachite
Formula: Cu2(CO3)(OH)2
Reference: Januzzi (1976): Mineral Localities of CT and Southeastern NY State
Melanterite
Formula: Fe2+(H2O)6SO4 · H2O
Description: alteration of pyrite associated with triphylite
Reference: Schooner (1961)
Messelite
Formula: Ca2Fe2+(PO4)2 · 2H2O
Habit: massive curved, lamellar aggregates, acicular microcrystals
Colour: white to tan, sometimes a green coating of an unknown.
Description: "Many solid white or tan masses, with a curved lamellar structure, were collected; some were two inches across. The messelite was intergrown with siderite, or embedded in triphylite. Distinct crystals, with a pearly luster, were noted in vugs of the massive mineral." Schooner (1961). Associated with triphylite, siderite, strunzite, laueite, mitridatite, ludlamite, vivianite. A green mineral thought to be beraunite was tested by XRD (with some matrix) at the National Museum Prague (dr. Jiri Sejkora) and found to be "no beraunite but something similar to messelite". The green may be only a coating.
Reference: Schooner (1961)
Microcline
Formula: K(AlSi3O8)
Habit: anhedral
Colour: white to gray
Description: a component of the intermediate zone of the pegmatite. Gray color causes confusion with the very rarely found triphylite.
Reference: Cameron et al (1954): USGS Professional paper 255; Schooner (1958)
Mitridatite ?
Formula: Ca2Fe3+3(PO4)3O2 · 3H2O
Habit: coatings
Colour: green
Description: May be confused with beraunite. Associated with triphylite, diadochite, messelite, siderite, strunzite, laueite, ludlamite, vivianite
Reference: Schooner (1961)
Moraesite ?
Formula: Be2(PO4)(OH) · 4H2O
Habit: coating
Colour: white
Description: "Very scanty fibrous white coatings were seen along cracks in beryl, associated with herderite, from near a triphylite body" (Schooner 1961)
Reference: Schooner (1961); Januzzi (1976): Mineral Localities of CT and Southeastern NY State, p.234
Muscovite
Formula: KAl2(AlSi3O10)(OH)2
Habit: subhedral tabular
Colour: rum to silvery
Description: in the wall zone, muscovite books 2 to 10 inches broad and ¼ to 5 inches thick
Reference: Cameron et al (1954): USGS Prof Paper 255
Palermoite
Formula: (Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
Colour: colorless
Description: "A colorless acicular mineral, found by the author in a vug of messelite, at the State Forest Mine in East Hampton, does not fit the description of any typical species except palermoite. Unfortunately, very little was obtained; an excellent sample was sent away for testing, but was evidently lost" (Schooner 1961). Most likely, this was a very poor guess.
Reference: Schooner (1961)
Phosphophyllite
Formula: Zn2Fe(PO4)2 · 4H2O
Colour: green
Description: "occurs as a hydrothermal alteration of sphalerite and triphylite, in vugs of messelite, with vivianite, at the State Forest Mine in East Hampton. Very few specimens have been found, and they are small; the crystals are green and quite glassy, the largest being about an eighth of an inch in diameter. The author suspected the identity of this material from the time he discovered it, several years ago, but it was not confirmed until recently. Some of the optical data follows: R. I. 1.615; optical angle 45 degrees, more or less; optic sign negative; birefringence high." (Schooner 1961)
Reference: Schooner (1958); Schooner (1961)
Pickeringite
Formula: MgAl2(SO4)4 · 22H2O
Reference: Januzzi, 1976. Mineral Localities of CT and Southeastern NY State
Pyrite
Formula: FeS2
Habit: massive, anhedral
Colour: pale brassy
Description: associated with triphylite
Reference: Schooner (1961)
Pyrolusite
Formula: Mn4+O2
Description: No manganese dendrite in the world is pyrolusite. This was a nineteenth century guess that was widely repeated.
Reference: Januzzi, 1976. Mineral Localities of CT and Southeastern NY State
Pyrrhotite
Formula: Fe7S8
Habit: massive, anhedral
Colour: reddish bronze
Description: associated with triphylite
Reference: Schooner (1961)
Quartz
Formula: SiO2
Habit: massive, anhedral
Colour: colorless, milky, smoky
Description: major component of the pegmatite
Reference: Cameron et al (1954): USGS Prof Paper 255
Rockbridgeite ?
Formula: Fe2+Fe3+4(PO4)3(OH)5
Description: reported by Dick Schooner, no details in the reference.
Reference: Januzzi (1976) p.234-5.
Roscherite ?
Formula: Ca2Mn2+5Be4(PO4)6(OH)4 · 6H2O
Description: Needs verification because of lack of data. May be greifensteinite described after the reference date.
Reference: Rocks & Min.: 70:403
Schorl
Formula: Na(Fe2+3)Al6(Si6O18)(BO3)3(OH)3(OH)
Habit: elongated prisms with shallow rhombohedral terminations
Colour: black
Description: An accessory mineral in the pegmatite.
Reference: Cameron et al (1954): USGS Prof Paper 255
Scorodite ?
Formula: Fe3+AsO4 · 2H2O
Habit: encrustation
Description: Crusts associated with arsenopyrite but identity unconfirmed.
Reference: Schooner (1958)
Siderite
Formula: FeCO3
Habit: fine-grained granular to cleavable masses
Colour: tan
Description: Mostly mixed with messelite and associated with triphylite, vivianite, ludlamite, sulfides, mitridatite. Small crystals are rare and generally altered.
Reference: Schooner (1958, 1961)
Smithsonite
Formula: ZnCO3
Description: speculation by Schooner (1958)
Reference: Schooner (1958)
Sphalerite
Formula: ZnS
Habit: granular, cleavable masses
Colour: very dark brown to black
Description: Associated with triphylite and its secondaries and other sulfides as small masses and grains.
Reference: Schooner (1958, 1961)
Strunzite
Formula: Mn2+Fe3+2(PO4)2(OH)2 · 6H2O
Habit: radiating acicular needles and fibers
Colour: golden to yellow-orange
Description: "occurs as typical aggregates of golden fibers, associated with [messelite] and siderite, as well as sulfides....The strunzite is rare, and no more than half a dozen specimens have been secured...and none of them could be described as of outstanding quality. The identity of this material was confirmed by Clifford Frondel of Harvard University." (Schooner 1958) Associated with triphylite secondaries.
Reference: Schooner (1958, 1961)
Triphylite
Formula: LiFe2+PO4
Habit: anhedral cleavable masses
Colour: pale gray-green
Description: "The first triphylite actually seen in Connecticut was discovered by the author at the State Forest Mine in East Hampton, around 1955. It was first noticed in the dump; a search of the locality soon revealed two small bodies of triphylite in the left hand wall of the open pit, just above the short tunnel. A number of specimens were collected, some being cleavage masses up to four inches wide. Siderite, messelite, ludlamite, and several other typical minerals were intergrown, most of them owing their origin to the hydrothermal alteration of the triphylite. One small crystal was noted." (Schooner 1961)
Reference: Schooner (1958, 1961); Rocks & Min.: 70:403
Vivianite
Formula: Fe2+3(PO4)2 · 8H2O
Habit: elongated, terminated prisms and cleavable masses
Colour: dark blue
Description: "transparent blue vivianite crystals, some spear-shaped, in vugs of messelite and siderite...While the vivianite crystals are small, they are of fine quality." (Schooner 1961) Also as coatings on triphylite and associated with messelite, siderite, mitridatite, strunzite and sulfides.
Reference: Schooner (1958, 1961); Rocks & Min.: 70:403
Whitmoreite
Formula: Fe2+Fe3+2(PO4)2(OH)2 · 4H2O
Habit: radiating acicular crystals in micro spherical "naval mine" aggregates
Colour: golden brown
Description: Reported by Dick Schooner, no details in the references. Identified by Van King from posted photographs.
Reference: Rocks & Min.: 70:403; Januzzi (1976) p.234-5.
Xanthoxenite ?
Formula: Ca4Fe3+2(PO4)4(OH)2 · 3H2O
Habit: stains
Colour: yellow
Description: Compared by Schooner to similar material from the Palermo Mines, but unconfirmed here.
Reference: Schooner (1958)
Zircon
Formula: Zr(SiO4)
Habit: tetragonal bipyramid
Colour: brownish gray
Fluorescence: yellow
Description: tiny crystals in albite
Reference: Harold Moritz collection
Zircon var: Cyrtolite
Formula: Zr[(SiO4),(OH)4]
Reference: Januzzi (1976): Mineral Localities of CT and Southeastern NY State; Schooner (1958)

List of minerals arranged by Strunz 10th Edition classification

Group 2 - Sulphides and Sulfosalts
Arsenopyrite2.EB.20FeAsS
Chalcopyrite2.CB.10aCuFeS2
Galena2.CD.10PbS
Pyrite2.EB.05aFeS2
Pyrrhotite2.CC.10Fe7S8
Sphalerite2.CB.05aZnS
Group 4 - Oxides and Hydroxides
Arsenolite ?4.CB.50As2O3
Columbite-(Fe)4.DB.35Fe2+Nb2O6
Goethite4.00.α-Fe3+O(OH)
Pyrolusite ?4.DB.05Mn4+O2
Quartz4.DA.05SiO2
Group 5 - Nitrates and Carbonates
Malachite5.BA.10Cu2(CO3)(OH)2
Siderite5.AB.05FeCO3
Smithsonite ?5.AB.05ZnCO3
Group 7 - Sulphates, Chromates, Molybdates and Tungstates
Melanterite7.CB.35Fe2+(H2O)6SO4 · H2O
Pickeringite7.CB.85MgAl2(SO4)4 · 22H2O
Group 8 - Phosphates, Arsenates and Vanadates
Arrojadite-(KFe) ?8.BF.05{KNa}{Fe2+◻}{Ca}{Na2◻}{Fe2+13}{Al}(PO4)11(HPO4)(OH)2
Autunite8.EB.05Ca(UO2)2(PO4)2 · 11H2O
Beraunite ?8.DC.27Fe2+Fe3+5(PO4)4(OH)5 · 6H2O
Diadochite8.DB.05Fe3+2(PO4)(SO4)(OH) · 5H2O
Ferrisicklerite8.AB.10Li1-x(Fe3+xFe2+1-x)PO4
Fluorapatite8.BN.05Ca5(PO4)3F
Herderite ?8.BA.10CaBePO4(F,OH)
Heterosite8.AB.10(Fe3+,Mn3+)PO4
Hydroxylapatite8.BN.05Ca5(PO4)3(OH)
Hydroxylherderite8.BA.10CaBe(PO4)(OH,F)
Laueite8.DC.30Mn2+Fe3+2(PO4)2(OH)2 · 8H2O
Ludlamite8.CD.20Fe2+3(PO4)2 · 4H2O
Messelite8.CG.05Ca2Fe2+(PO4)2 · 2H2O
Mitridatite ?8.DH.30Ca2Fe3+3(PO4)3O2 · 3H2O
Moraesite ?8.DA.05Be2(PO4)(OH) · 4H2O
Palermoite ?8.BH.25(Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
Phosphophyllite8.CA.40Zn2Fe(PO4)2 · 4H2O
Rockbridgeite ?8.BC.10Fe2+Fe3+4(PO4)3(OH)5
Roscherite ?8.DA.10Ca2Mn2+5Be4(PO4)6(OH)4 · 6H2O
Scorodite ?8.CD.10Fe3+AsO4 · 2H2O
Strunzite8.DC.25Mn2+Fe3+2(PO4)2(OH)2 · 6H2O
Triphylite8.AB.10LiFe2+PO4
Vivianite8.CE.40Fe2+3(PO4)2 · 8H2O
Whitmoreite8.DC.15Fe2+Fe3+2(PO4)2(OH)2 · 4H2O
Xanthoxenite ?8.DH.40Ca4Fe3+2(PO4)4(OH)2 · 3H2O
Group 9 - Silicates
Albite9.FA.35Na(AlSi3O8)
Almandine9.AD.25Fe2+3Al2(SiO4)3
Annite9.EC.20KFe2+3(AlSi3O10)(OH)2
Bertrandite9.BD.05Be4(Si2O7)(OH)2
Beryl9.CJ.05Be3Al2(Si6O18)
Microcline9.FA.30K(AlSi3O8)
Muscovite9.EC.15KAl2(AlSi3O10)(OH)2
Schorl9.CK.05Na(Fe2+3)Al6(Si6O18)(BO3)3(OH)3(OH)
Zircon9.AD.30Zr(SiO4)
var: Cyrtolite9.AD.30Zr[(SiO4),(OH)4]
Unclassified Minerals, Rocks, etc.
'Limonite'-(Fe,O,OH,H2O)

List of minerals arranged by Dana 8th Edition classification

Group 2 - SULFIDES
AmXp, with m:p = 1:1
Galena2.8.1.1PbS
Pyrrhotite2.8.10.1Fe7S8
Sphalerite2.8.2.1ZnS
AmBnXp, with (m+n):p = 1:1
Chalcopyrite2.9.1.1CuFeS2
AmBnXp, with (m+n):p = 1:2
Arsenopyrite2.12.4.1FeAsS
Pyrite2.12.1.1FeS2
Group 4 - SIMPLE OXIDES
A2X3
Arsenolite ?4.3.9.1As2O3
AX2
Pyrolusite ?4.4.1.4Mn4+O2
Group 6 - HYDROXIDES AND OXIDES CONTAINING HYDROXYL
XO(OH)
Goethite6.1.1.2α-Fe3+O(OH)
Group 8 - MULTIPLE OXIDES CONTAINING NIOBIUM,TANTALUM OR TITANIUM
AB2O6
Columbite-(Fe)8.3.2.2Fe2+Nb2O6
Group 14 - ANHYDROUS NORMAL CARBONATES
A(XO3)
Siderite14.1.1.3FeCO3
Smithsonite ?14.1.1.6ZnCO3
Group 16a - ANHYDROUS CARBONATES CONTAINING HYDROXYL OR HALOGEN
Malachite16a.3.1.1Cu2(CO3)(OH)2
Group 29 - HYDRATED ACID AND NORMAL SULFATES
AXO4·xH2O
Melanterite29.6.10.1Fe2+(H2O)6SO4 · H2O
AB2(XO4)4·H2O
Pickeringite29.7.3.1MgAl2(SO4)4 · 22H2O
Group 38 - ANHYDROUS NORMAL PHOSPHATES, ARSENATES, AND VANADATES
ABXO4
Ferrisicklerite38.1.4.1Li1-x(Fe3+xFe2+1-x)PO4
Triphylite38.1.1.1LiFe2+PO4
AXO4
Heterosite38.4.1.1(Fe3+,Mn3+)PO4
Group 40 - HYDRATED NORMAL PHOSPHATES,ARSENATES AND VANADATES
AB2(XO4)2·xH2O, containing (UO2)2+
Autunite40.2a.1.1Ca(UO2)2(PO4)2 · 11H2O
Messelite40.2.2.2Ca2Fe2+(PO4)2 · 2H2O
Phosphophyllite40.2.7.1Zn2Fe(PO4)2 · 4H2O
A3(XO4)2·xH2O
Ludlamite40.3.5.1Fe2+3(PO4)2 · 4H2O
Vivianite40.3.6.1Fe2+3(PO4)2 · 8H2O
(AB)5(XO4)2·xH2O
Scorodite ?40.4.1.3Fe3+AsO4 · 2H2O
Group 41 - ANHYDROUS PHOSPHATES, ETC.CONTAINING HYDROXYL OR HALOGEN
(AB)2(XO4)Zq
Herderite ?41.5.4.1CaBePO4(F,OH)
Hydroxylherderite41.5.4.2CaBe(PO4)(OH,F)
(AB)7(XO4)4Zq
Arrojadite-(KFe) ?41.7.2.1{KNa}{Fe2+◻}{Ca}{Na2◻}{Fe2+13}{Al}(PO4)11(HPO4)(OH)2
Palermoite ?41.7.1.1(Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
A5(XO4)3Zq
Fluorapatite41.8.1.1Ca5(PO4)3F
Hydroxylapatite41.8.1.3Ca5(PO4)3(OH)
(AB)5(XO4)3Zq
Rockbridgeite ?41.9.2.1Fe2+Fe3+4(PO4)3(OH)5
Group 42 - HYDRATED PHOSPHATES, ETC.CONTAINING HYDROXYL OR HALOGEN
A2(XO4)Zq·xH2O
Moraesite ?42.6.1.1Be2(PO4)(OH) · 4H2O
(AB)2(XO4)Zq·xH2O
Roscherite ?42.7.7.1Ca2Mn2+5Be4(PO4)6(OH)4 · 6H2O
(AB)5(XO4)3Zq·xH2O
Mitridatite ?42.8.4.1Ca2Fe3+3(PO4)3O2 · 3H2O
(AB)3(XO4)2Zq·xH2O
Beraunite ?42.11.16.1Fe2+Fe3+5(PO4)4(OH)5 · 6H2O
Laueite42.11.10.1Mn2+Fe3+2(PO4)2(OH)2 · 8H2O
Strunzite42.11.9.1Mn2+Fe3+2(PO4)2(OH)2 · 6H2O
Whitmoreite42.11.20.1Fe2+Fe3+2(PO4)2(OH)2 · 4H2O
Xanthoxenite ?42.11.15.1Ca4Fe3+2(PO4)4(OH)2 · 3H2O
Group 43 - COMPOUND PHOSPHATES, ETC.
Hydrated Compound Phosphates, etc·, Containing Hydroxyl or Halogen
Diadochite43.5.2.1Fe3+2(PO4)(SO4)(OH) · 5H2O
Group 51 - NESOSILICATES Insular SiO4 Groups Only
Insular SiO4 Groups Only with cations in [6] and >[6] coordination
Almandine51.4.3a.2Fe2+3Al2(SiO4)3
Insular SiO4 Groups Only with cations in >[6] coordination
Zircon51.5.2.1Zr(SiO4)
Group 56 - SOROSILICATES Si2O7 Groups, With Additional O, OH, F and H2O
Si2O7 Groups and O, OH, F, and H2O with cations in [4] coordination
Bertrandite56.1.1.1Be4(Si2O7)(OH)2
Group 61 - CYCLOSILICATES Six-Membered Rings
Six-Membered Rings with [Si6O18] rings; possible (OH) and Al substitution
Beryl61.1.1.1Be3Al2(Si6O18)
Six-Membered Rings with borate groups
Schorl61.3.1.10Na(Fe2+3)Al6(Si6O18)(BO3)3(OH)3(OH)
Group 71 - PHYLLOSILICATES Sheets of Six-Membered Rings
Sheets of 6-membered rings with 2:1 layers
Annite71.2.2b.3KFe2+3(AlSi3O10)(OH)2
Muscovite71.2.2a.1KAl2(AlSi3O10)(OH)2
Group 75 - TECTOSILICATES Si Tetrahedral Frameworks
Si Tetrahedral Frameworks - SiO2 with [4] coordinated Si
Quartz75.1.3.1SiO2
Group 76 - TECTOSILICATES Al-Si Framework
Al-Si Framework with Al-Si frameworks
Albite76.1.3.1Na(AlSi3O8)
Microcline76.1.1.5K(AlSi3O8)
Unclassified Minerals, Mixtures, etc.
'Limonite'-(Fe,O,OH,H2O)
Zircon
var: Cyrtolite
-Zr[(SiO4),(OH)4]

List of minerals for each chemical element

HHydrogen
H VivianiteFe32+(PO4)2 · 8H2O
H WhitmoreiteFe2+Fe23+(PO4)2(OH)2 · 4H2O
H LaueiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
H StrunziteMn2+Fe23+(PO4)2(OH)2 · 6H2O
H Zircon (var: Cyrtolite)Zr[(SiO4),(OH)4]
H DiadochiteFe23+(PO4)(SO4)(OH) · 5H2O
H Goethiteα-Fe3+O(OH)
H MalachiteCu2(CO3)(OH)2
H Limonite(Fe,O,OH,H2O)
H MesseliteCa2Fe2+(PO4)2 · 2H2O
H PickeringiteMgAl2(SO4)4 · 22H2O
H SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
H HydroxylherderiteCaBe(PO4)(OH,F)
H BertranditeBe4(Si2O7)(OH)2
H PhosphophylliteZn2Fe(PO4)2 · 4H2O
H AnniteKFe32+(AlSi3O10)(OH)2
H HydroxylapatiteCa5(PO4)3(OH)
H AutuniteCa(UO2)2(PO4)2 · 11H2O
H LudlamiteFe32+(PO4)2 · 4H2O
H MelanteriteFe2+(H2O)6SO4 · H2O
H MuscoviteKAl2(AlSi3O10)(OH)2
H RoscheriteCa2Mn52+Be4(PO4)6(OH)4 · 6H2O
H BerauniteFe2+Fe53+(PO4)4(OH)5 · 6H2O
H RockbridgeiteFe2+Fe43+(PO4)3(OH)5
H Arrojadite-(KFe){KNa}{Fe2+◻}{Ca}{Na2◻}{Fe132+}{Al}(PO4)11(HPO4)(OH)2
H MitridatiteCa2Fe33+(PO4)3O2 · 3H2O
H ScoroditeFe3+AsO4 · 2H2O
H XanthoxeniteCa4Fe23+(PO4)4(OH)2 · 3H2O
H MoraesiteBe2(PO4)(OH) · 4H2O
H Palermoite(Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
LiLithium
Li TriphyliteLiFe2+PO4
Li FerrisickleriteLi1-x(Fex3+Fe2+1-x)PO4
Li Palermoite(Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
BeBeryllium
Be HydroxylherderiteCaBe(PO4)(OH,F)
Be BertranditeBe4(Si2O7)(OH)2
Be BerylBe3Al2(Si6O18)
Be RoscheriteCa2Mn52+Be4(PO4)6(OH)4 · 6H2O
Be MoraesiteBe2(PO4)(OH) · 4H2O
Be HerderiteCaBePO4(F,OH)
BBoron
B SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
CCarbon
C MalachiteCu2(CO3)(OH)2
C SideriteFeCO3
C SmithsoniteZnCO3
OOxygen
O VivianiteFe32+(PO4)2 · 8H2O
O WhitmoreiteFe2+Fe23+(PO4)2(OH)2 · 4H2O
O AlmandineFe32+Al2(SiO4)3
O LaueiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
O TriphyliteLiFe2+PO4
O FerrisickleriteLi1-x(Fex3+Fe2+1-x)PO4
O StrunziteMn2+Fe23+(PO4)2(OH)2 · 6H2O
O Zircon (var: Cyrtolite)Zr[(SiO4),(OH)4]
O DiadochiteFe23+(PO4)(SO4)(OH) · 5H2O
O Goethiteα-Fe3+O(OH)
O MalachiteCu2(CO3)(OH)2
O Limonite(Fe,O,OH,H2O)
O MesseliteCa2Fe2+(PO4)2 · 2H2O
O PickeringiteMgAl2(SO4)4 · 22H2O
O SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
O HydroxylherderiteCaBe(PO4)(OH,F)
O Columbite-(Fe)Fe2+Nb2O6
O BertranditeBe4(Si2O7)(OH)2
O PhosphophylliteZn2Fe(PO4)2 · 4H2O
O ZirconZr(SiO4)
O AnniteKFe32+(AlSi3O10)(OH)2
O HydroxylapatiteCa5(PO4)3(OH)
O AutuniteCa(UO2)2(PO4)2 · 11H2O
O BerylBe3Al2(Si6O18)
O Heterosite(Fe3+,Mn3+)PO4
O LudlamiteFe32+(PO4)2 · 4H2O
O FluorapatiteCa5(PO4)3F
O MelanteriteFe2+(H2O)6SO4 · H2O
O SideriteFeCO3
O AlbiteNa(AlSi3O8)
O MicroclineK(AlSi3O8)
O MuscoviteKAl2(AlSi3O10)(OH)2
O QuartzSiO2
O RoscheriteCa2Mn52+Be4(PO4)6(OH)4 · 6H2O
O BerauniteFe2+Fe53+(PO4)4(OH)5 · 6H2O
O RockbridgeiteFe2+Fe43+(PO4)3(OH)5
O Arrojadite-(KFe){KNa}{Fe2+◻}{Ca}{Na2◻}{Fe132+}{Al}(PO4)11(HPO4)(OH)2
O ArsenoliteAs2O3
O MitridatiteCa2Fe33+(PO4)3O2 · 3H2O
O ScoroditeFe3+AsO4 · 2H2O
O XanthoxeniteCa4Fe23+(PO4)4(OH)2 · 3H2O
O MoraesiteBe2(PO4)(OH) · 4H2O
O HerderiteCaBePO4(F,OH)
O Palermoite(Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
O PyrolusiteMn4+O2
O SmithsoniteZnCO3
FFluorine
F FluorapatiteCa5(PO4)3F
F HerderiteCaBePO4(F,OH)
NaSodium
Na SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
Na AlbiteNa(AlSi3O8)
Na Arrojadite-(KFe){KNa}{Fe2+◻}{Ca}{Na2◻}{Fe132+}{Al}(PO4)11(HPO4)(OH)2
Na Palermoite(Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
MgMagnesium
Mg PickeringiteMgAl2(SO4)4 · 22H2O
AlAluminium
Al AlmandineFe32+Al2(SiO4)3
Al PickeringiteMgAl2(SO4)4 · 22H2O
Al SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
Al AnniteKFe32+(AlSi3O10)(OH)2
Al BerylBe3Al2(Si6O18)
Al AlbiteNa(AlSi3O8)
Al MicroclineK(AlSi3O8)
Al MuscoviteKAl2(AlSi3O10)(OH)2
Al Arrojadite-(KFe){KNa}{Fe2+◻}{Ca}{Na2◻}{Fe132+}{Al}(PO4)11(HPO4)(OH)2
Al Palermoite(Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
SiSilicon
Si AlmandineFe32+Al2(SiO4)3
Si Zircon (var: Cyrtolite)Zr[(SiO4),(OH)4]
Si SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
Si BertranditeBe4(Si2O7)(OH)2
Si ZirconZr(SiO4)
Si AnniteKFe32+(AlSi3O10)(OH)2
Si BerylBe3Al2(Si6O18)
Si AlbiteNa(AlSi3O8)
Si MicroclineK(AlSi3O8)
Si MuscoviteKAl2(AlSi3O10)(OH)2
Si QuartzSiO2
PPhosphorus
P VivianiteFe32+(PO4)2 · 8H2O
P WhitmoreiteFe2+Fe23+(PO4)2(OH)2 · 4H2O
P LaueiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
P TriphyliteLiFe2+PO4
P FerrisickleriteLi1-x(Fex3+Fe2+1-x)PO4
P StrunziteMn2+Fe23+(PO4)2(OH)2 · 6H2O
P DiadochiteFe23+(PO4)(SO4)(OH) · 5H2O
P MesseliteCa2Fe2+(PO4)2 · 2H2O
P HydroxylherderiteCaBe(PO4)(OH,F)
P PhosphophylliteZn2Fe(PO4)2 · 4H2O
P HydroxylapatiteCa5(PO4)3(OH)
P AutuniteCa(UO2)2(PO4)2 · 11H2O
P Heterosite(Fe3+,Mn3+)PO4
P LudlamiteFe32+(PO4)2 · 4H2O
P FluorapatiteCa5(PO4)3F
P RoscheriteCa2Mn52+Be4(PO4)6(OH)4 · 6H2O
P BerauniteFe2+Fe53+(PO4)4(OH)5 · 6H2O
P RockbridgeiteFe2+Fe43+(PO4)3(OH)5
P Arrojadite-(KFe){KNa}{Fe2+◻}{Ca}{Na2◻}{Fe132+}{Al}(PO4)11(HPO4)(OH)2
P MitridatiteCa2Fe33+(PO4)3O2 · 3H2O
P XanthoxeniteCa4Fe23+(PO4)4(OH)2 · 3H2O
P MoraesiteBe2(PO4)(OH) · 4H2O
P HerderiteCaBePO4(F,OH)
P Palermoite(Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
SSulfur
S DiadochiteFe23+(PO4)(SO4)(OH) · 5H2O
S GalenaPbS
S PickeringiteMgAl2(SO4)4 · 22H2O
S ArsenopyriteFeAsS
S ChalcopyriteCuFeS2
S MelanteriteFe2+(H2O)6SO4 · H2O
S PyriteFeS2
S PyrrhotiteFe7S8
S SphaleriteZnS
KPotassium
K AnniteKFe32+(AlSi3O10)(OH)2
K MicroclineK(AlSi3O8)
K MuscoviteKAl2(AlSi3O10)(OH)2
K Arrojadite-(KFe){KNa}{Fe2+◻}{Ca}{Na2◻}{Fe132+}{Al}(PO4)11(HPO4)(OH)2
CaCalcium
Ca MesseliteCa2Fe2+(PO4)2 · 2H2O
Ca HydroxylherderiteCaBe(PO4)(OH,F)
Ca HydroxylapatiteCa5(PO4)3(OH)
Ca AutuniteCa(UO2)2(PO4)2 · 11H2O
Ca FluorapatiteCa5(PO4)3F
Ca RoscheriteCa2Mn52+Be4(PO4)6(OH)4 · 6H2O
Ca Arrojadite-(KFe){KNa}{Fe2+◻}{Ca}{Na2◻}{Fe132+}{Al}(PO4)11(HPO4)(OH)2
Ca MitridatiteCa2Fe33+(PO4)3O2 · 3H2O
Ca XanthoxeniteCa4Fe23+(PO4)4(OH)2 · 3H2O
Ca HerderiteCaBePO4(F,OH)
Ca Palermoite(Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
MnManganese
Mn LaueiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
Mn StrunziteMn2+Fe23+(PO4)2(OH)2 · 6H2O
Mn Heterosite(Fe3+,Mn3+)PO4
Mn RoscheriteCa2Mn52+Be4(PO4)6(OH)4 · 6H2O
Mn PyrolusiteMn4+O2
FeIron
Fe VivianiteFe32+(PO4)2 · 8H2O
Fe WhitmoreiteFe2+Fe23+(PO4)2(OH)2 · 4H2O
Fe AlmandineFe32+Al2(SiO4)3
Fe LaueiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
Fe TriphyliteLiFe2+PO4
Fe FerrisickleriteLi1-x(Fex3+Fe2+1-x)PO4
Fe StrunziteMn2+Fe23+(PO4)2(OH)2 · 6H2O
Fe DiadochiteFe23+(PO4)(SO4)(OH) · 5H2O
Fe Goethiteα-Fe3+O(OH)
Fe Limonite(Fe,O,OH,H2O)
Fe MesseliteCa2Fe2+(PO4)2 · 2H2O
Fe SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
Fe Columbite-(Fe)Fe2+Nb2O6
Fe PhosphophylliteZn2Fe(PO4)2 · 4H2O
Fe AnniteKFe32+(AlSi3O10)(OH)2
Fe ArsenopyriteFeAsS
Fe Heterosite(Fe3+,Mn3+)PO4
Fe LudlamiteFe32+(PO4)2 · 4H2O
Fe ChalcopyriteCuFeS2
Fe MelanteriteFe2+(H2O)6SO4 · H2O
Fe PyriteFeS2
Fe PyrrhotiteFe7S8
Fe SideriteFeCO3
Fe BerauniteFe2+Fe53+(PO4)4(OH)5 · 6H2O
Fe RockbridgeiteFe2+Fe43+(PO4)3(OH)5
Fe Arrojadite-(KFe){KNa}{Fe2+◻}{Ca}{Na2◻}{Fe132+}{Al}(PO4)11(HPO4)(OH)2
Fe MitridatiteCa2Fe33+(PO4)3O2 · 3H2O
Fe ScoroditeFe3+AsO4 · 2H2O
Fe XanthoxeniteCa4Fe23+(PO4)4(OH)2 · 3H2O
CuCopper
Cu MalachiteCu2(CO3)(OH)2
Cu ChalcopyriteCuFeS2
ZnZinc
Zn PhosphophylliteZn2Fe(PO4)2 · 4H2O
Zn SphaleriteZnS
Zn SmithsoniteZnCO3
AsArsenic
As ArsenopyriteFeAsS
As ArsenoliteAs2O3
As ScoroditeFe3+AsO4 · 2H2O
SrStrontium
Sr Palermoite(Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
ZrZirconium
Zr Zircon (var: Cyrtolite)Zr[(SiO4),(OH)4]
Zr ZirconZr(SiO4)
NbNiobium
Nb Columbite-(Fe)Fe2+Nb2O6
PbLead
Pb GalenaPbS
UUranium
U AutuniteCa(UO2)2(PO4)2 · 11H2O

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
Cameron, Eugene N., Larrabee David M., McNair, Andrew H., Page, James T., Stewart, Glenn W., and Shainin, Vincent E. (1954), Pegmatite Investigations 1942-45 New England; USGS Professional Paper 255.
Schooner, Richard. (1958), The Mineralogy of the Portland-East Hampton-Middletown-Haddam Area in Connecticut (With a few notes on Glastonbury and Marlborough). Published by Richard Schooner; Ralph Lieser of Pappy’s Beryl Shop, East Hampton; and Howard Pate of Fluorescent House, Branford, Connecticut.
Stugard, Frederick, Jr. (1958), Pegmatites of the Middletown Area, Connecticut. USGS Bulletin 1042-Q.
Jones, Robert W. (1960), Luminescent Minerals of Connecticut, a Guide to Their Properties and Locations. Fluorescent House, Branford, Connecticut.
Schooner, Richard. (1961), The Mineralogy of Connecticut. Fluorescent House, Branford, Connecticut.
Hiller, John, Jr. (1971), Connecticut Mines and Minerals. Privately published: 52.
Schooner, Richard. (circa 1980s), Untitled manuscript on central Connecticut mineralogy.
Ryerson, Kathleen. (1972), Rock Hound's Guide to Connecticut. Pequot Press.
Henderson, William A., Jr. (1975), The Bertrandites of Connecticut. Mineralogical Record: 6(3): 114-123.
Januzzi, Ronald. E. (1976), The Mineral Localities of Connecticut and Southeastern New York State. Mineralogical Press, Danbury, Connecticut.
Januzzi, Ronald. E. (1994), Mineral Data Book - Western Connecticut and Environs. Mineralogical Press, Danbury, Connecticut.
Weber, Marcelle H. and Earle C. Sullivan. (1995), Connecticut Mineral Locality Index. Rocks & Minerals (Connecticut Issue): 70(6): 403.

External Links


Other Regions, Features and Areas containg this locality

North America PlateTectonic Plate

This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
 
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization. Public Relations by Blytheweigh.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2019, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: October 14, 2019 17:39:18 Page generated: October 6, 2019 18:25:56
Go to top of page