Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat Articles
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsThe ElementsUsersBooks & MagazinesMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery

DeGrussa Copper Mine (DeGrussa Gold-Copper Mine; DeGrussa Mine), Doolgunna Station, Peak Hill Goldfield, Meekatharra Shire, Western Australia, Australiai
Regional Level Types
DeGrussa Copper Mine (DeGrussa Gold-Copper Mine; DeGrussa Mine)Mine
Doolgunna Station- not defined -
Peak Hill GoldfieldOre Field
Meekatharra ShireShire
Western AustraliaState
AustraliaCountry

This page is currently not sponsored. Click here to sponsor this page.
Key
Lock Map
Latitude & Longitude (WGS84): 25° 32' 55'' South , 119° 19' 27'' East
Latitude & Longitude (decimal): -25.54885,119.32435
GeoHash:G#: qekyekcr4
Locality type:Mine
Köppen climate type:BWh : Hot deserts climate


The DeGrussa VHMS (volcanic-hosted massive sulphide) copper–gold deposit is located 900 kilometres north of Perth and 150 kilometres north of Meekatharra in the Peak Hill Mineral Field, on the Peak Hill 1:250 000 map sheet, SG 50-8. It lies on a major drainage divide between the Gascoyne River catchment and the Lake Gregory to Carnegie Lake salinas internal drainage. The deposit lies beneath a mantle of scree and sheet wash deposits on gentle slopes mantling an upland area of exposed bedrock and relic duricrust.

The DeGrussa copper–gold massive sulphide deposit is hosted within the Bryah Basin, one of a number of separate Palaeo-Proterozoic depositional basins in the eastern part of the Capricorn Orogen, which is a major tectonic unit that lies between the Archaean Pilbara Craton and the Yilgarn Craton. The Bryah Group is a succession of mafic rocks of mid-ocean ridge basalt to oceanic plateau affinity overlain by clastic and chemical sediments.

The age of the Bryah Group is poorly constrained between 2.0 Ga and 1.8 Ga. It is younger than 2.65 Ga and older than 1785 ±11 Ma (U-Pb zircon age), the age of the uncomformably overlying Mount Leake Formation.

The Bryah Basin has undergone two episodes of deformation. The 1.96 Ga Glenburgh Orogeny (D1) accreted the Narracoota oceanic plateau onto the Yilgarn Craton. Folding, faulting and shearing attributed to this orogeny have been largely overprinted by the 1.8 Ga Capricorn Orogeny (D2) that was the result of the oblique collision between the Pilbara and Yilgarn cratons. During deformation the volcano-sedimentary succession was metamorphosed to greenschist facies.

The copper–gold rich-massive sulphide lenses are VHMS-style based on the host rock package, mineralisation style, mineral composition and alteration.

The host rocks are submarine basalts, mafic volcaniclastic rocks and debris flows with sub-volcanic dolerite/gabbro sills of the De Grussa Formation.

Sulphide mineralisation consists of massive sulphide, semi-massive sulphide and stringer zone mineralisation. The transition from massive sulphide to an underlying stringer zone is not always present because of dolerite intrusion close to or at the base of the massive sulphide. Primary sulphide minerals present are pyrite, chalcopyrite, pyrrhotite, and sphalerite together with magnetite. The base of the massive sulphide is chalcopyrite rich with magnetite, passing upwards into iron sulphides with decreasing copper content and increasing zinc content higher up. Gold is associated with the chalcopyrite-rich zones and occurs as a high-silver electrum.

The oxide mineralisation is located vertically above Conductor 1 and DeGrussa. The grade and width of the oxide mineralisation is highest proximal to the main lenses and then forms enriched plumes that transgress lithological boundaries as the mineralisation disperses and dissipates. Close to the main lenses there is significant native copper and elevated gold. As the plumes disperse away from the ore zones the grade dissipates and mineralisation transitions through chrysocolla, cuprite, azurite and malachite.

Alteration associated with the massive sulphide is chlorite + sericite + quartz + pyrite which is typical for VHMS deposits. Stringers in the stringer zone are chalcopyrite rich.
The massive sulphide lenses are deformed and often exhibit a strong foliation. The harder pyrite and pyrrhotite tends to fracture, while the softer chalcopyrite and sphalerite are easily remobilized and recrystallised.

Beneath a hardpan cap there is about 80 metres of weathering over the sulphide lenses. Within the weathering profile is an upper, residual, gold-oxide zone overlying an oxide-copper zone. The oxide- copper zone contains the minerals malachite, chrysocolla, native copper and minor cuprite. A secondary supergene chalcocite blanket lies beneath the oxide-copper zone and immediately above fresh primary sulphides.

Four lenses of copper-rich massive sulphides have been discovered to date. DeGrussa has a strike length of 180m, is some 20m thick on average and dips near vertically to the south. It has a vertical extent of 300m.

Operates as underground workings and an open pit by Sandfire Resources. According to the company, it was cash strapped, and on the verge of collapse, when drilling un-covered the deposit. It is one of the few deposits found through exploration over the past 20 years in Western Australia, which has progressed to a major new mine. Sandfire Resources is also one of the few mining companies in Western Australia, who have actively supported the local mineral specimen collecting community. Native copper, chrysocolla, malachite, cuprite and the rare species mcguinnessite have been provided to the public via a shop in central Perth, and donated by the company to the Western Australian Museum, and as fund raising for MINSOCWA. Further, at great expense, it has flown members of the club to inspect the mine. [per Kim McDonald]

Regions containing this locality

Australia Plate

Plate - 0 mineral species & varietal names listed

West Australian Element, Western Australia, Australia

Craton - 1,002 mineral species & varietal names listed

Warakurna Large Igneous Province, Western Australia, Australia

Geologic Province - 665 mineral species & varietal names listed

Yilgarn Craton, Western Australia, Australia

Craton - 793 mineral species & varietal names listed

Bryah Basin, Western Australia, Australia

Basin - 110 mineral species & varietal names listed

Select Mineral List Type

Standard Detailed Strunz Dana Chemical Elements

Commodity List

This is a list of exploitable or exploited mineral commodities recorded at this locality.


Mineral List


32 valid minerals. 2 erroneous literature entries.

Rock Types Recorded

Note: this is a very new system on mindat.org and data is currently VERY limited. Please bear with us while we work towards adding this information!

Select Rock List Type

Alphabetical List Tree Diagram

Detailed Mineral List:

Aragonite
Formula: CaCO3
Reference: Sandfire Resources- Murray Thompson- pers.comm.
Arsenopyrite
Formula: FeAsS
Reference: Fetherston, J. M., Stocklmayer, S. M. and Stocklmayer, V. C. (2013): Gemstones of Western Australia. Mineral Resources Bulletin 25, Geological Survey of Western Australia, Perth, Australia, 306 pp. (p. 185)
Azurite
Formula: Cu3(CO3)2(OH)2
Reference: Thompson, 2012. Min Soc WA Newsletter; Margaret Hawke, Sebastien Meffre, Holly Stein & Bruce Gemmell (2014) Age Constraints of the Degrussa Cu–Au–Ag Volcanic Hosted Massive Sulfide Deposit and Associated Mineralisation of the Yerrida, Bryah and Padbury Basins, Western Australia. in Geological Society of Australia, 2014 Australian Earth Sciences Convention (AESC), Sustainable Australia. Abstract No 110 of the 22nd Australian Geological Convention
'Basalt'
Reference: Margaret Hawke, Sebastien Meffre, Holly Stein & Bruce Gemmell (2014) Age Constraints of the Degrussa Cu–Au–Ag Volcanic Hosted Massive Sulfide Deposit and Associated Mineralisation of the Yerrida, Bryah and Padbury Basins, Western Australia. in Geological Society of Australia, 2014 Australian Earth Sciences Convention (AESC), Sustainable Australia. Abstract No 110 of the 22nd Australian Geological Convention
Bornite
Formula: Cu5FeS4
Reference: Murray Thompson ; Murray Thompson, DeGrussa mine
Brochantite
Formula: Cu4(SO4)(OH)6
Reference: Murray Thompson, DeGrussa mine
Chalcocite
Formula: Cu2S
Reference: Thompson, 2012. Min Soc WA Newsletter; Margaret Hawke, Sebastien Meffre, Holly Stein & Bruce Gemmell (2014) Age Constraints of the Degrussa Cu–Au–Ag Volcanic Hosted Massive Sulfide Deposit and Associated Mineralisation of the Yerrida, Bryah and Padbury Basins, Western Australia. in Geological Society of Australia, 2014 Australian Earth Sciences Convention (AESC), Sustainable Australia. Abstract No 110 of the 22nd Australian Geological Convention
Chalcopyrite
Formula: CuFeS2
Reference: Thompson, 2012. Min Soc WA Newsletter; Margaret Hawke, Sebastien Meffre, Holly Stein & Bruce Gemmell (2014) Age Constraints of the Degrussa Cu–Au–Ag Volcanic Hosted Massive Sulfide Deposit and Associated Mineralisation of the Yerrida, Bryah and Padbury Basins, Western Australia. in Geological Society of Australia, 2014 Australian Earth Sciences Convention (AESC), Sustainable Australia. Abstract No 110 of the 22nd Australian Geological Convention
'Chlorite Group'
Reference: Thompson, 2012. Min Soc WA Newsletter; Margaret Hawke, Sebastien Meffre, Holly Stein & Bruce Gemmell (2014) Age Constraints of the Degrussa Cu–Au–Ag Volcanic Hosted Massive Sulfide Deposit and Associated Mineralisation of the Yerrida, Bryah and Padbury Basins, Western Australia. in Geological Society of Australia, 2014 Australian Earth Sciences Convention (AESC), Sustainable Australia. Abstract No 110 of the 22nd Australian Geological Convention
Chrysocolla
Formula: Cu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Reference: Thompson, 2012. Min Soc WA Newsletter; Margaret Hawke, Sebastien Meffre, Holly Stein & Bruce Gemmell (2014) Age Constraints of the Degrussa Cu–Au–Ag Volcanic Hosted Massive Sulfide Deposit and Associated Mineralisation of the Yerrida, Bryah and Padbury Basins, Western Australia. in Geological Society of Australia, 2014 Australian Earth Sciences Convention (AESC), Sustainable Australia. Abstract No 110 of the 22nd Australian Geological Convention
Churchite-(Y)
Formula: Y(PO4) · 2H2O
Reference: Murray Thompson ; Murray Thompson, DeGrussa mine
Conichalcite
Formula: CaCu(AsO4)(OH)
Reference: Murray Thompson ; Murray Thompson, DeGrussa mine
Copper
Formula: Cu
Reference: Thompson, 2012. Min Soc WA Newsletter; Margaret Hawke, Sebastien Meffre, Holly Stein & Bruce Gemmell (2014) Age Constraints of the Degrussa Cu–Au–Ag Volcanic Hosted Massive Sulfide Deposit and Associated Mineralisation of the Yerrida, Bryah and Padbury Basins, Western Australia. in Geological Society of Australia, 2014 Australian Earth Sciences Convention (AESC), Sustainable Australia. Abstract No 110 of the 22nd Australian Geological Convention
'commodity:Copper'
Formula: Cu
Reference: From USGS MRDS database
Cuprite
Formula: Cu2O
Reference: Thompson, 2012. Min Soc WA Newsletter; Margaret Hawke, Sebastien Meffre, Holly Stein & Bruce Gemmell (2014) Age Constraints of the Degrussa Cu–Au–Ag Volcanic Hosted Massive Sulfide Deposit and Associated Mineralisation of the Yerrida, Bryah and Padbury Basins, Western Australia. in Geological Society of Australia, 2014 Australian Earth Sciences Convention (AESC), Sustainable Australia. Abstract No 110 of the 22nd Australian Geological Convention
'Dolerite'
Reference: Margaret Hawke, Sebastien Meffre, Holly Stein & Bruce Gemmell (2014) Age Constraints of the Degrussa Cu–Au–Ag Volcanic Hosted Massive Sulfide Deposit and Associated Mineralisation of the Yerrida, Bryah and Padbury Basins, Western Australia. in Geological Society of Australia, 2014 Australian Earth Sciences Convention (AESC), Sustainable Australia. Abstract No 110 of the 22nd Australian Geological Convention
Dolomite
Formula: CaMg(CO3)2
Reference: Sandfire Resources- Murray Thompson- pers.comm.
'Electrum'
Formula: (Au, Ag)
Reference: Thompson, 2012. Min Soc WA Newsletter
'Gabbro'
Reference: Margaret Hawke, Sebastien Meffre, Holly Stein & Bruce Gemmell (2014) Age Constraints of the Degrussa Cu–Au–Ag Volcanic Hosted Massive Sulfide Deposit and Associated Mineralisation of the Yerrida, Bryah and Padbury Basins, Western Australia. in Geological Society of Australia, 2014 Australian Earth Sciences Convention (AESC), Sustainable Australia. Abstract No 110 of the 22nd Australian Geological Convention
Galena
Formula: PbS
Reference: Fetherston, J. M., Stocklmayer, S. M. and Stocklmayer, V. C. (2013): Gemstones of Western Australia. Mineral Resources Bulletin 25, Geological Survey of Western Australia, Perth, Australia, 306 pp. (p. 185); Margaret Hawke, Sebastien Meffre, Holly Stein & Bruce Gemmell (2014) Age Constraints of the Degrussa Cu–Au–Ag Volcanic Hosted Massive Sulfide Deposit and Associated Mineralisation of the Yerrida, Bryah and Padbury Basins, Western Australia. in Geological Society of Australia, 2014 Australian Earth Sciences Convention (AESC), Sustainable Australia. Abstract No 110 of the 22nd Australian Geological Convention
Georgeite ?
Formula: Cu2(CO3)(OH)2 · 6H2O
Reference: Murray Thompson, DeGrussa mine
Gold
Formula: Au
Reference: Thompson, 2012. Min Soc WA Newsletter
Hemimorphite
Formula: Zn4Si2O7(OH)2 · H2O
Reference: Murray Thompson ; Murray Thompson, DeGrussa mine
Iron
Formula: Fe
Reference: Thompson, 2012. Min Soc WA Newsletter
Magnetite
Formula: Fe2+Fe3+2O4
Reference: Thompson, 2012. Min Soc WA Newsletter; Margaret Hawke, Sebastien Meffre, Holly Stein & Bruce Gemmell (2014) Age Constraints of the Degrussa Cu–Au–Ag Volcanic Hosted Massive Sulfide Deposit and Associated Mineralisation of the Yerrida, Bryah and Padbury Basins, Western Australia. in Geological Society of Australia, 2014 Australian Earth Sciences Convention (AESC), Sustainable Australia. Abstract No 110 of the 22nd Australian Geological Convention
Malachite
Formula: Cu2(CO3)(OH)2
Reference: Thompson, 2012. Min Soc WA Newsletter; Margaret Hawke, Sebastien Meffre, Holly Stein & Bruce Gemmell (2014) Age Constraints of the Degrussa Cu–Au–Ag Volcanic Hosted Massive Sulfide Deposit and Associated Mineralisation of the Yerrida, Bryah and Padbury Basins, Western Australia. in Geological Society of Australia, 2014 Australian Earth Sciences Convention (AESC), Sustainable Australia. Abstract No 110 of the 22nd Australian Geological Convention
Marcasite
Formula: FeS2
Reference: Margaret Hawke, Sebastien Meffre, Holly Stein & Bruce Gemmell (2014) Age Constraints of the Degrussa Cu–Au–Ag Volcanic Hosted Massive Sulfide Deposit and Associated Mineralisation of the Yerrida, Bryah and Padbury Basins, Western Australia. in Geological Society of Australia, 2014 Australian Earth Sciences Convention (AESC), Sustainable Australia. Abstract No 110 of the 22nd Australian Geological Convention
Mcguinnessite
Formula: (Mg,Cu)2(CO3)(OH)2
Reference: Sandfire Resources- Murray Thompson- pers.comm.
Molybdenite
Formula: MoS2
Reference: Margaret Hawke, Sebastien Meffre, Holly Stein & Bruce Gemmell (2014) Age Constraints of the Degrussa Cu–Au–Ag Volcanic Hosted Massive Sulfide Deposit and Associated Mineralisation of the Yerrida, Bryah and Padbury Basins, Western Australia. in Geological Society of Australia, 2014 Australian Earth Sciences Convention (AESC), Sustainable Australia. Abstract No 110 of the 22nd Australian Geological Convention
Mottramite
Formula: PbCu(VO4)(OH)
Reference: Murray Thompson ; Murray Thompson, DeGrussa mine
Muscovite
Formula: KAl2(AlSi3O10)(OH)2
Reference: Thompson, 2012. Min Soc WA Newsletter
Muscovite var: Sericite
Formula: KAl2(AlSi3O10)(OH)2
Reference: Thompson, 2012. Min Soc WA Newsletter
Osarizawaite
Formula: Pb(Al2Cu2+)(SO4)2(OH)6
Reference: Murray Thompson ; Murray Thompson, DeGrussa mine
Pyrite
Formula: FeS2
Reference: Thompson, 2012. Min Soc WA Newsletter; Margaret Hawke, Sebastien Meffre, Holly Stein & Bruce Gemmell (2014) Age Constraints of the Degrussa Cu–Au–Ag Volcanic Hosted Massive Sulfide Deposit and Associated Mineralisation of the Yerrida, Bryah and Padbury Basins, Western Australia. in Geological Society of Australia, 2014 Australian Earth Sciences Convention (AESC), Sustainable Australia. Abstract No 110 of the 22nd Australian Geological Convention
Pyrrhotite
Formula: Fe7S8
Reference: Thompson, 2012. Min Soc WA Newsletter; Margaret Hawke, Sebastien Meffre, Holly Stein & Bruce Gemmell (2014) Age Constraints of the Degrussa Cu–Au–Ag Volcanic Hosted Massive Sulfide Deposit and Associated Mineralisation of the Yerrida, Bryah and Padbury Basins, Western Australia. in Geological Society of Australia, 2014 Australian Earth Sciences Convention (AESC), Sustainable Australia. Abstract No 110 of the 22nd Australian Geological Convention
Quartz
Formula: SiO2
Reference: Thompson, 2012. Min Soc WA Newsletter
Sphalerite
Formula: ZnS
Reference: Thompson, 2012. Min Soc WA Newsletter; Margaret Hawke, Sebastien Meffre, Holly Stein & Bruce Gemmell (2014) Age Constraints of the Degrussa Cu–Au–Ag Volcanic Hosted Massive Sulfide Deposit and Associated Mineralisation of the Yerrida, Bryah and Padbury Basins, Western Australia. in Geological Society of Australia, 2014 Australian Earth Sciences Convention (AESC), Sustainable Australia. Abstract No 110 of the 22nd Australian Geological Convention
Talc
Formula: Mg3Si4O10(OH)2
Reference: Margaret Hawke, Sebastien Meffre, Holly Stein & Bruce Gemmell (2014) Age Constraints of the Degrussa Cu–Au–Ag Volcanic Hosted Massive Sulfide Deposit and Associated Mineralisation of the Yerrida, Bryah and Padbury Basins, Western Australia. in Geological Society of Australia, 2014 Australian Earth Sciences Convention (AESC), Sustainable Australia. Abstract No 110 of the 22nd Australian Geological Convention
Tenorite
Formula: CuO
Reference: Sandfire Resources- Murray Thompson- pers.comm.
Zinc
Formula: Zn
Reference: Thompson, 2012. Min Soc WA Newsletter
Zircon
Formula: Zr(SiO4)
Reference: Thompson, 2012. Min Soc WA Newsletter

List of minerals arranged by Strunz 10th Edition classification

Group 1 - Elements
'Copper'1.AA.05Cu
'Electrum'1.AA.05(Au, Ag)
'Gold'1.AA.05Au
'Iron' ?1.AE.05Fe
Zinc ?1.AB.05Zn
Group 2 - Sulphides and Sulfosalts
'Arsenopyrite'2.EB.20FeAsS
'Bornite'2.BA.15Cu5FeS4
'Chalcocite'2.BA.05Cu2S
'Chalcopyrite'2.CB.10aCuFeS2
'Galena'2.CD.10PbS
'Marcasite'2.EB.10aFeS2
'Molybdenite'2.EA.30MoS2
'Pyrite'2.EB.05aFeS2
'Pyrrhotite'2.CC.10Fe7S8
Sphalerite2.CB.05aZnS
Group 4 - Oxides and Hydroxides
'Cuprite'4.AA.10Cu2O
'Magnetite'4.BB.05Fe2+Fe3+2O4
'Quartz'4.DA.05SiO2
Tenorite4.AB.10CuO
Group 5 - Nitrates and Carbonates
'Aragonite'5.AB.15CaCO3
'Azurite'5.BA.05Cu3(CO3)2(OH)2
'Dolomite'5.AB.10CaMg(CO3)2
'Georgeite' ?5.BA.10Cu2(CO3)(OH)2 · 6H2O
'Malachite'5.BA.10Cu2(CO3)(OH)2
'Mcguinnessite'5.BA.10(Mg,Cu)2(CO3)(OH)2
Group 7 - Sulphates, Chromates, Molybdates and Tungstates
'Brochantite'7.BB.25Cu4(SO4)(OH)6
'Osarizawaite'7.BC.10Pb(Al2Cu2+)(SO4)2(OH)6
Group 8 - Phosphates, Arsenates and Vanadates
'Churchite-(Y)'8.CJ.50Y(PO4) · 2H2O
'Conichalcite'8.BH.35CaCu(AsO4)(OH)
'Mottramite'8.BH.40PbCu(VO4)(OH)
Group 9 - Silicates
'Chrysocolla'9.ED.20Cu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
'Hemimorphite'9.BD.10Zn4Si2O7(OH)2 · H2O
'Muscovite'9.EC.15KAl2(AlSi3O10)(OH)2
var: Sericite9.EC.15KAl2(AlSi3O10)(OH)2
Talc9.EC.05Mg3Si4O10(OH)2
Zircon9.AD.30Zr(SiO4)
Unclassified Minerals, Rocks, etc.
'Basalt'-
'Chlorite Group'-
'Dolerite'-
'Gabbro'-

List of minerals arranged by Dana 8th Edition classification

Group 1 - NATIVE ELEMENTS AND ALLOYS
Metals, other than the Platinum Group
Copper1.1.1.3Cu
Gold1.1.1.1Au
Zinc ?1.1.5.1Zn
Group 2 - SULFIDES
AmBnXp, with (m+n):p = 2:1
Chalcocite2.4.7.1Cu2S
AmBnXp, with (m+n):p = 3:2
Bornite2.5.2.1Cu5FeS4
AmXp, with m:p = 1:1
Galena2.8.1.1PbS
Pyrrhotite2.8.10.1Fe7S8
Sphalerite2.8.2.1ZnS
AmBnXp, with (m+n):p = 1:1
Chalcopyrite2.9.1.1CuFeS2
AmBnXp, with (m+n):p = 1:2
Arsenopyrite2.12.4.1FeAsS
Marcasite2.12.2.1FeS2
Molybdenite2.12.10.1MoS2
Pyrite2.12.1.1FeS2
Group 4 - SIMPLE OXIDES
A2X
Cuprite4.1.1.1Cu2O
AX
Tenorite4.2.3.1CuO
Group 7 - MULTIPLE OXIDES
AB2X4
Magnetite7.2.2.3Fe2+Fe3+2O4
Group 14 - ANHYDROUS NORMAL CARBONATES
AB(XO3)2
Dolomite14.2.1.1CaMg(CO3)2
Group 16a - ANHYDROUS CARBONATES CONTAINING HYDROXYL OR HALOGEN
Azurite16a.2.1.1Cu3(CO3)2(OH)2
Georgeite ?16a.3.3.1Cu2(CO3)(OH)2 · 6H2O
Malachite16a.3.1.1Cu2(CO3)(OH)2
Mcguinnessite16a.3.1.4(Mg,Cu)2(CO3)(OH)2
Group 30 - ANHYDROUS SULFATES CONTAINING HYDROXYL OR HALOGEN
(AB)m(XO4)pZq, where m:p>2:1
Brochantite30.1.3.1Cu4(SO4)(OH)6
(AB)2(XO4)Zq
Osarizawaite30.2.4.4Pb(Al2Cu2+)(SO4)2(OH)6
Group 40 - HYDRATED NORMAL PHOSPHATES,ARSENATES AND VANADATES
(AB)5(XO4)2·xH2O
Churchite-(Y)40.4.6.1Y(PO4) · 2H2O
Group 41 - ANHYDROUS PHOSPHATES, ETC.CONTAINING HYDROXYL OR HALOGEN
(AB)2(XO4)Zq
Conichalcite41.5.1.2CaCu(AsO4)(OH)
Mottramite41.5.2.2PbCu(VO4)(OH)
Group 51 - NESOSILICATES Insular SiO4 Groups Only
Insular SiO4 Groups Only with cations in >[6] coordination
Zircon51.5.2.1Zr(SiO4)
Group 56 - SOROSILICATES Si2O7 Groups, With Additional O, OH, F and H2O
Si2O7 Groups and O, OH, F, and H2O with cations in [4] coordination
Hemimorphite56.1.2.1Zn4Si2O7(OH)2 · H2O
Group 71 - PHYLLOSILICATES Sheets of Six-Membered Rings
Sheets of 6-membered rings with 2:1 layers
Muscovite71.2.2a.1KAl2(AlSi3O10)(OH)2
Talc71.2.1.3Mg3Si4O10(OH)2
Group 74 - PHYLLOSILICATES Modulated Layers
Modulated Layers with joined strips
Chrysocolla74.3.2.1Cu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Group 75 - TECTOSILICATES Si Tetrahedral Frameworks
Si Tetrahedral Frameworks - SiO2 with [4] coordinated Si
Quartz75.1.3.1SiO2
Unclassified Minerals, Rocks, etc.
Aragonite-CaCO3
'Basalt'-
'Chlorite Group'-
'Dolerite'-
'Electrum'-(Au, Ag)
'Gabbro'-
Iron ?-Fe
Muscovite
var: Sericite
-KAl2(AlSi3O10)(OH)2

List of minerals for each chemical element

HHydrogen
H AzuriteCu3(CO3)2(OH)2
H BrochantiteCu4(SO4)(OH)6
H ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
H Churchite-(Y)Y(PO4) · 2H2O
H ConichalciteCaCu(AsO4)(OH)
H GeorgeiteCu2(CO3)(OH)2 · 6H2O
H HemimorphiteZn4Si2O7(OH)2 · H2O
H MalachiteCu2(CO3)(OH)2
H Mcguinnessite(Mg,Cu)2(CO3)(OH)2
H MottramitePbCu(VO4)(OH)
H MuscoviteKAl2(AlSi3O10)(OH)2
H OsarizawaitePb(Al2Cu2+)(SO4)2(OH)6
H Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
H TalcMg3Si4O10(OH)2
CCarbon
C AragoniteCaCO3
C AzuriteCu3(CO3)2(OH)2
C DolomiteCaMg(CO3)2
C GeorgeiteCu2(CO3)(OH)2 · 6H2O
C MalachiteCu2(CO3)(OH)2
C Mcguinnessite(Mg,Cu)2(CO3)(OH)2
OOxygen
O AragoniteCaCO3
O AzuriteCu3(CO3)2(OH)2
O BrochantiteCu4(SO4)(OH)6
O ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
O Churchite-(Y)Y(PO4) · 2H2O
O ConichalciteCaCu(AsO4)(OH)
O CupriteCu2O
O DolomiteCaMg(CO3)2
O GeorgeiteCu2(CO3)(OH)2 · 6H2O
O HemimorphiteZn4Si2O7(OH)2 · H2O
O MagnetiteFe2+Fe23+O4
O MalachiteCu2(CO3)(OH)2
O Mcguinnessite(Mg,Cu)2(CO3)(OH)2
O MottramitePbCu(VO4)(OH)
O MuscoviteKAl2(AlSi3O10)(OH)2
O OsarizawaitePb(Al2Cu2+)(SO4)2(OH)6
O QuartzSiO2
O Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
O TalcMg3Si4O10(OH)2
O TenoriteCuO
O ZirconZr(SiO4)
MgMagnesium
Mg DolomiteCaMg(CO3)2
Mg Mcguinnessite(Mg,Cu)2(CO3)(OH)2
Mg TalcMg3Si4O10(OH)2
AlAluminium
Al ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Al MuscoviteKAl2(AlSi3O10)(OH)2
Al OsarizawaitePb(Al2Cu2+)(SO4)2(OH)6
Al Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
SiSilicon
Si ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Si HemimorphiteZn4Si2O7(OH)2 · H2O
Si MuscoviteKAl2(AlSi3O10)(OH)2
Si QuartzSiO2
Si Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
Si TalcMg3Si4O10(OH)2
Si ZirconZr(SiO4)
PPhosphorus
P Churchite-(Y)Y(PO4) · 2H2O
SSulfur
S ArsenopyriteFeAsS
S BorniteCu5FeS4
S BrochantiteCu4(SO4)(OH)6
S ChalcociteCu2S
S ChalcopyriteCuFeS2
S GalenaPbS
S MarcasiteFeS2
S MolybdeniteMoS2
S OsarizawaitePb(Al2Cu2+)(SO4)2(OH)6
S PyriteFeS2
S PyrrhotiteFe7S8
S SphaleriteZnS
KPotassium
K MuscoviteKAl2(AlSi3O10)(OH)2
K Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
CaCalcium
Ca AragoniteCaCO3
Ca ConichalciteCaCu(AsO4)(OH)
Ca DolomiteCaMg(CO3)2
VVanadium
V MottramitePbCu(VO4)(OH)
FeIron
Fe ArsenopyriteFeAsS
Fe BorniteCu5FeS4
Fe ChalcopyriteCuFeS2
Fe IronFe
Fe MagnetiteFe2+Fe23+O4
Fe MarcasiteFeS2
Fe PyriteFeS2
Fe PyrrhotiteFe7S8
CuCopper
Cu AzuriteCu3(CO3)2(OH)2
Cu BorniteCu5FeS4
Cu BrochantiteCu4(SO4)(OH)6
Cu ChalcociteCu2S
Cu ChalcopyriteCuFeS2
Cu ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Cu ConichalciteCaCu(AsO4)(OH)
Cu CopperCu
Cu CupriteCu2O
Cu GeorgeiteCu2(CO3)(OH)2 · 6H2O
Cu MalachiteCu2(CO3)(OH)2
Cu Mcguinnessite(Mg,Cu)2(CO3)(OH)2
Cu MottramitePbCu(VO4)(OH)
Cu OsarizawaitePb(Al2Cu2+)(SO4)2(OH)6
Cu TenoriteCuO
ZnZinc
Zn HemimorphiteZn4Si2O7(OH)2 · H2O
Zn SphaleriteZnS
Zn ZincZn
AsArsenic
As ArsenopyriteFeAsS
As ConichalciteCaCu(AsO4)(OH)
YYttrium
Y Churchite-(Y)Y(PO4) · 2H2O
ZrZirconium
Zr ZirconZr(SiO4)
MoMolybdenum
Mo MolybdeniteMoS2
AgSilver
Ag Electrum(Au, Ag)
AuGold
Au Electrum(Au, Ag)
Au GoldAu
PbLead
Pb GalenaPbS
Pb MottramitePbCu(VO4)(OH)
Pb OsarizawaitePb(Al2Cu2+)(SO4)2(OH)6

Regional Geology

This geological map and associated information on rock units at or nearby to the coordinates given for this locality is based on relatively small scale geological maps provided by various national Geological Surveys. This does not necessarily represent the complete geology at this locality but it gives a background for the region in which it is found.

Click on geological units on the map for more information. Click here to view full-screen map on Macrostrat.org

Quaternary
0 - 2.588 Ma



ID: 809237
colluvium 38491

Age: Pleistocene (0 - 2.588 Ma)

Description: Colluvium and/or residual deposits, sheetwash, talus, scree; boulder, gravel, sand; may include minor alluvial or sand plain deposits, local calcrete and reworked laterite

Comments: regolith; synthesis of multiple published descriptions

Lithology: Regolith

Reference: Raymond, O.L., Liu, S., Gallagher, R., Zhang, W., Highet, L.M. Surface Geology of Australia 1:1 million scale dataset 2012 edition. Commonwealth of Australia (Geoscience Australia). [5]

Paleoproterozoic
1600 - 2500 Ma



ID: 3184366
Paleoproterozoic sedimentary and volcanic rocks

Age: Proterozoic (1600 - 2500 Ma)

Stratigraphic Name: Glengarry Group

Comments: Naberru Basin

Lithology: Mafic volcanic rocks; basalt; greywacke,iron formation,shale,sandstone,conglomerate

Reference: Chorlton, L.B. Generalized geology of the world: bedrock domains and major faults in GIS format: a small-scale world geology map with an extended geological attribute database. doi: 10.4095/223767. Geological Survey of Canada, Open File 5529. [154]

Data and map coding provided by Macrostrat.org, used under Creative Commons Attribution 4.0 License

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
Thompson, M. (2012) Geological Framework Degrussa Project, Mineralogical Society of Western Australia, Inc. Newsletter (September 2012), 16-20.
Fetherston, J.M., Stocklmayer, S.M., Stocklmayer, V.C. (2013) Gemstones of Western Australia. Geological Survey of Western Australia, Mineral Resources Bulletin 25, 306p. (p.185).
Margaret Hawke, Sebastien Meffre, Holly Stein & Bruce Gemmell (2014) Age Constraints of the Degrussa Cu–Au–Ag Volcanic Hosted Massive Sulfide Deposit and Associated Mineralisation of the Yerrida, Bryah and Padbury Basins, Western Australia. in Geological Society of Australia, 2014 Australian Earth Sciences Convention (AESC), Sustainable Australia. Abstract No 110 of the 22nd Australian Geological Convention

External Links



This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization. Public Relations by Blytheweigh.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2019, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: May 20, 2019 22:04:34 Page generated: December 14, 2018 16:30:39
Go to top of page