SUPPORT US. If mindat.org is important to you, click here to donate to our Fall 2019 fundraiser!
Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsBooks & Magazines
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryMineral Photography

Panasqueira Mines, Covilhã, Castelo Branco, Portugali
Regional Level Types
Panasqueira MinesGroup of Mines (Active)
Covilhã- not defined -
Castelo BrancoDistrict
PortugalCountry

This page kindly sponsored by Paul De Bondt
Key
02860130014946281199427.jpg
Entry of the 'mine-city' with the large dump in the background

Panasqueira Mines, Covilhã, Castelo Branco, Portugal
Latitude & Longitude (WGS84):
40° 9' 14'' North , 7° 44' 52'' West
Latitude & Longitude (decimal):
Locality type:
Group of Mines (Active) - last checked 2019
Nearest Settlements:
PlacePopulationDistance
Barroca Grande600 (2018)0.1km
São Jorge da Beira694 (2012)2.2km
Póvoa da Raposeira458 (2012)5.3km
Unhais-o-Velho640 (2012)5.9km
Barco879 (2018)12.1km
Name(s) in local language(s):
Couto Mineiro da Panasqueira, Covilhã, Distrito de Castelo Branco, Portugal


Mine Information: A large tin-tungsten mine made up of multiple concessions that started production in 1898. Mining is in gently dipping stacked quartz veins that lead into mineralized wolfram-bearing schist. The mineralized zone has dimensions of approximately 2,500 m in length, varying in width from 400 m to 2,200 m, and continues to at least 500 m in depth.

Originally the longwall method or a variant with partial filling was used, but in 1986 it was changed to room-and-pillar based on an analysis of geological and geomechanical characteristics of the rock mass.

Access to the mine's main levels is by a 2.5 m x 2.8 m decline from the surface at a 14% grade. The main levels consist of a series of parallel drives that are spaced 100 m apart and which provide access to the ore passes for rail transport, and connect with ramps for movement of drilling and loading equipment.

Blocks of ore are laid out initially in 100 m x 80 m sections by driving 5 m wide tunnels, 2.2 m high. Similar crosscuts are then set off at right angles to create roughly 11 m by 11m pillars, which are ultimately trimmed to 3 m by 3 m, providing an extraction rate of 84%. Blasted ore is loaded from the stopes by a fleet of LHDs (rubber tired low profile loaders), tipping into 1.8 m-diameter bored raises connecting to the main level boxes. Rail haulage with trolley locomotives is used to transport the ore to the shaft on Level 3, and to the 900 t-capacity main ore pass on Level 2 that provides storage for the 190 metric ton/hour jaw crusher located at the 530 m-level.

Geology: Panasqueira granite intrudes Precambrian marine shales, greywackes, and sandstones. Shales are converted into biotite cordierite andalusite hornfelses near the granite contact. Irregular barren quartz masses were formed in shales (quartz segregation lenses) during Hercynian (the geologic mountain-building event caused by the Late Paleozoic continental collision between Euramerica and Gondwana to form the supercontinent of Pangaea) regional metamorphism. Panasqueira muscovite-albite leucogranite batholith evolves upwards into a quartz-greisen cupola overlain by a quartz cap, from which related quartz veins (stockscheider) penetrate into the shales. Later subhorizontal mineralized veins follow these quartz veins.

Four stages of mineralization are known:
1) Oxide-silicate stage (280-320°C): ferberite, cassiterite in quartz veins, arsenopyrite, topaz, muscovite and tourmaline
2) Sulfide stage: arsenopyrite, pyrite, pyrrhotite, chalcopyrite, sphalerite, stannite, etc.
3) Pyrrhotite alteration stage
4) Carbonate stage: calcite and dolomite, minor sulfides

The mine has existed since 1896. There is an estimated 12,000 km of tunnels, some still working and others already abandoned. At the time of World War II, about 10,000 people worked in the mine; today (2017), approximately 370. The mine has a planned production for more than 30 years.





The industrial mining center commonly known as "Panasqueira Mines" extends over a vast area covered by the Panasqueira and Vale da Ermida Mining Fields with a total area around 20.5 km2.

Although the current mining is concentrated in about a dozen concessions, all others are the object of a systematic study for the evaluation of reserves and determination of their economic potential.

Mineralized zones: Décio Thadeu (*), supported by morphological, mineralogical and tectonic data, presented a classification that until today has been adopted and confirmed by the mining works executed in them. According to this author, the areas are as follows:

a) Panasqueira and Barroca Grande
b) Corga Seca, Alvoroso, Veia Branca and Giestal
c) Lomba da Cevada
d) Rebordões and Seladinho
e) Fonte das Lameiras
f) Vale das Freiras and Vale da Ermida
g) Cabeço do Pião

1 - Panasqueira Mining Field – Castelo Branco District
(concession no. - name - registered on - locality)
316 – Ponte Masso - 07-04-1900 – Aldeia de São Francisco de Assis – Covilhãt
340 – Corga Seca - 26-11-1901 – Aldeia de São Francisco de Assis – Covilhã
366 – Salada Coca - 14-09-1903 – Aldeia de São Francisco de Assis - Covilhã
367 – Barroca Grande - 15-09-1903 – Aldeia de São Francisco de Assis - Covilhã
378 – Gambão - 05-05-1904 – Aldeia de São Francisco de Assis - Covilhã
380 – Alvaroso - 09-05-1904 – Aldeia de São Francisco de Assis - Covilhã
381 – Vale de Carvalhos - 10-05-1904 – Aldeia de São Francisco de Assis - Covilhã
399 – Terreno de Manuel Gil - 16-03-1906 – Aldeia de São Francisco de Assis – Covilhã
721 – Fontainhas - 21-11-1916 – Aldeia de São Francisco de Assis - Covilhã
844 – Giestal - 02-04-1919 – Aldeia de São Francisco de Assis – Covilhã
990 – Chiqueiro no. 2 - 03-03-1921 – Aldeia de São Francisco de Assis - Covilhã
1139 – Sítio dos Cambões - 12-05-1922 – Aldeia de São Francisco Assis - Covilhã
1565 – Bodelhão no. 1 - 12-11-1926 – Aldeia de São Francisco Assis - Covilhã
1566 – Bodelhão no. 2 - 12-11-1926 – Aldeia de São Francisco Assis - Covilhã
1567 – Bodelhão no. 3 - 12-11-1926 – Aldeia de São Francisco Assis – Covilhã
3088 – Parada do Bodelhão - 31-03-1956 – Aldeia de São Francisco Assis - Covilhã
3089 – Ribeiro da Videira no. 1 - 31-03-1956 – Aldeia de São Francisco Assis - Covilhã
3090 – Ribeiro da Videira no. 2 - 31-03-1956 – Aldeia de São Francisco Assis – Covilhã
3108 – Guinchão - 17-05-1956 – Aldeia de São Francisco Assis - Covilhã
3109 – Ribeiro Dianteiro - 17-05-1956 – Aldeia de São de Francisco Assis - Covilhã
3196 – Barroco do Carneiro - 20-02-1958 – Aldeia de São Francisco de Assis – Covilhã
1568 – Panasqueira no. 4 - 12-11-1996 - São Jorge da Beira (Cebola) - Covilhã
2347 – Madurrada - 08-01-1949 - São Jorge da Beira (Cebola) - Covilhã
2425 – Cova da Cruz - 29-09-1949 - São Jorge da Beira (Cebola) - Covilhã
2526 – Torgais - 24-02-1950 - São Jorge da Beira (Cebola) - Covilhã
253 – Panasqueira - 31-05-1894 – São Jorge da Beira (Cebola) - Covilhã
3098 – Cambões de Baixo - 03-05-1956 - São Jorge da Beira (Cebola) - Covilhã
3107 – Barroco dos Carias - 17-05-1956 - São Jorge da Beira (Cebola) - Covilhã
317 – Panasqueira no. 2 - 09-04-1900 – São Jorge da Beira (Cebola) - Covilhã
318 – Panasqueira no. 3 - 10-04-1900 – São Jorge da Beira (Cebola) - Covilhã
319 - Vale da Ermida - 11-04-1900 - São Jorge da Beira (Cebola) - Covilhã
3223 – Madurrada no. 2 - 12-07-1958 – São Jorge da Beira (Cebola) – Covilhã
470 – Vale do Rebordão - 04-09-1908 – São Jorge da Beira (Cebola) - Covilhã
695 – Barroco Fundo (Cebola no. 1) - 10-04-1916 – São Jorge da Beira (Cebola) - Covilhã
900 – Vale da Ermida no. 4 - 18-11-1919 – São Jorge da Beira (Cebola) - Covilhã
980 – Lomba do Muro - 02-12-1920 – São Jorge da Beira (Cebola) – Covilhã
987 – Curral dos Capados - 26-02-1981 – São Jorge da Beira (Cebola) – Covilhã
CM15 – Panasqueira – 23-09-1927 – São Jorge da Beira (Cebola) – Covilhã
255 – Cabeço do Pião - 11-10-1894 – Barroca - Fundão
1036 – Terras do Muro - 07-05-1921 – Barroca - Fundão
1207 – Cebolal ou Resteira - 28-07-1922 – Barroca – Fundão
955 – Costa Meal - 02-06-1920 – Silvares - Fundão
1212 – Costa Meal no. 1 - 03-08-1922 – Silvares – Fundão

2 - Vale da Ermida Mining Field – Coimbra District
(concession no. - name - registered on - locality)
640 – Fonte das Lameiras - 14-01-1915 – Dornelas do Zêzere – Pampilhosa da Serra - Coimbra
3186 - Roçadas - 31-12-1957 – Dornelas do Zêzere – Pampilhosa da Serra - Coimbra
986 - Vale da Ermida no. 2 - 25-02-1921 – Unhais o Velho – Pampilhosa da Serra – Coimbra
988 – Curral dos Capados no. 2 - 28-02-1921 – Unhais o Velho – Pampilhosa da Serra - Coimbra
989 – Chiqueiro no. 1 - 28-02-1921 – Unhais o Velho – Pampilhosa da Serra - Coimbra
3185 – Eiradas - 31-12-1957 – Unhais o Velho – Pampilhosa da Serra - Coimbra
3187- Portela no. 3 - 31-12-1957 – Unhais o Velho – Pampilhosa da Serra - Coimbra
CM55 - Vale da Ermida - 04-03-1961 – Unhais o Velho – Pampilhosa da Serra – Coimbra

Two mining fields: Panasqueira and Vale da Ermida
Two districts: Castelo Branco and Coimbra
Three municipalities: Covilhã, Fundão, Pampilhosa da Serra
Six localities: Aldeia de São Francisco de Assis, São Jorge da Beira, Barroca, Silvares, Dornelas do Zêzere and Unhais-o-Velho


(*) Thadeuite: TL Panasqueira, named for Décio Thadeu (1919-1995), Professor of Geology, Instituto Superior Técnico, Lisbon, Portugal.

Minerals

Panasqueira mines have produced, and still produce, the best ferberite, arsenopyrite and fluorapatite specimens in existence.

Select Mineral List Type

Standard Detailed Strunz Dana Chemical Elements

Commodity List

This is a list of exploitable or exploited mineral commodities recorded from this region.


Mineral List

Mineral list contains entries from the region specified including sub-localities

75 valid minerals. 2 (TL) - type locality of valid minerals. 2 erroneous literature entries.

Detailed Mineral List:

''
Localities:
Acanthite
Formula: Ag2S
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Albite
Formula: Na(AlSi3O8)
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Althausite
Formula: Mg4(PO4)2(OH,O)(F,☐)
Reference: American Mineralogist, Volume 67, pages 854-860, l982; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Amblygonite
Formula: LiAl(PO4)F
Description: Argimela albitite. ( added by ??? ) The Argimela mine is only 12 km from Panasqueira what could have caused the confusion. Paul De Bondt.
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Andalusite
Formula: Al2(SiO4)O
Reference: Bull. Minéral. , 1984, 107, pp. 703-713.
Ankerite
Formula: Ca(Fe2+,Mg)(CO3)2
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Antimony
Formula: Sb
Reference: The Mineralogical record volume 45, january-february 2014.
Arsenic
Formula: As
Description: According to Milà et al. (2014), arsenic was erroneously reported in Milà & Fabre (2014), and had never been confirmed.
Reference: Azevedo and Calvo, 1997; Ascenção Guedes, 2002, The Mineralogical Record, January-February 2014, Volume 45, Number 1, (Carlos Curto Milà and Jordi Fabre, pages 11-55).
Arseniosiderite
Formula: Ca2Fe3+3(AsO4)3O2 · 3H2O
Reference: No reference listed
Arsenopyrite
Formula: FeAsS
Habit: Large brilliant crystals.
Reference: [www.johnbetts-fineminerals.com]; Econ.Geol.: 83; 335-354; American Mineralogist, Volume 67, pages 854-860, l982; D. Wimmers (1985) Silver Minerals of Panasqueira, Portugal: A New Occurrence of Te-Bearing Canfieldite. Mineralogical Magazine 49:745-748.; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Baryte
Formula: BaSO4
Reference: Mila, C.C., Salvan, C.M. & Fabre, J. (2014): Panasqueira: Neufunde und Neubestimmungen. Lapis, 39 (7/8), 54-63.
Berndtite
Formula: SnS2
Habit: Usually massive. "Type locality" for the -4H polytype of berndtite.
Colour: yellow
Fluorescence: no
Reference: Sopa de Pedras, A. M. Galopim de Carvalho, Gradiva, Lisbon
Bertrandite
Formula: Be4(Si2O7)(OH)2
Reference: Mila, C.C., Salvan, C.M. & Fabre, J. (2014): Panasqueira: Neufunde und Neubestimmungen. Lapis, 39 (7/8), 54-63.; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Beryl
Formula: Be3Al2(Si6O18)
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
'Biotite'
Formula: K(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
Reference: Bull. Minéral. , 1984, 107, pp. 703-713.
Bismuth
Formula: Bi
Reference: D. Wimmers (1985) Silver Minerals of Panasqueira, Portugal: A New Occurrence of Te-Bearing Canfieldite. Mineralogical Magazine 49:745-748.; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Bismuthinite
Formula: Bi2S3
Reference: D. Wimmers (1985) Silver Minerals of Panasqueira, Portugal: A New Occurrence of Te-Bearing Canfieldite. Mineralogical Magazine 49:745-748.; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Calcite
Formula: CaCO3
Reference: Econ.Geol.: 83; 335-354; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Canfieldite
Formula: Ag8SnS6
Reference: D. Wimmers (1985) Silver Minerals of Panasqueira, Portugal: A New Occurrence of Te-Bearing Canfieldite. Mineralogical Magazine 49:745-748.
Cassiterite
Formula: SnO2
Reference: Econ.Geol.: 83; 335-354; D. Wimmers (1985) Silver Minerals of Panasqueira, Portugal: A New Occurrence of Te-Bearing Canfieldite. Mineralogical Magazine 49:745-748.; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Chalcanthite
Formula: CuSO4 · 5H2O
Reference: The Mineralogical Record, January-February 2014, Volume 45, Number 1, (Carlos Curto Milà and Jordi Fabre, pages 11-55).
Chalcocite
Formula: Cu2S
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Chalcopyrite
Formula: CuFeS2
Reference: Econ.Geol.: 83; 335-354; American Mineralogist, Volume 67, pages 854-860, l982; D. Wimmers (1985) Silver Minerals of Panasqueira, Portugal: A New Occurrence of Te-Bearing Canfieldite. Mineralogical Magazine 49:745-748.; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Clinochlore
Formula: Mg5Al(AlSi3O10)(OH)8
Reference: Knut Eldjarn
Cordierite
Formula: (Mg,Fe)2Al3(AlSi5O18)
Reference: Bull. Minéral. , 1984, 107, pp. 703-713.
Covellite
Formula: CuS
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Cubanite
Formula: CuFe2S3
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Dolomite
Formula: CaMg(CO3)2
Reference: Rui Nunes collection; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Dravite
Formula: Na(Mg3)Al6(Si6O18)(BO3)3(OH)3(OH)
Reference: www.lpi.usra.edu/meetings/gold2001/pdf/3116.pdf.
'Dravite-Schorl Series'
Description: Neiva, A.M.R., Silva, M.M.V.G. & Gomes, M.E.P. (2001). Geochemistry of tourmaline from Hercynian granites, associated tin, tungsten and gold deposits and adjacent metamorphic and metasomatic rocks from northern Portugal. Eleventh Annual V.M. Goldschmidt Conference, Hot Springs, U.S.A.:123. The Mineralogical Record, January-February 2014, Volume 45, Number 1, (Carlos Curto Milà and Jordi Fabre, pages 11-55). X-Ray analysis done by Jordi Fabre.
Reference: Martins da Pedra collection
'Eta-bronze'
Formula: Cu6Sn5
Reference: No reference listed
Ferberite
Formula: FeWO4
Description: Panasqueira produces the best ferberite crystals known.
Reference: Sopas de Pedra, A. M. Galopim de Carvalho, LIsboa, Portugal
Florencite-(Ce)
Formula: CeAl3(PO4)2(OH)6
Reference: Alves, P. (2016) Svanbergita y florencita-(Ce) de la mina Panasqueira (Covilhã, Castelo Branco, Portugal). Acopios, 7: 1-8.
Fluorapatite
Formula: Ca5(PO4)3F
Habit: Large crystals in different coulours and associations.
Reference: American Mineralogist, Volume 67, pages 854-860, l982; Dunn, P. J. (1977): Apatite. A guide to species nomenclature. Mineralogical Record 8 (2): 78-82
Fluorite
Formula: CaF2
Reference: Econ.Geol.: 83; 335-354; Mila, C.C., Salvan, C.M. & Fabre, J. (2014): Panasqueira: Neufunde und Neubestimmungen. Lapis, 39 (7/8), 54-63.; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Foitite
Formula: (□,Na)(Fe2+2Al)Al6(Si6O18)(BO3)3(OH)3OH
Reference: www.lpi.usra.edu/meetings/gold2001/pdf/3116.pdf.
Freibergite
Formula: (Ag,Cu,◻)10Fe2+2Sb4S12
Reference: D. Wimmers (1985) Silver Minerals of Panasqueira, Portugal: A New Occurrence of Te-Bearing Canfieldite. Mineralogical Magazine 49:745-748.; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Galena
Formula: PbS
Reference: D. Wimmers (1985) Silver Minerals of Panasqueira, Portugal: A New Occurrence of Te-Bearing Canfieldite. Mineralogical Magazine 49:745-748.
Goethite
Formula: α-Fe3+O(OH)
Reference: No reference listed
Gold
Formula: Au
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Gudmundite
Formula: FeSbS
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Gypsum
Formula: CaSO4 · 2H2O
Reference: No reference listed
Gypsum var: Selenite
Formula: CaSO4 · 2H2O
Reference: Martins da Pedra collection
Hematite
Formula: Fe2O3
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Hydrotungstite
Formula: WO3 · 2H2O
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Isokite
Formula: CaMg(PO4)F
Description: The Mineralogical Record, January-February 2014, Volume 45, Number 1, (Carlos Curto Milà and Jordi Fabre, pages 11-55).
Reference: Isaac's et al, 1979; Ascenção Guedes, 2002; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Löllingite
Formula: FeAs2
Reference: The Mineralogical Record, January-February 2014, Volume 45, Number 1, (Carlos Curto Milà and Jordi Fabre, pages 11-55).; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Mackinawite
Formula: (Fe,Ni)9S8
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Magnetite
Formula: Fe2+Fe3+2O4
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Marcasite
Formula: FeS2
Reference: Econ.Geol.: 83; 335-354; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Matildite
Formula: AgBiS2
Reference: D. Wimmers (1985) Silver Minerals of Panasqueira, Portugal: A New Occurrence of Te-Bearing Canfieldite. Mineralogical Magazine 49:745-748.
Melanterite
Formula: Fe2+(H2O)6SO4 · H2O
Reference: Ko Jansen collection
Molybdenite
Formula: MoS2
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Muscovite
Formula: KAl2(AlSi3O10)(OH)2
Reference: Bull. Minéral. , 1984, 107, pp. 703-713.; Econ.Geol.: 83; 335-354; American Mineralogist, Volume 67, pages 854-860, l982; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Panasqueiraite (TL)
Formula: CaMg(PO4)(OH,F)
Type Locality:
Description: This mineral is impossible to determine without analysis and none of the specimens uploaded refer any analysis done.
Reference: Canadian Mineralogist(1981), 19, 389-392 and Canadian Mineralogist(1985), 23, 131 errata; American Mineralogist, Volume 67, pages 854-860, l982; Mila, C.C., Salvan, C.M. & Fabre, J. (2014): Panasqueira: Neufunde und Neubestimmungen. Lapis, 39 (7/8), 54-63.
Pavonite
Formula: AgBi3S5
Reference: D. Wimmers (1985) Silver Minerals of Panasqueira, Portugal: A New Occurrence of Te-Bearing Canfieldite. Mineralogical Magazine 49:745-748.
Pentlandite
Formula: (FexNiy)Σ9S8
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Pharmacosiderite
Formula: KFe3+4(AsO4)3(OH)4 · 6-7H2O
Reference: No reference listed
Pyrargyrite ?
Formula: Ag3SbS3
Reference: D. Wimmers (1985) Silver Minerals of Panasqueira, Portugal: A New Occurrence of Te-Bearing Canfieldite. Mineralogical Magazine 49:745-748.; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Pyrite
Formula: FeS2
Reference: Econ.Geol.: 83; 335-354; D. Wimmers (1985) Silver Minerals of Panasqueira, Portugal: A New Occurrence of Te-Bearing Canfieldite. Mineralogical Magazine 49:745-748.; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Pyrrhotite
Formula: Fe7S8
Reference: Econ.Geol.: 83; 335-354; American Mineralogist, Volume 67, pages 854-860, l982; D. Wimmers (1985) Silver Minerals of Panasqueira, Portugal: A New Occurrence of Te-Bearing Canfieldite. Mineralogical Magazine 49:745-748.; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Quartz
Formula: SiO2
Reference: Econ.Geol.: 83; 335-354; American Mineralogist, Volume 67, pages 854-860, l982; D. Wimmers (1985) Silver Minerals of Panasqueira, Portugal: A New Occurrence of Te-Bearing Canfieldite. Mineralogical Magazine 49:745-748.; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Quartz var: Rock Crystal
Formula: SiO2
Reference: Martins da Pedra collection; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Rutile
Formula: TiO2
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Scheelite
Formula: Ca(WO4)
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Schorl
Formula: Na(Fe2+3)Al6(Si6O18)(BO3)3(OH)3(OH)
Reference: www.lpi.usra.edu/meetings/gold2001/pdf/3116.pdf.
Scorodite
Formula: Fe3+AsO4 · 2H2O
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Siderite
Formula: FeCO3
Reference: American Mineralogist, Volume 67, pages 854-860, l982; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Silver
Formula: Ag
Reference: D. Wimmers (1985) Silver Minerals of Panasqueira, Portugal: A New Occurrence of Te-Bearing Canfieldite. Mineralogical Magazine 49:745-748.; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Sphalerite
Formula: ZnS
Reference: Econ.Geol.: 83; 335-354; American Mineralogist, Volume 67, pages 854-860, l982; D. Wimmers (1985) Silver Minerals of Panasqueira, Portugal: A New Occurrence of Te-Bearing Canfieldite. Mineralogical Magazine 49:745-748.; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Stannite
Formula: Cu2FeSnS4
Reference: D. Wimmers (1985) Silver Minerals of Panasqueira, Portugal: A New Occurrence of Te-Bearing Canfieldite. Mineralogical Magazine 49:745-748; Jordi Fabre analysis (2013); Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Stephanite ?
Formula: Ag5SbS4
Reference: D. Wimmers (1985) Silver Minerals of Panasqueira, Portugal: A New Occurrence of Te-Bearing Canfieldite. Mineralogical Magazine 49:745-748.; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Stibnite
Formula: Sb2S3
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Svanbergite
Formula: SrAl3(PO4)(SO4)(OH)6
Reference: Alves, P. (2016) Svanbergita y florencita-(Ce) de la mina Panasqueira (Covilhã, Castelo Branco, Portugal). Acopios, 7: 1-8.
Tetrahedrite
Formula: Cu6Cu4(Fe2+,Zn)2Sb4S13
Reference: No reference listed
Thadeuite (TL)
Formula: Ca(Mg,Fe2+)3(PO4)2(OH,F)2
Type Locality:
Habit: massive
Colour: rose or yellow
Description: massive in quartz
Reference: American Mineralogist (1979): 64: 359-361; American Mineralogist, Volume 67, pages 854-860, l982; Mila, C.C., Salvan, C.M. & Fabre, J. (2014): Panasqueira: Neufunde und Neubestimmungen. Lapis, 39 (7/8), 54-63.; Isaacs, A.M. and Peacor, D.R. (1982). "The crystal structure of thadeuite Mg(CaMn)(MgFeMn)2(PO4)2(OHF)2." American Mineralogist, 67(1/2),pp:120-125.
Topaz
Formula: Al2(SiO4)(F,OH)2
Reference: American Mineralogist, Volume 67, pages 854-860, l982; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
'Tourmaline'
Formula: A(D3)G6(Si6O18)(BO3)3X3Z
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Triplite
Formula: Mn2+2(PO4)F
Reference: The Mineralogical Record, January-February 2014, Volume 45, Number 1, (Carlos Curto Milà and Jordi Fabre, pages 11-55).; Mila, C.C., Salvan, C.M. & Fabre, J. (2014): Panasqueira: Neufunde und Neubestimmungen. Lapis, 39 (7/8), 54-63.
Tungstite
Formula: WO3 · H2O
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Vivianite
Formula: Fe2+3(PO4)2 · 8H2O
Reference: American Mineralogist, Volume 67, pages 854-860, l982; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Wagnerite
Formula: (Mg,Fe2+)2(PO4)F
Description: This mineral is impossible to determine without analysis and none of the specimens uploaded refer any analysis done.
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Wolfeite
Formula: (Fe2+,Mn2+)2(PO4)(OH)
Reference: American Mineralogist, Volume 67, pages 854-860, l982; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
'Wolframite' ?
Formula: (Fe2+)WO4 to (Mn2+)WO4
Description: "Wolframite" from Panasqueira turned out to be almost pure ferberite.
Reference: Econ.Geol.: 83; 335-354; D. Wimmers (1985) Silver Minerals of Panasqueira, Portugal: A New Occurrence of Te-Bearing Canfieldite. Mineralogical Magazine 49:745-748.; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.; www.lpi.usra.edu/meetings/gold2001/pdf/3116.pdf.

List of minerals arranged by Strunz 10th Edition classification

Group 1 - Elements
Antimony1.CA.05Sb
Arsenic ?1.CA.05As
Bismuth1.CA.05Bi
'Eta-bronze'1.AC.15Cu6Sn5
Gold1.AA.05Au
Silver1.AA.05Ag
Group 2 - Sulphides and Sulfosalts
Acanthite2.BA.35Ag2S
Arsenopyrite2.EB.20FeAsS
Berndtite2.EA.20SnS2
Bismuthinite2.DB.05Bi2S3
Canfieldite2.BA.70Ag8SnS6
Chalcocite2.BA.05Cu2S
Chalcopyrite2.CB.10aCuFeS2
Covellite2.CA.05aCuS
Cubanite2.CB.55aCuFe2S3
Freibergite2.GB.05(Ag,Cu,◻)10Fe2+2Sb4S12
Galena2.CD.10PbS
Gudmundite2.EB.20FeSbS
Löllingite2.EB.15aFeAs2
Mackinawite2.CC.25(Fe,Ni)9S8
Marcasite2.EB.10aFeS2
Matildite2.JA.20AgBiS2
Molybdenite2.EA.30MoS2
Pavonite2.JA.05aAgBi3S5
Pentlandite2.BB.15(FexNiy)Σ9S8
Pyrargyrite ?2.GA.05Ag3SbS3
Pyrite2.EB.05aFeS2
Pyrrhotite2.CC.10Fe7S8
Sphalerite2.CB.05aZnS
Stannite2.CB.15aCu2FeSnS4
Stephanite ?2.GB.10Ag5SbS4
Stibnite2.DB.05Sb2S3
Tetrahedrite2.GB.05Cu6Cu4(Fe2+,Zn)2Sb4S13
Group 3 - Halides
Fluorite3.AB.25CaF2
Group 4 - Oxides and Hydroxides
Cassiterite4.DB.05SnO2
Ferberite4.DB.30FeWO4
Goethite4.00.α-Fe3+O(OH)
Hematite4.CB.05Fe2O3
Hydrotungstite4.FJ.15WO3 · 2H2O
Magnetite4.BB.05Fe2+Fe3+2O4
Quartz4.DA.05SiO2
var: Rock Crystal4.DA.05SiO2
Rutile4.DB.05TiO2
Tungstite4.FJ.10WO3 · H2O
Group 5 - Nitrates and Carbonates
Ankerite5.AB.10Ca(Fe2+,Mg)(CO3)2
Calcite5.AB.05CaCO3
Dolomite5.AB.10CaMg(CO3)2
Siderite5.AB.05FeCO3
Group 7 - Sulphates, Chromates, Molybdates and Tungstates
Baryte7.AD.35BaSO4
Chalcanthite7.CB.20CuSO4 · 5H2O
Gypsum7.CD.40CaSO4 · 2H2O
var: Selenite7.CD.40CaSO4 · 2H2O
Melanterite7.CB.35Fe2+(H2O)6SO4 · H2O
Scheelite7.GA.05Ca(WO4)
Group 8 - Phosphates, Arsenates and Vanadates
Althausite8.BB.25Mg4(PO4)2(OH,O)(F,☐)
Amblygonite ?8.BB.05LiAl(PO4)F
Arseniosiderite8.DH.30Ca2Fe3+3(AsO4)3O2 · 3H2O
Florencite-(Ce)8.BL.13CeAl3(PO4)2(OH)6
Fluorapatite8.BN.05Ca5(PO4)3F
Isokite8.BH.10CaMg(PO4)F
Panasqueiraite (TL)8.BH.10CaMg(PO4)(OH,F)
Pharmacosiderite8.DK.10KFe3+4(AsO4)3(OH)4 · 6-7H2O
Scorodite8.CD.10Fe3+AsO4 · 2H2O
Svanbergite8.BL.05SrAl3(PO4)(SO4)(OH)6
Thadeuite (TL)8.BH.05Ca(Mg,Fe2+)3(PO4)2(OH,F)2
Triplite8.BB.10Mn2+2(PO4)F
Vivianite8.CE.40Fe2+3(PO4)2 · 8H2O
Wagnerite8.BB.15(Mg,Fe2+)2(PO4)F
Wolfeite8.BB.15(Fe2+,Mn2+)2(PO4)(OH)
Group 9 - Silicates
Albite9.FA.35Na(AlSi3O8)
Andalusite9.AF.10Al2(SiO4)O
Bertrandite9.BD.05Be4(Si2O7)(OH)2
Beryl9.CJ.05Be3Al2(Si6O18)
Clinochlore9.EC.55Mg5Al(AlSi3O10)(OH)8
Cordierite9.CJ.10(Mg,Fe)2Al3(AlSi5O18)
Dravite9.CK.05Na(Mg3)Al6(Si6O18)(BO3)3(OH)3(OH)
Foitite9.CK.05(□,Na)(Fe2+2Al)Al6(Si6O18)(BO3)3(OH)3OH
Muscovite9.EC.15KAl2(AlSi3O10)(OH)2
Schorl9.CK.05Na(Fe2+3)Al6(Si6O18)(BO3)3(OH)3(OH)
Topaz9.AF.35Al2(SiO4)(F,OH)2
Unclassified Minerals, Rocks, etc.
''-
'Biotite'-K(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
'Dravite-Schorl Series'-
'Tourmaline'-A(D3)G6(Si6O18)(BO3)3X3Z
'Wolframite' ?-(Fe2+)WO4to (Mn2+)WO4

List of minerals arranged by Dana 8th Edition classification

Group 1 - NATIVE ELEMENTS AND ALLOYS
Metals, other than the Platinum Group
Gold1.1.1.1Au
Silver1.1.1.2Ag
Semi-metals and non-metals
Antimony1.3.1.2Sb
Arsenic ?1.3.1.1As
Bismuth1.3.1.4Bi
Group 2 - SULFIDES
AmBnXp, with (m+n):p = 2:1
Acanthite2.4.1.1Ag2S
Chalcocite2.4.7.1Cu2S
AmBnXp, with (m+n):p = 3:2
Canfieldite2.5.6.2Ag8SnS6
AmBnXp, with (m+n):p = 9:8
Mackinawite2.7.2.1(Fe,Ni)9S8
Pentlandite2.7.1.1(FexNiy)Σ9S8
AmXp, with m:p = 1:1
Covellite2.8.12.1CuS
Galena2.8.1.1PbS
Pyrrhotite2.8.10.1Fe7S8
Sphalerite2.8.2.1ZnS
AmBnXp, with (m+n):p = 1:1
Chalcopyrite2.9.1.1CuFeS2
Cubanite2.9.13.1CuFe2S3
Stannite2.9.2.1Cu2FeSnS4
AmBnXp, with (m+n):p = 2:3
Bismuthinite2.11.2.3Bi2S3
Stibnite2.11.2.1Sb2S3
AmBnXp, with (m+n):p = 1:2
Arsenopyrite2.12.4.1FeAsS
Berndtite2.12.14.5SnS2
Gudmundite2.12.4.2FeSbS
Löllingite2.12.2.9FeAs2
Marcasite2.12.2.1FeS2
Molybdenite2.12.10.1MoS2
Pyrite2.12.1.1FeS2
Group 3 - SULFOSALTS
ø = 4
Stephanite ?3.2.4.1Ag5SbS4
3 <ø < 4
Freibergite3.3.6.3(Ag,Cu,◻)10Fe2+2Sb4S12
Tetrahedrite3.3.6.1Cu6Cu4(Fe2+,Zn)2Sb4S13
ø = 3
Pyrargyrite ?3.4.1.2Ag3SbS3
ø = 2
Matildite3.7.1.1AgBiS2
1 < ø < 2
Pavonite3.8.10.1AgBi3S5
Group 4 - SIMPLE OXIDES
A2X3
Hematite4.3.1.2Fe2O3
AX2
Cassiterite4.4.1.5SnO2
Rutile4.4.1.1TiO2
AX3
Tungstite4.5.2.1WO3 · H2O
Group 6 - HYDROXIDES AND OXIDES CONTAINING HYDROXYL
XO(OH)
Goethite6.1.1.2α-Fe3+O(OH)
Group 7 - MULTIPLE OXIDES
AB2X4
Magnetite7.2.2.3Fe2+Fe3+2O4
Group 9 - NORMAL HALIDES
AX2
Fluorite9.2.1.1CaF2
Group 14 - ANHYDROUS NORMAL CARBONATES
A(XO3)
Calcite14.1.1.1CaCO3
Siderite14.1.1.3FeCO3
AB(XO3)2
Ankerite14.2.1.2Ca(Fe2+,Mg)(CO3)2
Dolomite14.2.1.1CaMg(CO3)2
Group 28 - ANHYDROUS ACID AND NORMAL SULFATES
AXO4
Baryte28.3.1.1BaSO4
Group 29 - HYDRATED ACID AND NORMAL SULFATES
AXO4·xH2O
Chalcanthite29.6.7.1CuSO4 · 5H2O
Gypsum29.6.3.1CaSO4 · 2H2O
Melanterite29.6.10.1Fe2+(H2O)6SO4 · H2O
Group 40 - HYDRATED NORMAL PHOSPHATES,ARSENATES AND VANADATES
A3(XO4)2·xH2O
Vivianite40.3.6.1Fe2+3(PO4)2 · 8H2O
(AB)5(XO4)2·xH2O
Scorodite40.4.1.3Fe3+AsO4 · 2H2O
Group 41 - ANHYDROUS PHOSPHATES, ETC.CONTAINING HYDROXYL OR HALOGEN
(AB)2(XO4)Zq
Amblygonite ?41.5.8.1LiAl(PO4)F
Florencite-(Ce)41.5.10.2CeAl3(PO4)2(OH)6
Isokite41.5.6.2CaMg(PO4)F
Panasqueiraite (TL)41.5.6.3CaMg(PO4)(OH,F)
Thadeuite (TL)41.5.16.1Ca(Mg,Fe2+)3(PO4)2(OH,F)2
A2(XO4)Zq
Althausite41.6.5.1Mg4(PO4)2(OH,O)(F,☐)
Triplite41.6.1.2Mn2+2(PO4)F
Wagnerite41.6.2.1(Mg,Fe2+)2(PO4)F
Wolfeite41.6.3.1(Fe2+,Mn2+)2(PO4)(OH)
A5(XO4)3Zq
Fluorapatite41.8.1.1Ca5(PO4)3F
Group 42 - HYDRATED PHOSPHATES, ETC.CONTAINING HYDROXYL OR HALOGEN
(AB)5(XO4)3Zq·xH2O
Arseniosiderite42.8.4.3Ca2Fe3+3(AsO4)3O2 · 3H2O
Pharmacosiderite42.8.1a.1KFe3+4(AsO4)3(OH)4 · 6-7H2O
Group 43 - COMPOUND PHOSPHATES, ETC.
Anhydrous Compound Phosphates, etc·, Containing Hydroxyl or Halogen
Svanbergite43.4.1.6SrAl3(PO4)(SO4)(OH)6
Group 48 - ANHYDROUS MOLYBDATES AND TUNGSTATES
AXO4
Ferberite48.1.1.2FeWO4
Scheelite48.1.2.1Ca(WO4)
Group 49 - HYDRATED MOLYBDATES AND TUNGSTATES
Acid Hydrated Molybdates and Tungstates
Hydrotungstite49.1.1.1WO3 · 2H2O
Group 52 - NESOSILICATES Insular SiO4 Groups and O,OH,F,H2O
Insular SiO4 Groups and O, OH, F, and H2O with cations in [4] and >[4] coordination
Andalusite52.2.2b.1Al2(SiO4)O
Insular SiO4 Groups and O, OH, F, and H2O with cations in [6] coordination only
Topaz52.3.1.1Al2(SiO4)(F,OH)2
Group 56 - SOROSILICATES Si2O7 Groups, With Additional O, OH, F and H2O
Si2O7 Groups and O, OH, F, and H2O with cations in [4] coordination
Bertrandite56.1.1.1Be4(Si2O7)(OH)2
Group 61 - CYCLOSILICATES Six-Membered Rings
Six-Membered Rings with [Si6O18] rings; possible (OH) and Al substitution
Beryl61.1.1.1Be3Al2(Si6O18)
Six-Membered Rings with Al substituted rings
Cordierite61.2.1.1(Mg,Fe)2Al3(AlSi5O18)
Six-Membered Rings with borate groups
Dravite61.3.1.9Na(Mg3)Al6(Si6O18)(BO3)3(OH)3(OH)
Foitite61.3.1.1(□,Na)(Fe2+2Al)Al6(Si6O18)(BO3)3(OH)3OH
Schorl61.3.1.10Na(Fe2+3)Al6(Si6O18)(BO3)3(OH)3(OH)
Group 71 - PHYLLOSILICATES Sheets of Six-Membered Rings
Sheets of 6-membered rings with 2:1 layers
Muscovite71.2.2a.1KAl2(AlSi3O10)(OH)2
Sheets of 6-membered rings interlayered 1:1, 2:1, and octahedra
Clinochlore71.4.1.4Mg5Al(AlSi3O10)(OH)8
Group 75 - TECTOSILICATES Si Tetrahedral Frameworks
Si Tetrahedral Frameworks - SiO2 with [4] coordinated Si
Quartz75.1.3.1SiO2
Group 76 - TECTOSILICATES Al-Si Framework
Al-Si Framework with Al-Si frameworks
Albite76.1.3.1Na(AlSi3O8)
Unclassified Minerals, Mixtures, etc.
''-
'Biotite'-K(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
'Dravite-Schorl Series'-
'Eta-bronze'-Cu6Sn5
Gypsum
var: Selenite
-CaSO4 · 2H2O
Quartz
var: Rock Crystal
-SiO2
'Tourmaline'-A(D3)G6(Si6O18)(BO3)3X3Z
'Wolframite' ?-(Fe2+)WO4 to (Mn2+)WO4

List of minerals for each chemical element

HHydrogen
H ThadeuiteCa(Mg,Fe2+)3(PO4)2(OH,F)2
H PanasqueiraiteCaMg(PO4)(OH,F)
H SvanbergiteSrAl3(PO4)(SO4)(OH)6
H TopazAl2(SiO4)(F,OH)2
H VivianiteFe32+(PO4)2 · 8H2O
H Wolfeite(Fe2+,Mn2+)2(PO4)(OH)
H TungstiteWO3 · H2O
H ScoroditeFe3+AsO4 · 2H2O
H PharmacosideriteKFe43+(AsO4)3(OH)4 · 6-7H2O
H MuscoviteKAl2(AlSi3O10)(OH)2
H Goethiteα-Fe3+O(OH)
H HydrotungstiteWO3 · 2H2O
H GypsumCaSO4 · 2H2O
H AlthausiteMg4(PO4)2(OH,O)(F,☐)
H BertranditeBe4(Si2O7)(OH)2
H ArseniosideriteCa2Fe33+(AsO4)3O2 · 3H2O
H Foitite(□,Na)(Fe22+Al)Al6(Si6O18)(BO3)3(OH)3OH
H DraviteNa(Mg3)Al6(Si6O18)(BO3)3(OH)3(OH)
H SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
H BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
H ClinochloreMg5Al(AlSi3O10)(OH)8
H Gypsum (var: Selenite)CaSO4 · 2H2O
H MelanteriteFe2+(H2O)6SO4 · H2O
H ChalcanthiteCuSO4 · 5H2O
H Florencite-(Ce)CeAl3(PO4)2(OH)6
LiLithium
Li AmblygoniteLiAl(PO4)F
BeBeryllium
Be BerylBe3Al2(Si6O18)
Be BertranditeBe4(Si2O7)(OH)2
BBoron
B TourmalineA(D3)G6(Si6O18)(BO3)3X3Z
B Foitite(□,Na)(Fe22+Al)Al6(Si6O18)(BO3)3(OH)3OH
B DraviteNa(Mg3)Al6(Si6O18)(BO3)3(OH)3(OH)
B SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
CCarbon
C SideriteFeCO3
C CalciteCaCO3
C AnkeriteCa(Fe2+,Mg)(CO3)2
C DolomiteCaMg(CO3)2
OOxygen
O ThadeuiteCa(Mg,Fe2+)3(PO4)2(OH,F)2
O PanasqueiraiteCaMg(PO4)(OH,F)
O FluorapatiteCa5(PO4)3F
O FerberiteFeWO4
O SideriteFeCO3
O CassiteriteSnO2
O SvanbergiteSrAl3(PO4)(SO4)(OH)6
O TopazAl2(SiO4)(F,OH)2
O VivianiteFe32+(PO4)2 · 8H2O
O TourmalineA(D3)G6(Si6O18)(BO3)3X3Z
O Wolfeite(Fe2+,Mn2+)2(PO4)(OH)
O TungstiteWO3 · H2O
O ScheeliteCa(WO4)
O RutileTiO2
O QuartzSiO2
O ScoroditeFe3+AsO4 · 2H2O
O PharmacosideriteKFe43+(AsO4)3(OH)4 · 6-7H2O
O MuscoviteKAl2(AlSi3O10)(OH)2
O Goethiteα-Fe3+O(OH)
O HydrotungstiteWO3 · 2H2O
O MagnetiteFe2+Fe23+O4
O HematiteFe2O3
O GypsumCaSO4 · 2H2O
O AlthausiteMg4(PO4)2(OH,O)(F,☐)
O CalciteCaCO3
O BerylBe3Al2(Si6O18)
O BertranditeBe4(Si2O7)(OH)2
O AnkeriteCa(Fe2+,Mg)(CO3)2
O ArseniosideriteCa2Fe33+(AsO4)3O2 · 3H2O
O Wagnerite(Mg,Fe2+)2(PO4)F
O DolomiteCaMg(CO3)2
O Foitite(□,Na)(Fe22+Al)Al6(Si6O18)(BO3)3(OH)3OH
O DraviteNa(Mg3)Al6(Si6O18)(BO3)3(OH)3(OH)
O SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
O BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
O AndalusiteAl2(SiO4)O
O Cordierite(Mg,Fe)2Al3(AlSi5O18)
O ClinochloreMg5Al(AlSi3O10)(OH)8
O Gypsum (var: Selenite)CaSO4 · 2H2O
O MelanteriteFe2+(H2O)6SO4 · H2O
O Quartz (var: Rock Crystal)SiO2
O ChalcanthiteCuSO4 · 5H2O
O IsokiteCaMg(PO4)F
O TripliteMn22+(PO4)F
O BaryteBaSO4
O AlbiteNa(AlSi3O8)
O Florencite-(Ce)CeAl3(PO4)2(OH)6
O Wolframite(Fe2+)WO4 to (Mn2+)WO4
O AmblygoniteLiAl(PO4)F
FFluorine
F ThadeuiteCa(Mg,Fe2+)3(PO4)2(OH,F)2
F PanasqueiraiteCaMg(PO4)(OH,F)
F FluorapatiteCa5(PO4)3F
F TopazAl2(SiO4)(F,OH)2
F FluoriteCaF2
F AlthausiteMg4(PO4)2(OH,O)(F,☐)
F Wagnerite(Mg,Fe2+)2(PO4)F
F BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
F IsokiteCaMg(PO4)F
F TripliteMn22+(PO4)F
F AmblygoniteLiAl(PO4)F
NaSodium
Na DraviteNa(Mg3)Al6(Si6O18)(BO3)3(OH)3(OH)
Na SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
Na AlbiteNa(AlSi3O8)
MgMagnesium
Mg ThadeuiteCa(Mg,Fe2+)3(PO4)2(OH,F)2
Mg PanasqueiraiteCaMg(PO4)(OH,F)
Mg AlthausiteMg4(PO4)2(OH,O)(F,☐)
Mg AnkeriteCa(Fe2+,Mg)(CO3)2
Mg Wagnerite(Mg,Fe2+)2(PO4)F
Mg DolomiteCaMg(CO3)2
Mg DraviteNa(Mg3)Al6(Si6O18)(BO3)3(OH)3(OH)
Mg BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
Mg Cordierite(Mg,Fe)2Al3(AlSi5O18)
Mg ClinochloreMg5Al(AlSi3O10)(OH)8
Mg IsokiteCaMg(PO4)F
AlAluminium
Al SvanbergiteSrAl3(PO4)(SO4)(OH)6
Al TopazAl2(SiO4)(F,OH)2
Al MuscoviteKAl2(AlSi3O10)(OH)2
Al BerylBe3Al2(Si6O18)
Al Foitite(□,Na)(Fe22+Al)Al6(Si6O18)(BO3)3(OH)3OH
Al DraviteNa(Mg3)Al6(Si6O18)(BO3)3(OH)3(OH)
Al SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
Al BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
Al AndalusiteAl2(SiO4)O
Al Cordierite(Mg,Fe)2Al3(AlSi5O18)
Al ClinochloreMg5Al(AlSi3O10)(OH)8
Al AlbiteNa(AlSi3O8)
Al Florencite-(Ce)CeAl3(PO4)2(OH)6
Al AmblygoniteLiAl(PO4)F
SiSilicon
Si TopazAl2(SiO4)(F,OH)2
Si TourmalineA(D3)G6(Si6O18)(BO3)3X3Z
Si QuartzSiO2
Si MuscoviteKAl2(AlSi3O10)(OH)2
Si BerylBe3Al2(Si6O18)
Si BertranditeBe4(Si2O7)(OH)2
Si Foitite(□,Na)(Fe22+Al)Al6(Si6O18)(BO3)3(OH)3OH
Si DraviteNa(Mg3)Al6(Si6O18)(BO3)3(OH)3(OH)
Si SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
Si BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
Si AndalusiteAl2(SiO4)O
Si Cordierite(Mg,Fe)2Al3(AlSi5O18)
Si ClinochloreMg5Al(AlSi3O10)(OH)8
Si Quartz (var: Rock Crystal)SiO2
Si AlbiteNa(AlSi3O8)
PPhosphorus
P ThadeuiteCa(Mg,Fe2+)3(PO4)2(OH,F)2
P PanasqueiraiteCaMg(PO4)(OH,F)
P FluorapatiteCa5(PO4)3F
P SvanbergiteSrAl3(PO4)(SO4)(OH)6
P VivianiteFe32+(PO4)2 · 8H2O
P Wolfeite(Fe2+,Mn2+)2(PO4)(OH)
P AlthausiteMg4(PO4)2(OH,O)(F,☐)
P Wagnerite(Mg,Fe2+)2(PO4)F
P IsokiteCaMg(PO4)F
P TripliteMn22+(PO4)F
P Florencite-(Ce)CeAl3(PO4)2(OH)6
P AmblygoniteLiAl(PO4)F
SSulfur
S ArsenopyriteFeAsS
S BerndtiteSnS2
S SvanbergiteSrAl3(PO4)(SO4)(OH)6
S TetrahedriteCu6Cu4(Fe2+,Zn)2Sb4S13
S SphaleriteZnS
S StibniteSb2S3
S StanniteCu2FeSnS4
S PavoniteAgBi3S5
S Pentlandite(FexNiy)Σ9S8
S PyriteFeS2
S MatilditeAgBiS2
S MarcasiteFeS2
S Freibergite(Ag,Cu,◻)10Fe22+Sb4S12
S GudmunditeFeSbS
S GalenaPbS
S GypsumCaSO4 · 2H2O
S Mackinawite(Fe,Ni)9S8
S AcanthiteAg2S
S CanfielditeAg8SnS6
S CovelliteCuS
S CubaniteCuFe2S3
S ChalcociteCu2S
S MolybdeniteMoS2
S PyrrhotiteFe7S8
S ChalcopyriteCuFeS2
S BismuthiniteBi2S3
S Gypsum (var: Selenite)CaSO4 · 2H2O
S MelanteriteFe2+(H2O)6SO4 · H2O
S ChalcanthiteCuSO4 · 5H2O
S BaryteBaSO4
S StephaniteAg5SbS4
S PyrargyriteAg3SbS3
KPotassium
K PharmacosideriteKFe43+(AsO4)3(OH)4 · 6-7H2O
K MuscoviteKAl2(AlSi3O10)(OH)2
K BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
CaCalcium
Ca ThadeuiteCa(Mg,Fe2+)3(PO4)2(OH,F)2
Ca PanasqueiraiteCaMg(PO4)(OH,F)
Ca FluorapatiteCa5(PO4)3F
Ca ScheeliteCa(WO4)
Ca FluoriteCaF2
Ca GypsumCaSO4 · 2H2O
Ca CalciteCaCO3
Ca AnkeriteCa(Fe2+,Mg)(CO3)2
Ca ArseniosideriteCa2Fe33+(AsO4)3O2 · 3H2O
Ca DolomiteCaMg(CO3)2
Ca Gypsum (var: Selenite)CaSO4 · 2H2O
Ca IsokiteCaMg(PO4)F
TiTitanium
Ti RutileTiO2
MnManganese
Mn TripliteMn22+(PO4)F
Mn Wolframite(Fe2+)WO4 to (Mn2+)WO4
FeIron
Fe ArsenopyriteFeAsS
Fe FerberiteFeWO4
Fe SideriteFeCO3
Fe VivianiteFe32+(PO4)2 · 8H2O
Fe Wolfeite(Fe2+,Mn2+)2(PO4)(OH)
Fe TetrahedriteCu6Cu4(Fe2+,Zn)2Sb4S13
Fe StanniteCu2FeSnS4
Fe ScoroditeFe3+AsO4 · 2H2O
Fe Pentlandite(FexNiy)Σ9S8
Fe PharmacosideriteKFe43+(AsO4)3(OH)4 · 6-7H2O
Fe PyriteFeS2
Fe MarcasiteFeS2
Fe Goethiteα-Fe3+O(OH)
Fe Freibergite(Ag,Cu,◻)10Fe22+Sb4S12
Fe MagnetiteFe2+Fe23+O4
Fe GudmunditeFeSbS
Fe HematiteFe2O3
Fe Mackinawite(Fe,Ni)9S8
Fe AnkeriteCa(Fe2+,Mg)(CO3)2
Fe ArseniosideriteCa2Fe33+(AsO4)3O2 · 3H2O
Fe CubaniteCuFe2S3
Fe PyrrhotiteFe7S8
Fe ChalcopyriteCuFeS2
Fe Foitite(□,Na)(Fe22+Al)Al6(Si6O18)(BO3)3(OH)3OH
Fe SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
Fe BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
Fe Cordierite(Mg,Fe)2Al3(AlSi5O18)
Fe MelanteriteFe2+(H2O)6SO4 · H2O
Fe LöllingiteFeAs2
Fe Wolframite(Fe2+)WO4 to (Mn2+)WO4
NiNickel
Ni Pentlandite(FexNiy)Σ9S8
Ni Mackinawite(Fe,Ni)9S8
CuCopper
Cu Eta-bronzeCu6Sn5
Cu TetrahedriteCu6Cu4(Fe2+,Zn)2Sb4S13
Cu StanniteCu2FeSnS4
Cu Freibergite(Ag,Cu,◻)10Fe22+Sb4S12
Cu CovelliteCuS
Cu CubaniteCuFe2S3
Cu ChalcociteCu2S
Cu ChalcopyriteCuFeS2
Cu ChalcanthiteCuSO4 · 5H2O
ZnZinc
Zn TetrahedriteCu6Cu4(Fe2+,Zn)2Sb4S13
Zn SphaleriteZnS
AsArsenic
As ArsenopyriteFeAsS
As ScoroditeFe3+AsO4 · 2H2O
As PharmacosideriteKFe43+(AsO4)3(OH)4 · 6-7H2O
As ArseniosideriteCa2Fe33+(AsO4)3O2 · 3H2O
As LöllingiteFeAs2
As ArsenicAs
SrStrontium
Sr SvanbergiteSrAl3(PO4)(SO4)(OH)6
MoMolybdenum
Mo MolybdeniteMoS2
AgSilver
Ag SilverAg
Ag PavoniteAgBi3S5
Ag MatilditeAgBiS2
Ag Freibergite(Ag,Cu,◻)10Fe22+Sb4S12
Ag AcanthiteAg2S
Ag CanfielditeAg8SnS6
Ag StephaniteAg5SbS4
Ag PyrargyriteAg3SbS3
SnTin
Sn BerndtiteSnS2
Sn CassiteriteSnO2
Sn Eta-bronzeCu6Sn5
Sn StanniteCu2FeSnS4
Sn CanfielditeAg8SnS6
SbAntimony
Sb TetrahedriteCu6Cu4(Fe2+,Zn)2Sb4S13
Sb StibniteSb2S3
Sb Freibergite(Ag,Cu,◻)10Fe22+Sb4S12
Sb GudmunditeFeSbS
Sb AntimonySb
Sb StephaniteAg5SbS4
Sb PyrargyriteAg3SbS3
BaBarium
Ba BaryteBaSO4
CeCerium
Ce Florencite-(Ce)CeAl3(PO4)2(OH)6
WTungsten
W FerberiteFeWO4
W TungstiteWO3 · H2O
W ScheeliteCa(WO4)
W HydrotungstiteWO3 · 2H2O
W Wolframite(Fe2+)WO4 to (Mn2+)WO4
AuGold
Au GoldAu
PbLead
Pb GalenaPbS
BiBismuth
Bi PavoniteAgBi3S5
Bi MatilditeAgBiS2
Bi BismuthBi
Bi BismuthiniteBi2S3

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
Clark, A.H. (1965) Notes on the mineralogy of Panasqueira tin-tungsten deposit, Portugal. Comunicacaoes dos Servicos Geologicos de Portugal 48, 201-12.
Gaines, R.W. and Thadeu, D. (1971) The minerals of Panasqueira, Portugal. Mineralogical Record, 2(2), 73-78.
dos Reis, A.C. (1971) As Minas da Panasqueira. Beralt Tin & Wolfram, Ltd., Lisboa.
Dunn, P.J. (1977) Apatite. A guide to species nomenclature. Mineralogical Record 8 (2): 78-82 [with analysis of green and violet apatite-(CaF) from Panasqueira].
Thadeu, D. (1979) Le gisement stanno-wolframifère de Panasqueira (Portugal). Chronique de la Recherche Minière 450, 35-42.
Kelly, W.C. and Rye, R.O. (1979) Geologic, fluid inclusion, and stable isotope studies of the tin-tungsten deposits of Panasqueira, Portugal. Economic Geology 74, 1721-1822.
Bull. Minéral., (1984) 107, 703-713.
Bussink, R.W. (1984) Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Wimmers, D. (1985) Silver Minerals of Panasqueira, Portugal: A New Occurrence of Te-Bearing Canfieldite. Mineralogical Magazine 49:745-748.
Bull. Minéral. (1988) 111, 251-256.
Costa, L.R. and Goinhas, J.A.C. (1988) Alguns aspectos da indústria extractiva de cobre em Portugal. Boletim de Minas, Lisboa 25 (2) Abr/Jun 1988, p. 167-175.
Foxford, K.A., Nicholson, R., and Polya, D.A. (1991) Textural evolution of W-Cu-Sn bearing hydrothermal veins at Minas da Panasqueira, Portugal. Mineralogical Magazine, 55, 435-445.
Azevedo Da Silva, R.P. and Calvo, M. (1997) Minéralogie (Panasqueira). Bocamina, 12-27.
Werner, A.B.T., Sinclair, W.D., and Amey, E.B. (1998) International Strategic Mineral Issues Summary Report - Tungsten. US Geological Survey Circular 930-O.
De Ascencao Guedes, R. (2002) Le coteau minier de Panasqueira, Beira Baixa (Portugal). Le Règne Minéral(43), 6-32.
USGS (2005) Mineral Resources Data System (MRDS): U.S. Geological Survey, Reston, Virginia, loc. file ID #10055806 & 10304117.
Keeping a low profile at Panasqueira, Mining Methods in Underground Mining (2007) Atlas Copco, 135-140.
Carlos Curto Milà and Jordi Fabre (2014) The Mineralogical Record, 45 (1), 11-55.
Weiß, S., Fabre, J., and Mila, C.C. (2014) Panasqueira, Portugal: Wolframit, Zinnstein und prächtige Apatite. Lapis, 39 (7/8), 16-29 (in German).
Weiß, S. and Fabre, J. (2014) Panasqueira: Mineralien für Kenner - von A bis Z. Lapis, 39 (7/8), 30-53.
Mila, C.C., Salvan, C.M., and Fabre, J. (2014) Panasqueira: Neufunde und Neubestimmungen. Lapis, 39 (7/8), 54-63 [mineral list on p. 63].
Alves, P. (2016) Svanbergita y florencita-(Ce) de la mina Panasqueira (Covilhã, Castelo Branco, Portugal). Acopios, 7: 1-8.
Siorminp/LNEG.

External Links


Localities in this Region

Other Regions, Features and Areas containg this locality

Eurasian PlateTectonic Plate
EuropeContinent

This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
 
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization. Public Relations by Blytheweigh.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2019, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: September 19, 2019 11:33:36 Page generated: September 19, 2019 03:44:17
Go to top of page