IMPORTANT MESSAGE. We need your support now to keep mindat.org running. Click here to find out why.
Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for Educators
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
StatisticsThe ElementsUsersBooks & MagazinesMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery

Panasqueira Mines, Covilhã, Castelo Branco District, Portugal

This page kindly sponsored by Paul De Bondt
Key
Lock Map
Entry of the 'mine-city' with the large dump in the background

Panasqueira Mines, Covilhã, Castelo Branco District, Portugal
Plant and dumps view / Vista geral e das escombreiras

Panasqueira Mines, Covilhã, Castelo Branco District, Portugal
Entry of the 'mine-city' with the large dump in the background

Panasqueira Mines, Covilhã, Castelo Branco District, Portugal
Plant and dumps view / Vista geral e das escombreiras

Panasqueira Mines, Covilhã, Castelo Branco District, Portugal
Entry of the 'mine-city' with the large dump in the background

Panasqueira Mines, Covilhã, Castelo Branco District, Portugal
Plant and dumps view / Vista geral e das escombreiras

Panasqueira Mines, Covilhã, Castelo Branco District, Portugal
Latitude & Longitude (WGS84): 40° 9' 14'' North , 7° 44' 52'' West
Latitude & Longitude (decimal): 40.15395,-7.74786
GeoHash:G#: ez4krty1t
Locality type:Group of Mines
Köppen climate type:Csb : Warm-summer Mediterranean climate
Name(s) in local language(s):Couto Mineiro da Panasqueira, Covilhã, Distrito de Castelo Branco, Portugal


Mine Information: A large tin-tungsten mine made up of multiple concessions that started production in 1898. Mining is in gently dipping stacked quartz veins that lead into mineralized wolfram-bearing schist. The mineralized zone has dimensions of approximately 2,500 m in length, varying in width from 400 m to 2,200 m, and continues to at least 500 m in depth.

Originally the longwall method or a variant with partial filling was used, but in 1986 it was changed to room-and-pillar based on an analysis of geological and geomechanical characteristics of the rock mass.

Access to the mine's main levels is by a 2.5 m x 2.8 m decline from the surface at a 14% grade. The main levels consist of a series of parallel drives that are spaced 100 m apart and which provide access to the ore passes for rail transport, and connect with ramps for movement of drilling and loading equipment.

Blocks of ore are laid out initially in 100 m x 80 m sections by driving 5 m wide tunnels, 2.2 m high. Similar crosscuts are then set off at right angles to create roughly 11 m by 11m pillars, which are ultimately trimmed to 3 m by 3 m, providing an extraction rate of 84%. Blasted ore is loaded from the stopes by a fleet of LHDs (rubber tired low profile loaders), tipping into 1.8 m-diameter bored raises connecting to the main level boxes. Rail haulage with trolley locomotives is used to transport the ore to the shaft on Level 3, and to the 900 t-capacity main ore pass on Level 2 that provides storage for the 190 metric ton/hour jaw crusher located at the 530 m-level.

Geology: Panasqueira granite intrudes Precambrian marine shales, greywackes, and sandstones. Shales are converted into biotite cordierite andalusite hornfelses near the granite contact. Irregular barren quartz masses were formed in shales (quartz segregation lenses) during Hercynian (the geologic mountain-building event caused by the Late Paleozoic continental collision between Euramerica and Gondwana to form the supercontinent of Pangaea) regional metamorphism. Panasqueira muscovite-albite leucogranite batholith evolves upwards into a quartz-greisen cupola overlain by a quartz cap, from which related quartz veins (stockscheider) penetrate into the shales. Later subhorizontal mineralized veins follow these quartz veins.

Four stages of mineralization are known:
1) Oxide-silicate stage (280-320°C): ferberite, cassiterite in quartz veins, arsenopyrite, topaz, muscovite and tourmaline
2) Sulfide stage: arsenopyrite, pyrite, pyrrhotite, chalcopyrite, sphalerite, stannite, etc.
3) Pyrrhotite alteration stage
4) Carbonate stage: calcite and dolomite, minor sulfides

The mine has existed since 1896. There is an estimated 12,000 km of tunnels, some still working and others already abandoned. At the time of World War II, about 10,000 people worked in the mine; today (2017), approximately 370. The mine has a planned production for more than 30 years.





The industrial mining center commonly known as "Panasqueira Mines" extends over a vast area covered by the Panasqueira and Vale da Ermida Mining Fields with a total area around 20.5 km2.

Although the current mining is concentrated in about a dozen concessions, all others are the object of a systematic study for the evaluation of reserves and determination of their economic potential.

Mineralized zones: Décio Thadeu (*), supported by morphological, mineralogical and tectonic data, presented a classification that until today has been adopted and confirmed by the mining works executed in them. According to this author, the areas are as follows:

a) Panasqueira and Barroca Grande
b) Corga Seca, Alvoroso, Veia Branca and Giestal
c) Lomba da Cevada
d) Rebordões and Seladinho
e) Fonte das Lameiras
f) Vale das Freiras and Vale da Ermida
g) Cabeço do Pião

1 - Panasqueira Mining Field – Castelo Branco District
(concession no. - name - registered on - locality)
316 – Ponte Masso - 07-04-1900 – Aldeia de São Francisco de Assis – Covilhãt
340 – Corga Seca - 26-11-1901 – Aldeia de São Francisco de Assis – Covilhã
366 – Salada Coca - 14-09-1903 – Aldeia de São Francisco de Assis - Covilhã
367 – Barroca Grande - 15-09-1903 – Aldeia de São Francisco de Assis - Covilhã
378 – Gambão - 05-05-1904 – Aldeia de São Francisco de Assis - Covilhã
380 – Alvaroso - 09-05-1904 – Aldeia de São Francisco de Assis - Covilhã
381 – Vale de Carvalhos - 10-05-1904 – Aldeia de São Francisco de Assis - Covilhã
399 – Terreno de Manuel Gil - 16-03-1906 – Aldeia de São Francisco de Assis – Covilhã
721 – Fontainhas - 21-11-1916 – Aldeia de São Francisco de Assis - Covilhã
844 – Giestal - 02-04-1919 – Aldeia de São Francisco de Assis – Covilhã
990 – Chiqueiro no. 2 - 03-03-1921 – Aldeia de São Francisco de Assis - Covilhã
1139 – Sítio dos Cambões - 12-05-1922 – Aldeia de São Francisco Assis - Covilhã
1565 – Bodelhão no. 1 - 12-11-1926 – Aldeia de São Francisco Assis - Covilhã
1566 – Bodelhão no. 2 - 12-11-1926 – Aldeia de São Francisco Assis - Covilhã
1567 – Bodelhão no. 3 - 12-11-1926 – Aldeia de São Francisco Assis – Covilhã
3088 – Parada do Bodelhão - 31-03-1956 – Aldeia de São Francisco Assis - Covilhã
3089 – Ribeiro da Videira no. 1 - 31-03-1956 – Aldeia de São Francisco Assis - Covilhã
3090 – Ribeiro da Videira no. 2 - 31-03-1956 – Aldeia de São Francisco Assis – Covilhã
3108 – Guinchão - 17-05-1956 – Aldeia de São Francisco Assis - Covilhã
3109 – Ribeiro Dianteiro - 17-05-1956 – Aldeia de São de Francisco Assis - Covilhã
3196 – Barroco do Carneiro - 20-02-1958 – Aldeia de São Francisco de Assis – Covilhã
1568 – Panasqueira no. 4 - 12-11-1996 - São Jorge da Beira (Cebola) - Covilhã
2347 – Madurrada - 08-01-1949 - São Jorge da Beira (Cebola) - Covilhã
2425 – Cova da Cruz - 29-09-1949 - São Jorge da Beira (Cebola) - Covilhã
2526 – Torgais - 24-02-1950 - São Jorge da Beira (Cebola) - Covilhã
253 – Panasqueira - 31-05-1894 – São Jorge da Beira (Cebola) - Covilhã
3098 – Cambões de Baixo - 03-05-1956 - São Jorge da Beira (Cebola) - Covilhã
3107 – Barroco dos Carias - 17-05-1956 - São Jorge da Beira (Cebola) - Covilhã
317 – Panasqueira no. 2 - 09-04-1900 – São Jorge da Beira (Cebola) - Covilhã
318 – Panasqueira no. 3 - 10-04-1900 – São Jorge da Beira (Cebola) - Covilhã
319 - Vale da Ermida - 11-04-1900 - São Jorge da Beira (Cebola) - Covilhã
3223 – Madurrada no. 2 - 12-07-1958 – São Jorge da Beira (Cebola) – Covilhã
470 – Vale do Rebordão - 04-09-1908 – São Jorge da Beira (Cebola) - Covilhã
695 – Barroco Fundo (Cebola no. 1) - 10-04-1916 – São Jorge da Beira (Cebola) - Covilhã
900 – Vale da Ermida no. 4 - 18-11-1919 – São Jorge da Beira (Cebola) - Covilhã
980 – Lomba do Muro - 02-12-1920 – São Jorge da Beira (Cebola) – Covilhã
987 – Curral dos Capados - 26-02-1981 – São Jorge da Beira (Cebola) – Covilhã
CM15 – Panasqueira – 23-09-1927 – São Jorge da Beira (Cebola) – Covilhã
255 – Cabeço do Pião - 11-10-1894 – Barroca - Fundão
1036 – Terras do Muro - 07-05-1921 – Barroca - Fundão
1207 – Cebolal ou Resteira - 28-07-1922 – Barroca – Fundão
955 – Costa Meal - 02-06-1920 – Silvares - Fundão
1212 – Costa Meal no. 1 - 03-08-1922 – Silvares – Fundão

2 - Vale da Ermida Mining Field – Coimbra District
(concession no. - name - registered on - locality)
640 – Fonte das Lameiras - 14-01-1915 – Dornelas do Zêzere – Pampilhosa da Serra - Coimbra
3186 - Roçadas - 31-12-1957 – Dornelas do Zêzere – Pampilhosa da Serra - Coimbra
986 - Vale da Ermida no. 2 - 25-02-1921 – Unhais o Velho – Pampilhosa da Serra – Coimbra
988 – Curral dos Capados no. 2 - 28-02-1921 – Unhais o Velho – Pampilhosa da Serra - Coimbra
989 – Chiqueiro no. 1 - 28-02-1921 – Unhais o Velho – Pampilhosa da Serra - Coimbra
3185 – Eiradas - 31-12-1957 – Unhais o Velho – Pampilhosa da Serra - Coimbra
3187- Portela no. 3 - 31-12-1957 – Unhais o Velho – Pampilhosa da Serra - Coimbra
CM55 - Vale da Ermida - 04-03-1961 – Unhais o Velho – Pampilhosa da Serra – Coimbra

Two mining fields: Panasqueira and Vale da Ermida
Two districts: Castelo Branco and Coimbra
Three municipalities: Covilhã, Fundão, Pampilhosa da Serra
Six localities: Aldeia de São Francisco de Assis, São Jorge da Beira, Barroca, Silvares, Dornelas do Zêzere and Unhais-o-Velho


(*) Thadeuite: TL Panasqueira, named for Décio Thadeu (1919-1995), Professor of Geology, Instituto Superior Técnico, Lisbon, Portugal.

Alternative Label Names

This is a list of additional names that have been recorded for mineral labels associated with this locality in the minID database. This may include previous versions of the locality name hierarchy from mindat.org, data entry errors, and it may also include unconfirmed sublocality names or other names that can only be matched to this level.

Panasqueira Mine, Panasqueira, Covilhã, Castelo Branco District, Portugal
Panasqueira Mine - Couto Mineiro da Panasqueira, Panasqueira, Covilhã, Castelo Branco District, Portugal
Panasqueira, Covilha, Castelo Branco District, Portugal
Panasqueira Mines, Panasqueira, Covilhã, Castelo Branco District, Portugal
Panasqueira Mine, Couto Mineiro da Panasqueira, Panasqueira, Covilhã, Castelo Branco District, Portugal
Panasqueira, Beira Baixa, Portugal
Panasqueira Mine (Couto Mineiro da Panasqueira), Panasqueira, Covilhã, Castelo Branco District, Portugal
panasqueira

Regions containing this locality

Iberian Peninsula

Peninsula - 1,540 mineral species & varietal names listed

Select Mineral List Type

Standard Detailed Strunz Dana Chemical Elements

Mineral List

Mineral list contains entries from the region specified including sub-localities

75 valid minerals. 2 (TL) - type locality of valid minerals. 2 erroneous literature entries.

Detailed Mineral List:

Acanthite
Formula: Ag2S
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Albite
Formula: Na(AlSi3O8)
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Althausite
Formula: Mg4(PO4)2(OH,O)(F,☐)
Reference: American Mineralogist, Volume 67, pages 854-860, l982; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Amblygonite
Formula: LiAl(PO4)F
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Andalusite
Formula: Al2(SiO4)O
Reference: Bull. Minéral. , 1984, 107, pp. 703-713.
Ankerite
Formula: Ca(Fe2+,Mg)(CO3)2
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Antimony
Formula: Sb
Reference: The Mineralogical record volume 45, january-february 2014.
Arsenic
Formula: As
Reference: Azevedo and Calvo, 1997; Ascenção Guedes, 2002, The Mineralogical Record, January-February 2014, Volume 45, Number 1, (Carlos Curto Milà and Jordi Fabre, pages 11-55).
Arseniosiderite
Formula: Ca2Fe3+3(AsO4)3O2 · 3H2O
Reference: No reference listed
Arsenopyrite
Formula: FeAsS
Reference: [www.johnbetts-fineminerals.com]; Econ.Geol.: 83; 335-354; American Mineralogist, Volume 67, pages 854-860, l982; D. Wimmers (1985) Silver Minerals of Panasqueira, Portugal: A New Occurrence of Te-Bearing Canfieldite. Mineralogical Magazine 49:745-748.; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Baryte
Formula: BaSO4
Reference: Mila, C.C., Salvan, C.M. & Fabre, J. (2014): Panasqueira: Neufunde und Neubestimmungen. Lapis, 39 (7/8), 54-63.
Berndtite
Formula: SnS2
Reference: Sopa de Pedras, A. M. Galopim de Carvalho, Gradiva, Lisbon
Bertrandite
Formula: Be4(Si2O7)(OH)2
Reference: Mila, C.C., Salvan, C.M. & Fabre, J. (2014): Panasqueira: Neufunde und Neubestimmungen. Lapis, 39 (7/8), 54-63.; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Beryl
Formula: Be3Al2(Si6O18)
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
'Biotite'
Reference: Bull. Minéral. , 1984, 107, pp. 703-713.
Bismuth
Formula: Bi
Reference: D. Wimmers (1985) Silver Minerals of Panasqueira, Portugal: A New Occurrence of Te-Bearing Canfieldite. Mineralogical Magazine 49:745-748.; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Bismuthinite
Formula: Bi2S3
Reference: D. Wimmers (1985) Silver Minerals of Panasqueira, Portugal: A New Occurrence of Te-Bearing Canfieldite. Mineralogical Magazine 49:745-748.; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Calcite
Formula: CaCO3
Reference: Econ.Geol.: 83; 335-354; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Canfieldite
Formula: Ag8SnS6
Reference: D. Wimmers (1985) Silver Minerals of Panasqueira, Portugal: A New Occurrence of Te-Bearing Canfieldite. Mineralogical Magazine 49:745-748.
Cassiterite
Formula: SnO2
Reference: Econ.Geol.: 83; 335-354; D. Wimmers (1985) Silver Minerals of Panasqueira, Portugal: A New Occurrence of Te-Bearing Canfieldite. Mineralogical Magazine 49:745-748.; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Chalcanthite
Formula: CuSO4 · 5H2O
Reference: The Mineralogical Record, January-February 2014, Volume 45, Number 1, (Carlos Curto Milà and Jordi Fabre, pages 11-55).
Chalcocite
Formula: Cu2S
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Chalcopyrite
Formula: CuFeS2
Reference: Econ.Geol.: 83; 335-354; American Mineralogist, Volume 67, pages 854-860, l982; D. Wimmers (1985) Silver Minerals of Panasqueira, Portugal: A New Occurrence of Te-Bearing Canfieldite. Mineralogical Magazine 49:745-748.; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Clinochlore
Formula: Mg5Al(AlSi3O10)(OH)8
Reference: Knut Eldjarn
Cordierite
Formula: (Mg,Fe)2Al3(AlSi5O18)
Reference: Bull. Minéral. , 1984, 107, pp. 703-713.
Covellite
Formula: CuS
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Cubanite
Formula: CuFe2S3
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Dolomite
Formula: CaMg(CO3)2
Reference: Rui Nunes collection; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Dravite
Formula: Na(Mg3)Al6(Si6O18)(BO3)3(OH)3(OH)
Reference: www.lpi.usra.edu/meetings/gold2001/pdf/3116.pdf.
'Dravite-Schorl Series'
Reference: Martins da Pedra collection
'Eta-bronze'
Formula: Cu6Sn5
Reference: No reference listed
Ferberite
Formula: FeWO4
Reference: Sopas de Pedra, A. M. Galopim de Carvalho, LIsboa, Portugal
Florencite-(Ce)
Formula: CeAl3(PO4)2(OH)6
Reference: Alves, P. (2016) Svanbergita y florencita-(Ce) de la mina Panasqueira (Covilhã, Castelo Branco, Portugal). Acopios, 7: 1-8.
Fluorapatite
Formula: Ca5(PO4)3F
Reference: American Mineralogist, Volume 67, pages 854-860, l982; Dunn, P. J. (1977): Apatite. A guide to species nomenclature. Mineralogical Record 8 (2): 78-82
Fluorite
Formula: CaF2
Reference: Econ.Geol.: 83; 335-354; Mila, C.C., Salvan, C.M. & Fabre, J. (2014): Panasqueira: Neufunde und Neubestimmungen. Lapis, 39 (7/8), 54-63.; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Foitite
Formula: (□,Na)(Fe2+2Al)Al6(Si6O18)(BO3)3(OH)3OH
Reference: www.lpi.usra.edu/meetings/gold2001/pdf/3116.pdf.
Freibergite
Formula: Ag6[Cu4Fe2]Sb4S13-x
Reference: D. Wimmers (1985) Silver Minerals of Panasqueira, Portugal: A New Occurrence of Te-Bearing Canfieldite. Mineralogical Magazine 49:745-748.; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Galena
Formula: PbS
Reference: D. Wimmers (1985) Silver Minerals of Panasqueira, Portugal: A New Occurrence of Te-Bearing Canfieldite. Mineralogical Magazine 49:745-748.
Goethite
Formula: α-Fe3+O(OH)
Reference: No reference listed
Gold
Formula: Au
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Gudmundite
Formula: FeSbS
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Gypsum
Formula: CaSO4 · 2H2O
Reference: No reference listed
Gypsum var: Selenite
Formula: CaSO4 · 2H2O
Reference: Martins da Pedra collection
Hematite
Formula: Fe2O3
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Hydrotungstite
Formula: WO3 · 2H2O
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Isokite
Formula: CaMg(PO4)F
Reference: Isaac's et al, 1979; Ascenção Guedes, 2002; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Löllingite
Formula: FeAs2
Reference: The Mineralogical Record, January-February 2014, Volume 45, Number 1, (Carlos Curto Milà and Jordi Fabre, pages 11-55).; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Mackinawite
Formula: (Fe,Ni)9S8
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Magnetite
Formula: Fe2+Fe3+2O4
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Marcasite
Formula: FeS2
Reference: Econ.Geol.: 83; 335-354; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Matildite
Formula: AgBiS2
Reference: D. Wimmers (1985) Silver Minerals of Panasqueira, Portugal: A New Occurrence of Te-Bearing Canfieldite. Mineralogical Magazine 49:745-748.
Melanterite
Formula: Fe2+(H2O)6SO4 · H2O
Reference: Ko Jansen collection
Molybdenite
Formula: MoS2
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Muscovite
Formula: KAl2(AlSi3O10)(OH)2
Reference: Bull. Minéral. , 1984, 107, pp. 703-713.; Econ.Geol.: 83; 335-354; American Mineralogist, Volume 67, pages 854-860, l982; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Panasqueiraite (TL)
Formula: CaMg(PO4)(OH,F)
Reference: Canadian Mineralogist(1981), 19, 389-392 and Canadian Mineralogist(1985), 23, 131 errata; American Mineralogist, Volume 67, pages 854-860, l982; Mila, C.C., Salvan, C.M. & Fabre, J. (2014): Panasqueira: Neufunde und Neubestimmungen. Lapis, 39 (7/8), 54-63.
Pavonite
Formula: AgBi3S5
Reference: D. Wimmers (1985) Silver Minerals of Panasqueira, Portugal: A New Occurrence of Te-Bearing Canfieldite. Mineralogical Magazine 49:745-748.
Pentlandite
Formula: (FexNiy)Σ9S8
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Pharmacosiderite
Formula: KFe3+4(AsO4)3(OH)4 · 6-7H2O
Reference: No reference listed
Pyrargyrite ?
Formula: Ag3SbS3
Reference: D. Wimmers (1985) Silver Minerals of Panasqueira, Portugal: A New Occurrence of Te-Bearing Canfieldite. Mineralogical Magazine 49:745-748.; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Pyrite
Formula: FeS2
Reference: Econ.Geol.: 83; 335-354; D. Wimmers (1985) Silver Minerals of Panasqueira, Portugal: A New Occurrence of Te-Bearing Canfieldite. Mineralogical Magazine 49:745-748.; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Pyrrhotite
Formula: Fe7S8
Reference: Econ.Geol.: 83; 335-354; American Mineralogist, Volume 67, pages 854-860, l982; D. Wimmers (1985) Silver Minerals of Panasqueira, Portugal: A New Occurrence of Te-Bearing Canfieldite. Mineralogical Magazine 49:745-748.; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Quartz
Formula: SiO2
Reference: Econ.Geol.: 83; 335-354; American Mineralogist, Volume 67, pages 854-860, l982; D. Wimmers (1985) Silver Minerals of Panasqueira, Portugal: A New Occurrence of Te-Bearing Canfieldite. Mineralogical Magazine 49:745-748.; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Quartz var: Rock Crystal
Formula: SiO2
Reference: Martins da Pedra collection; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Rutile
Formula: TiO2
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Scheelite
Formula: Ca(WO4)
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Schorl
Formula: Na(Fe2+3)Al6(Si6O18)(BO3)3(OH)3(OH)
Reference: www.lpi.usra.edu/meetings/gold2001/pdf/3116.pdf.
Scorodite
Formula: Fe3+AsO4 · 2H2O
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Siderite
Formula: FeCO3
Reference: American Mineralogist, Volume 67, pages 854-860, l982; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Silver
Formula: Ag
Reference: D. Wimmers (1985) Silver Minerals of Panasqueira, Portugal: A New Occurrence of Te-Bearing Canfieldite. Mineralogical Magazine 49:745-748.; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Sphalerite
Formula: ZnS
Reference: Econ.Geol.: 83; 335-354; American Mineralogist, Volume 67, pages 854-860, l982; D. Wimmers (1985) Silver Minerals of Panasqueira, Portugal: A New Occurrence of Te-Bearing Canfieldite. Mineralogical Magazine 49:745-748.; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Stannite
Formula: Cu2FeSnS4
Reference: D. Wimmers (1985) Silver Minerals of Panasqueira, Portugal: A New Occurrence of Te-Bearing Canfieldite. Mineralogical Magazine 49:745-748; Jordi Fabre analysis (2013); Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Stephanite ?
Formula: Ag5SbS4
Reference: D. Wimmers (1985) Silver Minerals of Panasqueira, Portugal: A New Occurrence of Te-Bearing Canfieldite. Mineralogical Magazine 49:745-748.; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Stibnite
Formula: Sb2S3
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Svanbergite
Formula: SrAl3(PO4)(SO4)(OH)6
Reference: Alves, P. (2016) Svanbergita y florencita-(Ce) de la mina Panasqueira (Covilhã, Castelo Branco, Portugal). Acopios, 7: 1-8.
Tetrahedrite
Formula: Cu6[Cu4(Fe,Zn)2]Sb4S13
Reference: No reference listed
Thadeuite (TL)
Formula: Ca(Mg,Fe2+)3(PO4)2(OH,F)2
Reference: American Mineralogist (1979): 64: 359-361; American Mineralogist, Volume 67, pages 854-860, l982; Mila, C.C., Salvan, C.M. & Fabre, J. (2014): Panasqueira: Neufunde und Neubestimmungen. Lapis, 39 (7/8), 54-63.; Isaacs, A.M. and Peacor, D.R. (1982). "The crystal structure of thadeuite Mg(CaMn)(MgFeMn)2(PO4)2(OHF)2." American Mineralogist, 67(1/2),pp:120-125.
Topaz
Formula: Al2(SiO4)(F,OH)2
Reference: American Mineralogist, Volume 67, pages 854-860, l982; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
'Tourmaline'
Formula: A(D3)G6(T6O18)(BO3)3X3Z
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Triplite
Formula: (Mn2+,Fe2+)2(PO4)(F,OH)
Reference: The Mineralogical Record, January-February 2014, Volume 45, Number 1, (Carlos Curto Milà and Jordi Fabre, pages 11-55).; Mila, C.C., Salvan, C.M. & Fabre, J. (2014): Panasqueira: Neufunde und Neubestimmungen. Lapis, 39 (7/8), 54-63.
Tungstite
Formula: WO3 · H2O
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Vivianite
Formula: Fe2+3(PO4)2 · 8H2O
Reference: American Mineralogist, Volume 67, pages 854-860, l982; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Wagnerite
Formula: (Mg,Fe2+)2(PO4)F
Reference: Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Wolfeite
Formula: (Fe2+,Mn2+)2(PO4)(OH)
Reference: American Mineralogist, Volume 67, pages 854-860, l982; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
'Wolframite' ?
Formula: (Fe2+)WO4 to (Mn2+)WO4
Reference: Econ.Geol.: 83; 335-354; D. Wimmers (1985) Silver Minerals of Panasqueira, Portugal: A New Occurrence of Te-Bearing Canfieldite. Mineralogical Magazine 49:745-748.; Bussink, R. W. (1984). Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.; www.lpi.usra.edu/meetings/gold2001/pdf/3116.pdf.

List of minerals arranged by Strunz 10th Edition classification

Group 1 - Elements
'Antimony'1.CA.05Sb
'Arsenic' ?1.CA.05As
'Bismuth'1.CA.05Bi
'Eta-bronze'1.AC.15Cu6Sn5
'Gold'1.AA.05Au
Silver1.AA.05Ag
Group 2 - Sulphides and Sulfosalts
'Acanthite'2.BA.35Ag2S
'Arsenopyrite'2.EB.20FeAsS
'Berndtite'2.EA.20SnS2
'Bismuthinite'2.DB.05Bi2S3
'Canfieldite'2.BA.70Ag8SnS6
'Chalcocite'2.BA.05Cu2S
'Chalcopyrite'2.CB.10aCuFeS2
'Covellite'2.CA.05aCuS
'Cubanite'2.CB.55aCuFe2S3
'Freibergite'2.GB.05Ag6[Cu4Fe2]Sb4S13-x
'Galena'2.CD.10PbS
'Gudmundite'2.EB.20FeSbS
'Löllingite'2.EB.15aFeAs2
'Mackinawite'2.CC.25(Fe,Ni)9S8
'Marcasite'2.EB.10aFeS2
'Matildite'2.JA.20AgBiS2
'Molybdenite'2.EA.30MoS2
'Pavonite'2.JA.05aAgBi3S5
'Pentlandite'2.BB.15(FexNiy)Σ9S8
'Pyrargyrite' ?2.GA.05Ag3SbS3
'Pyrite'2.EB.05aFeS2
'Pyrrhotite'2.CC.10Fe7S8
Sphalerite2.CB.05aZnS
Stannite2.CB.15aCu2FeSnS4
Stephanite ?2.GB.10Ag5SbS4
Stibnite2.DB.05Sb2S3
Tetrahedrite2.GB.05Cu6[Cu4(Fe,Zn)2]Sb4S13
Group 3 - Halides
'Fluorite'3.AB.25CaF2
Group 4 - Oxides and Hydroxides
'Cassiterite'4.DB.05SnO2
'Ferberite'4.DB.30FeWO4
'Goethite'4.00.α-Fe3+O(OH)
'Hematite'4.CB.05Fe2O3
'Hydrotungstite'4.FJ.15WO3 · 2H2O
'Magnetite'4.BB.05Fe2+Fe3+2O4
'Quartz'4.DA.05SiO2
var: Rock Crystal4.DA.05SiO2
Rutile4.DB.05TiO2
Tungstite4.FJ.10WO3 · H2O
Group 5 - Nitrates and Carbonates
'Ankerite'5.AB.10Ca(Fe2+,Mg)(CO3)2
'Calcite'5.AB.05CaCO3
'Dolomite'5.AB.10CaMg(CO3)2
Siderite5.AB.05FeCO3
Group 7 - Sulphates, Chromates, Molybdates and Tungstates
'Baryte'7.AD.35BaSO4
'Chalcanthite'7.CB.20CuSO4 · 5H2O
'Gypsum'7.CD.40CaSO4 · 2H2O
var: Selenite7.CD.40CaSO4 · 2H2O
'Melanterite'7.CB.35Fe2+(H2O)6SO4 · H2O
Scheelite7.GA.05Ca(WO4)
Group 8 - Phosphates, Arsenates and Vanadates
'Althausite'8.BB.25Mg4(PO4)2(OH,O)(F,☐)
'Amblygonite' ?8.BB.05LiAl(PO4)F
'Arseniosiderite'8.DH.30Ca2Fe3+3(AsO4)3O2 · 3H2O
'Florencite-(Ce)'8.BL.13CeAl3(PO4)2(OH)6
'Fluorapatite'8.BN.05Ca5(PO4)3F
'Isokite'8.BH.10CaMg(PO4)F
'Panasqueiraite' (TL)8.BH.10CaMg(PO4)(OH,F)
'Pharmacosiderite'8.DK.10KFe3+4(AsO4)3(OH)4 · 6-7H2O
Scorodite8.CD.10Fe3+AsO4 · 2H2O
Svanbergite8.BL.05SrAl3(PO4)(SO4)(OH)6
Thadeuite (TL)8.BH.05Ca(Mg,Fe2+)3(PO4)2(OH,F)2
Triplite8.BB.10(Mn2+,Fe2+)2(PO4)(F,OH)
Vivianite8.CE.40Fe2+3(PO4)2 · 8H2O
Wagnerite8.BB.15(Mg,Fe2+)2(PO4)F
Wolfeite8.BB.15(Fe2+,Mn2+)2(PO4)(OH)
Group 9 - Silicates
'Albite'9.FA.35Na(AlSi3O8)
'Andalusite'9.AF.10Al2(SiO4)O
'Bertrandite'9.BD.05Be4(Si2O7)(OH)2
'Beryl'9.CJ.05Be3Al2(Si6O18)
'Clinochlore'9.EC.55Mg5Al(AlSi3O10)(OH)8
'Cordierite'9.CJ.10(Mg,Fe)2Al3(AlSi5O18)
'Dravite'9.CK.05Na(Mg3)Al6(Si6O18)(BO3)3(OH)3(OH)
'Foitite'9.CK.05(□,Na)(Fe2+2Al)Al6(Si6O18)(BO3)3(OH)3OH
'Muscovite'9.EC.15KAl2(AlSi3O10)(OH)2
Schorl9.CK.05Na(Fe2+3)Al6(Si6O18)(BO3)3(OH)3(OH)
Topaz9.AF.35Al2(SiO4)(F,OH)2
Unclassified Minerals, Rocks, etc.
'Biotite'-
'Dravite-Schorl Series'-
Tourmaline-A(D3)G6(T6O18)(BO3)3X3Z
Wolframite ?-(Fe2+)WO4 to (Mn2+)WO4

List of minerals arranged by Dana 8th Edition classification

Group 1 - NATIVE ELEMENTS AND ALLOYS
Metals, other than the Platinum Group
Gold1.1.1.1Au
Silver1.1.1.2Ag
Semi-metals and non-metals
Antimony1.3.1.2Sb
Arsenic ?1.3.1.1As
Bismuth1.3.1.4Bi
Group 2 - SULFIDES
AmBnXp, with (m+n):p = 2:1
Acanthite2.4.1.1Ag2S
Chalcocite2.4.7.1Cu2S
AmBnXp, with (m+n):p = 3:2
Canfieldite2.5.6.2Ag8SnS6
AmBnXp, with (m+n):p = 9:8
Mackinawite2.7.2.1(Fe,Ni)9S8
Pentlandite2.7.1.1(FexNiy)Σ9S8
AmXp, with m:p = 1:1
Covellite2.8.12.1CuS
Galena2.8.1.1PbS
Pyrrhotite2.8.10.1Fe7S8
Sphalerite2.8.2.1ZnS
AmBnXp, with (m+n):p = 1:1
Chalcopyrite2.9.1.1CuFeS2
Cubanite2.9.13.1CuFe2S3
Stannite2.9.2.1Cu2FeSnS4
AmBnXp, with (m+n):p = 2:3
Bismuthinite2.11.2.3Bi2S3
Stibnite2.11.2.1Sb2S3
AmBnXp, with (m+n):p = 1:2
Arsenopyrite2.12.4.1FeAsS
Berndtite2.12.14.5SnS2
Gudmundite2.12.4.2FeSbS
Löllingite2.12.2.9FeAs2
Marcasite2.12.2.1FeS2
Molybdenite2.12.10.1MoS2
Pyrite2.12.1.1FeS2
Group 3 - SULFOSALTS
ø = 4
Stephanite ?3.2.4.1Ag5SbS4
3 <ø < 4
Freibergite3.3.6.3Ag6[Cu4Fe2]Sb4S13-x
Tetrahedrite3.3.6.1Cu6[Cu4(Fe,Zn)2]Sb4S13
ø = 3
Pyrargyrite ?3.4.1.2Ag3SbS3
ø = 2
Matildite3.7.1.1AgBiS2
1 < ø < 2
Pavonite3.8.10.1AgBi3S5
Group 4 - SIMPLE OXIDES
A2X3
Hematite4.3.1.2Fe2O3
AX2
Cassiterite4.4.1.5SnO2
Rutile4.4.1.1TiO2
AX3
Tungstite4.5.2.1WO3 · H2O
Group 6 - HYDROXIDES AND OXIDES CONTAINING HYDROXYL
XO(OH)
Goethite6.1.1.2α-Fe3+O(OH)
Group 7 - MULTIPLE OXIDES
AB2X4
Magnetite7.2.2.3Fe2+Fe3+2O4
Group 9 - NORMAL HALIDES
AX2
Fluorite9.2.1.1CaF2
Group 14 - ANHYDROUS NORMAL CARBONATES
A(XO3)
Calcite14.1.1.1CaCO3
Siderite14.1.1.3FeCO3
AB(XO3)2
Ankerite14.2.1.2Ca(Fe2+,Mg)(CO3)2
Dolomite14.2.1.1CaMg(CO3)2
Group 28 - ANHYDROUS ACID AND NORMAL SULFATES
AXO4
Baryte28.3.1.1BaSO4
Group 29 - HYDRATED ACID AND NORMAL SULFATES
AXO4·xH2O
Chalcanthite29.6.7.1CuSO4 · 5H2O
Gypsum29.6.3.1CaSO4 · 2H2O
Melanterite29.6.10.1Fe2+(H2O)6SO4 · H2O
Group 40 - HYDRATED NORMAL PHOSPHATES,ARSENATES AND VANADATES
A3(XO4)2·xH2O
Vivianite40.3.6.1Fe2+3(PO4)2 · 8H2O
(AB)5(XO4)2·xH2O
Scorodite40.4.1.3Fe3+AsO4 · 2H2O
Group 41 - ANHYDROUS PHOSPHATES, ETC.CONTAINING HYDROXYL OR HALOGEN
(AB)2(XO4)Zq
Amblygonite ?41.5.8.1LiAl(PO4)F
Florencite-(Ce)41.5.10.2CeAl3(PO4)2(OH)6
Isokite41.5.6.2CaMg(PO4)F
Panasqueiraite (TL)41.5.6.3CaMg(PO4)(OH,F)
Thadeuite (TL)41.5.16.1Ca(Mg,Fe2+)3(PO4)2(OH,F)2
A2(XO4)Zq
Althausite41.6.5.1Mg4(PO4)2(OH,O)(F,☐)
Triplite41.6.1.2(Mn2+,Fe2+)2(PO4)(F,OH)
Wagnerite41.6.2.1(Mg,Fe2+)2(PO4)F
Wolfeite41.6.3.1(Fe2+,Mn2+)2(PO4)(OH)
A5(XO4)3Zq
Fluorapatite41.8.1.1Ca5(PO4)3F
Group 42 - HYDRATED PHOSPHATES, ETC.CONTAINING HYDROXYL OR HALOGEN
(AB)5(XO4)3Zq·xH2O
Arseniosiderite42.8.4.3Ca2Fe3+3(AsO4)3O2 · 3H2O
Pharmacosiderite42.8.1a.1KFe3+4(AsO4)3(OH)4 · 6-7H2O
Group 43 - COMPOUND PHOSPHATES, ETC.
Anhydrous Compound Phosphates, etc·, Containing Hydroxyl or Halogen
Svanbergite43.4.1.6SrAl3(PO4)(SO4)(OH)6
Group 48 - ANHYDROUS MOLYBDATES AND TUNGSTATES
AXO4
Ferberite48.1.1.2FeWO4
Scheelite48.1.2.1Ca(WO4)
Group 49 - HYDRATED MOLYBDATES AND TUNGSTATES
Acid Hydrated Molybdates and Tungstates
Hydrotungstite49.1.1.1WO3 · 2H2O
Group 52 - NESOSILICATES Insular SiO4 Groups and O,OH,F,H2O
Insular SiO4 Groups and O, OH, F, and H2O with cations in [4] and >[4] coordination
Andalusite52.2.2b.1Al2(SiO4)O
Insular SiO4 Groups and O, OH, F, and H2O with cations in [6] coordination only
Topaz52.3.1.1Al2(SiO4)(F,OH)2
Group 56 - SOROSILICATES Si2O7 Groups, With Additional O, OH, F and H2O
Si2O7 Groups and O, OH, F, and H2O with cations in [4] coordination
Bertrandite56.1.1.1Be4(Si2O7)(OH)2
Group 61 - CYCLOSILICATES Six-Membered Rings
Six-Membered Rings with [Si6O18] rings; possible (OH) and Al substitution
Beryl61.1.1.1Be3Al2(Si6O18)
Six-Membered Rings with Al substituted rings
Cordierite61.2.1.1(Mg,Fe)2Al3(AlSi5O18)
Six-Membered Rings with borate groups
Dravite61.3.1.9Na(Mg3)Al6(Si6O18)(BO3)3(OH)3(OH)
Foitite61.3.1.1(□,Na)(Fe2+2Al)Al6(Si6O18)(BO3)3(OH)3OH
Schorl61.3.1.10Na(Fe2+3)Al6(Si6O18)(BO3)3(OH)3(OH)
Group 71 - PHYLLOSILICATES Sheets of Six-Membered Rings
Sheets of 6-membered rings with 2:1 layers
Muscovite71.2.2a.1KAl2(AlSi3O10)(OH)2
Sheets of 6-membered rings interlayered 1:1, 2:1, and octahedra
Clinochlore71.4.1.4Mg5Al(AlSi3O10)(OH)8
Group 75 - TECTOSILICATES Si Tetrahedral Frameworks
Si Tetrahedral Frameworks - SiO2 with [4] coordinated Si
Quartz75.1.3.1SiO2
Group 76 - TECTOSILICATES Al-Si Framework
Al-Si Framework with Al-Si frameworks
Albite76.1.3.1Na(AlSi3O8)
Unclassified Minerals, Rocks, etc.
'Biotite'-
'Dravite-Schorl Series'-
'Eta-bronze'-Cu6Sn5
Gypsum
var: Selenite
-CaSO4 · 2H2O
Quartz
var: Rock Crystal
-SiO2
'Tourmaline'-A(D3)G6(T6O18)(BO3)3X3Z
'Wolframite' ?-(Fe2+)WO4 to (Mn2+)WO4

List of minerals for each chemical element

HHydrogen
H AlthausiteMg4(PO4)2(OH,O)(F,☐)
H ArseniosideriteCa2Fe33+(AsO4)3O2 · 3H2O
H BertranditeBe4(Si2O7)(OH)2
H ChalcanthiteCuSO4 · 5H2O
H ClinochloreMg5Al(AlSi3O10)(OH)8
H DraviteNa(Mg3)Al6(Si6O18)(BO3)3(OH)3(OH)
H Florencite-(Ce)CeAl3(PO4)2(OH)6
H Foitite(□,Na)(Fe22+Al)Al6(Si6O18)(BO3)3(OH)3OH
H Goethiteα-Fe3+O(OH)
H GypsumCaSO4 · 2H2O
H HydrotungstiteWO3 · 2H2O
H MelanteriteFe2+(H2O)6SO4 · H2O
H MuscoviteKAl2(AlSi3O10)(OH)2
H PanasqueiraiteCaMg(PO4)(OH,F)
H PharmacosideriteKFe43+(AsO4)3(OH)4 · 6-7H2O
H SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
H ScoroditeFe3+AsO4 · 2H2O
H Gypsum (var: Selenite)CaSO4 · 2H2O
H SvanbergiteSrAl3(PO4)(SO4)(OH)6
H ThadeuiteCa(Mg,Fe2+)3(PO4)2(OH,F)2
H TopazAl2(SiO4)(F,OH)2
H Triplite(Mn2+,Fe2+)2(PO4)(F,OH)
H TungstiteWO3 · H2O
H VivianiteFe32+(PO4)2 · 8H2O
H Wolfeite(Fe2+,Mn2+)2(PO4)(OH)
LiLithium
Li AmblygoniteLiAl(PO4)F
BeBeryllium
Be BertranditeBe4(Si2O7)(OH)2
Be BerylBe3Al2(Si6O18)
BBoron
B DraviteNa(Mg3)Al6(Si6O18)(BO3)3(OH)3(OH)
B Foitite(□,Na)(Fe22+Al)Al6(Si6O18)(BO3)3(OH)3OH
B SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
B TourmalineA(D3)G6(T6O18)(BO3)3X3Z
CCarbon
C AnkeriteCa(Fe2+,Mg)(CO3)2
C CalciteCaCO3
C DolomiteCaMg(CO3)2
C SideriteFeCO3
OOxygen
O AlbiteNa(AlSi3O8)
O AlthausiteMg4(PO4)2(OH,O)(F,☐)
O AmblygoniteLiAl(PO4)F
O AndalusiteAl2(SiO4)O
O AnkeriteCa(Fe2+,Mg)(CO3)2
O ArseniosideriteCa2Fe33+(AsO4)3O2 · 3H2O
O BaryteBaSO4
O BertranditeBe4(Si2O7)(OH)2
O BerylBe3Al2(Si6O18)
O CalciteCaCO3
O CassiteriteSnO2
O ChalcanthiteCuSO4 · 5H2O
O ClinochloreMg5Al(AlSi3O10)(OH)8
O Cordierite(Mg,Fe)2Al3(AlSi5O18)
O DolomiteCaMg(CO3)2
O DraviteNa(Mg3)Al6(Si6O18)(BO3)3(OH)3(OH)
O FerberiteFeWO4
O Florencite-(Ce)CeAl3(PO4)2(OH)6
O FluorapatiteCa5(PO4)3F
O Foitite(□,Na)(Fe22+Al)Al6(Si6O18)(BO3)3(OH)3OH
O Goethiteα-Fe3+O(OH)
O GypsumCaSO4 · 2H2O
O HematiteFe2O3
O HydrotungstiteWO3 · 2H2O
O IsokiteCaMg(PO4)F
O MagnetiteFe2+Fe23+O4
O MelanteriteFe2+(H2O)6SO4 · H2O
O MuscoviteKAl2(AlSi3O10)(OH)2
O PanasqueiraiteCaMg(PO4)(OH,F)
O PharmacosideriteKFe43+(AsO4)3(OH)4 · 6-7H2O
O QuartzSiO2
O Quartz (var: Rock Crystal)SiO2
O RutileTiO2
O ScheeliteCa(WO4)
O SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
O ScoroditeFe3+AsO4 · 2H2O
O Gypsum (var: Selenite)CaSO4 · 2H2O
O SideriteFeCO3
O SvanbergiteSrAl3(PO4)(SO4)(OH)6
O ThadeuiteCa(Mg,Fe2+)3(PO4)2(OH,F)2
O TopazAl2(SiO4)(F,OH)2
O TourmalineA(D3)G6(T6O18)(BO3)3X3Z
O Triplite(Mn2+,Fe2+)2(PO4)(F,OH)
O TungstiteWO3 · H2O
O VivianiteFe32+(PO4)2 · 8H2O
O Wagnerite(Mg,Fe2+)2(PO4)F
O Wolfeite(Fe2+,Mn2+)2(PO4)(OH)
O Wolframite(Fe2+)WO4 to (Mn2+)WO4
FFluorine
F AlthausiteMg4(PO4)2(OH,O)(F,☐)
F AmblygoniteLiAl(PO4)F
F FluorapatiteCa5(PO4)3F
F FluoriteCaF2
F IsokiteCaMg(PO4)F
F PanasqueiraiteCaMg(PO4)(OH,F)
F ThadeuiteCa(Mg,Fe2+)3(PO4)2(OH,F)2
F TopazAl2(SiO4)(F,OH)2
F Triplite(Mn2+,Fe2+)2(PO4)(F,OH)
F Wagnerite(Mg,Fe2+)2(PO4)F
NaSodium
Na AlbiteNa(AlSi3O8)
Na DraviteNa(Mg3)Al6(Si6O18)(BO3)3(OH)3(OH)
Na SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
MgMagnesium
Mg AlthausiteMg4(PO4)2(OH,O)(F,☐)
Mg AnkeriteCa(Fe2+,Mg)(CO3)2
Mg ClinochloreMg5Al(AlSi3O10)(OH)8
Mg Cordierite(Mg,Fe)2Al3(AlSi5O18)
Mg DolomiteCaMg(CO3)2
Mg DraviteNa(Mg3)Al6(Si6O18)(BO3)3(OH)3(OH)
Mg IsokiteCaMg(PO4)F
Mg PanasqueiraiteCaMg(PO4)(OH,F)
Mg ThadeuiteCa(Mg,Fe2+)3(PO4)2(OH,F)2
Mg Wagnerite(Mg,Fe2+)2(PO4)F
AlAluminium
Al AlbiteNa(AlSi3O8)
Al AmblygoniteLiAl(PO4)F
Al AndalusiteAl2(SiO4)O
Al BerylBe3Al2(Si6O18)
Al ClinochloreMg5Al(AlSi3O10)(OH)8
Al Cordierite(Mg,Fe)2Al3(AlSi5O18)
Al DraviteNa(Mg3)Al6(Si6O18)(BO3)3(OH)3(OH)
Al Florencite-(Ce)CeAl3(PO4)2(OH)6
Al Foitite(□,Na)(Fe22+Al)Al6(Si6O18)(BO3)3(OH)3OH
Al MuscoviteKAl2(AlSi3O10)(OH)2
Al SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
Al SvanbergiteSrAl3(PO4)(SO4)(OH)6
Al TopazAl2(SiO4)(F,OH)2
SiSilicon
Si AlbiteNa(AlSi3O8)
Si AndalusiteAl2(SiO4)O
Si BertranditeBe4(Si2O7)(OH)2
Si BerylBe3Al2(Si6O18)
Si ClinochloreMg5Al(AlSi3O10)(OH)8
Si Cordierite(Mg,Fe)2Al3(AlSi5O18)
Si DraviteNa(Mg3)Al6(Si6O18)(BO3)3(OH)3(OH)
Si Foitite(□,Na)(Fe22+Al)Al6(Si6O18)(BO3)3(OH)3OH
Si MuscoviteKAl2(AlSi3O10)(OH)2
Si QuartzSiO2
Si Quartz (var: Rock Crystal)SiO2
Si SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
Si TopazAl2(SiO4)(F,OH)2
PPhosphorus
P AlthausiteMg4(PO4)2(OH,O)(F,☐)
P AmblygoniteLiAl(PO4)F
P Florencite-(Ce)CeAl3(PO4)2(OH)6
P FluorapatiteCa5(PO4)3F
P IsokiteCaMg(PO4)F
P PanasqueiraiteCaMg(PO4)(OH,F)
P SvanbergiteSrAl3(PO4)(SO4)(OH)6
P ThadeuiteCa(Mg,Fe2+)3(PO4)2(OH,F)2
P Triplite(Mn2+,Fe2+)2(PO4)(F,OH)
P VivianiteFe32+(PO4)2 · 8H2O
P Wagnerite(Mg,Fe2+)2(PO4)F
P Wolfeite(Fe2+,Mn2+)2(PO4)(OH)
SSulfur
S AcanthiteAg2S
S ArsenopyriteFeAsS
S BaryteBaSO4
S BerndtiteSnS2
S BismuthiniteBi2S3
S CanfielditeAg8SnS6
S ChalcanthiteCuSO4 · 5H2O
S ChalcociteCu2S
S ChalcopyriteCuFeS2
S CovelliteCuS
S CubaniteCuFe2S3
S FreibergiteAg6[Cu4Fe2]Sb4S13-x
S GalenaPbS
S GudmunditeFeSbS
S GypsumCaSO4 · 2H2O
S Mackinawite(Fe,Ni)9S8
S MarcasiteFeS2
S MatilditeAgBiS2
S MelanteriteFe2+(H2O)6SO4 · H2O
S MolybdeniteMoS2
S PavoniteAgBi3S5
S Pentlandite(FexNiy)Σ9S8
S PyrargyriteAg3SbS3
S PyriteFeS2
S PyrrhotiteFe7S8
S Gypsum (var: Selenite)CaSO4 · 2H2O
S SphaleriteZnS
S StanniteCu2FeSnS4
S StephaniteAg5SbS4
S StibniteSb2S3
S SvanbergiteSrAl3(PO4)(SO4)(OH)6
S TetrahedriteCu6[Cu4(Fe,Zn)2]Sb4S13
KPotassium
K MuscoviteKAl2(AlSi3O10)(OH)2
K PharmacosideriteKFe43+(AsO4)3(OH)4 · 6-7H2O
CaCalcium
Ca AnkeriteCa(Fe2+,Mg)(CO3)2
Ca ArseniosideriteCa2Fe33+(AsO4)3O2 · 3H2O
Ca CalciteCaCO3
Ca DolomiteCaMg(CO3)2
Ca FluorapatiteCa5(PO4)3F
Ca FluoriteCaF2
Ca GypsumCaSO4 · 2H2O
Ca IsokiteCaMg(PO4)F
Ca PanasqueiraiteCaMg(PO4)(OH,F)
Ca ScheeliteCa(WO4)
Ca Gypsum (var: Selenite)CaSO4 · 2H2O
Ca ThadeuiteCa(Mg,Fe2+)3(PO4)2(OH,F)2
TiTitanium
Ti RutileTiO2
MnManganese
Mn Triplite(Mn2+,Fe2+)2(PO4)(F,OH)
Mn Wolframite(Fe2+)WO4 to (Mn2+)WO4
FeIron
Fe AnkeriteCa(Fe2+,Mg)(CO3)2
Fe ArseniosideriteCa2Fe33+(AsO4)3O2 · 3H2O
Fe ArsenopyriteFeAsS
Fe ChalcopyriteCuFeS2
Fe Cordierite(Mg,Fe)2Al3(AlSi5O18)
Fe CubaniteCuFe2S3
Fe FerberiteFeWO4
Fe Foitite(□,Na)(Fe22+Al)Al6(Si6O18)(BO3)3(OH)3OH
Fe FreibergiteAg6[Cu4Fe2]Sb4S13-x
Fe Goethiteα-Fe3+O(OH)
Fe GudmunditeFeSbS
Fe HematiteFe2O3
Fe LöllingiteFeAs2
Fe Mackinawite(Fe,Ni)9S8
Fe MagnetiteFe2+Fe23+O4
Fe MarcasiteFeS2
Fe MelanteriteFe2+(H2O)6SO4 · H2O
Fe Pentlandite(FexNiy)Σ9S8
Fe PharmacosideriteKFe43+(AsO4)3(OH)4 · 6-7H2O
Fe PyriteFeS2
Fe PyrrhotiteFe7S8
Fe SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
Fe ScoroditeFe3+AsO4 · 2H2O
Fe SideriteFeCO3
Fe StanniteCu2FeSnS4
Fe TetrahedriteCu6[Cu4(Fe,Zn)2]Sb4S13
Fe Triplite(Mn2+,Fe2+)2(PO4)(F,OH)
Fe VivianiteFe32+(PO4)2 · 8H2O
Fe Wolfeite(Fe2+,Mn2+)2(PO4)(OH)
Fe Wolframite(Fe2+)WO4 to (Mn2+)WO4
NiNickel
Ni Mackinawite(Fe,Ni)9S8
Ni Pentlandite(FexNiy)Σ9S8
CuCopper
Cu ChalcanthiteCuSO4 · 5H2O
Cu ChalcociteCu2S
Cu ChalcopyriteCuFeS2
Cu CovelliteCuS
Cu CubaniteCuFe2S3
Cu Eta-bronzeCu6Sn5
Cu FreibergiteAg6[Cu4Fe2]Sb4S13-x
Cu StanniteCu2FeSnS4
Cu TetrahedriteCu6[Cu4(Fe,Zn)2]Sb4S13
ZnZinc
Zn SphaleriteZnS
Zn TetrahedriteCu6[Cu4(Fe,Zn)2]Sb4S13
AsArsenic
As ArsenicAs
As ArseniosideriteCa2Fe33+(AsO4)3O2 · 3H2O
As ArsenopyriteFeAsS
As LöllingiteFeAs2
As PharmacosideriteKFe43+(AsO4)3(OH)4 · 6-7H2O
As ScoroditeFe3+AsO4 · 2H2O
SrStrontium
Sr SvanbergiteSrAl3(PO4)(SO4)(OH)6
MoMolybdenum
Mo MolybdeniteMoS2
AgSilver
Ag AcanthiteAg2S
Ag CanfielditeAg8SnS6
Ag FreibergiteAg6[Cu4Fe2]Sb4S13-x
Ag MatilditeAgBiS2
Ag PavoniteAgBi3S5
Ag PyrargyriteAg3SbS3
Ag SilverAg
Ag StephaniteAg5SbS4
SnTin
Sn BerndtiteSnS2
Sn CanfielditeAg8SnS6
Sn CassiteriteSnO2
Sn Eta-bronzeCu6Sn5
Sn StanniteCu2FeSnS4
SbAntimony
Sb AntimonySb
Sb FreibergiteAg6[Cu4Fe2]Sb4S13-x
Sb GudmunditeFeSbS
Sb PyrargyriteAg3SbS3
Sb StephaniteAg5SbS4
Sb StibniteSb2S3
Sb TetrahedriteCu6[Cu4(Fe,Zn)2]Sb4S13
BaBarium
Ba BaryteBaSO4
CeCerium
Ce Florencite-(Ce)CeAl3(PO4)2(OH)6
WTungsten
W FerberiteFeWO4
W HydrotungstiteWO3 · 2H2O
W ScheeliteCa(WO4)
W TungstiteWO3 · H2O
W Wolframite(Fe2+)WO4 to (Mn2+)WO4
AuGold
Au GoldAu
PbLead
Pb GalenaPbS
BiBismuth
Bi BismuthBi
Bi BismuthiniteBi2S3
Bi MatilditeAgBiS2
Bi PavoniteAgBi3S5

Regional Geology

This geological map and associated information on rock units at or nearby to the coordinates given for this locality is based on relatively small scale geological maps provided by various national Geological Surveys. This does not necessarily represent the complete geology at this locality but it gives a background for the region in which it is found.

Click on geological units on the map for more information. Click here to view full-screen map on Macrostrat.org

Cambrian
485.4 - 541 Ma



ID: 3187107
Paleozoic sedimentary rocks

Age: Cambrian (485.4 - 541 Ma)

Lithology: Sedimentary rocks

Reference: Chorlton, L.B. Generalized geology of the world: bedrock domains and major faults in GIS format: a small-scale world geology map with an extended geological attribute database. doi: 10.4095/223767. Geological Survey of Canada, Open File 5529. [154]

Middle Cambrian - Neoproterozoic
501 - 1000 Ma



ID: 3138046
Xisto-Grauvaquico Complex

Age: Neoproterozoic to Cambrian (501 - 1000 Ma)

Stratigraphic Name: Xisto-Grauvaquico Complex

Description: flysch (sediments)

Lithology: Shale/slate

Reference: Asch, K. The 1:5M International Geological Map of Europe and Adjacent Areas: Development and Implementation of a GIS-enabled Concept. Geologisches Jahrbuch, SA 3. [147]

Data and map coding provided by Macrostrat.org, used under Creative Commons Attribution 4.0 License

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
Clark, A.H. (1965) Notes on the mineralogy of Panasqueira tin-tungsten deposit, Portugal. Comunicacaoes dos Servicos Geologicos de Portugal 48, 201-12.
Gaines, R.W. and Thadeu, D. (1971) The minerals of Panasqueira, Portugal. Mineralogical Record, 2(2), 73-78.
dos Reis, A.C. (1971) As Minas da Panasqueira. Beralt Tin & Wolfram, Ltd., Lisboa.
Dunn, P.J. (1977) Apatite. A guide to species nomenclature. Mineralogical Record 8 (2): 78-82 [with analysis of green and violet apatite-(CaF) from Panasqueira].
Thadeu, D. (1979) Le gisement stanno-wolframifère de Panasqueira (Portugal). Chronique de la Recherche Minière 450, 35-42.
Kelly, W.C. and Rye, R.O. (1979) Geologic, fluid inclusion, and stable isotope studies of the tin-tungsten deposits of Panasqueira, Portugal. Economic Geology 74, 1721-1822.
Bull. Minéral., (1984) 107, 703-713.
Bussink, R.W. (1984) Geochemistry of the Panasqueira tungsten-tin deposit, Portugal. Geologica Ultraiectina, 33, 1-170.
Wimmers, D. (1985) Silver Minerals of Panasqueira, Portugal: A New Occurrence of Te-Bearing Canfieldite. Mineralogical Magazine 49:745-748.
Bull. Minéral. (1988) 111, 251-256.
Costa, L.R. and Goinhas, J.A.C. (1988) Alguns aspectos da indústria extractiva de cobre em Portugal. Boletim de Minas, Lisboa 25 (2) Abr/Jun 1988, p. 167-175.
Foxford, K.A., Nicholson, R., and Polya, D.A. (1991) Textural evolution of W-Cu-Sn bearing hydrothermal veins at Minas da Panasqueira, Portugal. Mineralogical Magazine, 55, 435-445.
Azevedo Da Silva, R.P. and Calvo, M. (1997) Minéralogie (Panasqueira). Bocamina, 12-27.
Werner, A.B.T., Sinclair, W.D., and Amey, E.B. (1998) International Strategic Mineral Issues Summary Report - Tungsten. US Geological Survey Circular 930-O.
De Ascencao Guedes, R. (2002) Le coteau minier de Panasqueira, Beira Baixa (Portugal). Le Règne Minéral(43), 6-32.
USGS (2005) Mineral Resources Data System (MRDS): U.S. Geological Survey, Reston, Virginia, loc. file ID #10055806 & 10304117.
Keeping a low profile at Panasqueira, Mining Methods in Underground Mining (2007) Atlas Copco, 135-140.
Carlos Curto Milà and Jordi Fabre (2014) The Mineralogical Record, 45 (1), 11-55.
Weiß, S., Fabre, J., and Mila, C.C. (2014) Panasqueira, Portugal: Wolframit, Zinnstein und prächtige Apatite. Lapis, 39 (7/8), 16-29 (in German).
Weiß, S. and Fabre, J. (2014) Panasqueira: Mineralien für Kenner - von A bis Z. Lapis, 39 (7/8), 30-53.
Mila, C.C., Salvan, C.M., and Fabre, J. (2014) Panasqueira: Neufunde und Neubestimmungen. Lapis, 39 (7/8), 54-63 [mineral list on p. 63].
Alves, P. (2016) Svanbergita y florencita-(Ce) de la mina Panasqueira (Covilhã, Castelo Branco, Portugal). Acopios, 7: 1-8.
Siorminp/LNEG.

External Links


Localities in this Region
Show map


This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2018, except where stated. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: September 22, 2018 02:18:44 Page generated: September 22, 2018 01:38:31
Go to top of page