Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Plainview (1917) meteorite, Hale Co., Texas, USAi
Regional Level Types
Plainview (1917) meteoriteMeteorite Fall Location
Hale Co.County
TexasState
USACountry

This page is currently not sponsored. Click here to sponsor this page.
PhotosMapsSearch
Latitude & Longitude (WGS84):
34° 7' 0'' North , 101° 46' 59'' West
Latitude & Longitude (decimal):
Meteorite Class:
Meteoritical Society Class:
Nearest Settlements:
PlacePopulationDistance
Hale Center2,093 (2017)8.1km
Plainview20,919 (2017)10.3km
Seth Ward2,025 (2011)13.6km
Edmonson105 (2017)21.3km
Kress687 (2017)27.9km


Ordinary chondrite, brecciated (H5,br.; S3; W2)
Found, 1917; 700 kg

In 1917 Merrill described in detail 3 meteoritic stones and some fragments (total mass 7.6 kg) which had been found ~8 km SW of Plainview. Merrill was able to provide a moderate inventory of the chondritic mineralogy and an initial description of the thoroughly brecciated textures of what had presumably been a single meteorite breaking up shortly before impact. Despite the strong overlay of its weathering 'varnish,' Merrill further noted regions with distinct color variations (darkening). Several additional stones were received shortly after Merrill prepared his report so that a total of 24 kg had been recovered by the end of 1917. During a two day Plainview stopover in 1933 Harvey Nininger recovered an even larger amount of meteoritic matter. Indeed, over a period of 15 years several 100 kg of additional material were recovered in a ~6 x 26 km strewn field due to his efforts.

As noted by Merrill, the meteorite is dominated by the distinct chondrules (olivine and/or pyroxene-rich), chondrule fragments, matrix, and aggregates of (often weathered) Fe-Ni metal and troilite. Orthopyroxene, clinopyroxene and albitic plagioclase are all present. Using more precise contemporary data, the olivine (Fa~18-19) and low Ca-clinopyroxene (Fs~17) place Plainview (1917) well within the H-chondrite geochemical group. Signs of shock have been explored in detail. Weathering products (goethite, limonite) are also noted by various authors. However, perhaps most significant is that the large mass has allowed a thorough study of minor constituents (Cf., Ramdohr, 1977) as well as some intriguing studies of its exotic clasts.

Plainview (1917)'s cosmic ray exposure (CRE) age of ~6.0 Ma is part of a cluster of 6-10 Ma CRE ages involving more than half of the studied H chondrites with H5 membership especially prominent. Presumably, most of the H5 meteorites which reach the earth during our current epoch were involved in one or two disruptive collisions less than 10 million years ago which then sent numerous small fragments (meteoroids) into eventual collisions with the earth.

The H chondrites (relatively high in total iron) are the second largest group of ordinary chondrites and represent ~40% of the witnessed and fully classified meteorite falls. The H5 petrologic type is the largest H subgroup and accounts for ~50% of the H falls. The Plainview (1917) total mass makes it the 3rd most massive recovered H5 chondrite. Only the 4 ton Jilin, China (1976) and the 1.1 ton Kunya-Urgench, Turkmenistan (1998) H5 falls were more massive.

Specimens of the Plainview (1917) mass have been distributed to a number of institutions worldwide. The largest amount of material is currently held at the Center for Meteorite Studies at Arizona State University (derived from Nininger's holdings). Over 25 kg are also held by the Natural History Museum in London (also mostly derived from Nininger's holdings) and by the United States National Museum in Washington, DC.

What's in a name? For approximately half a century the Plainview (1917) meteorite, an H5 ordinary chondrite, was known simply as the 'Plainview' meteorite. However, in 1950 another 2.2 kg and apparently separate chondritic mass was recovered in the same general area so the two masses were labelled 'Plainview (1917)' and 'Plainview (1950),' respectively. By 2010, three additional chondritic stones had been recovered from nearby, but sometimes somewhat uncertain original sites. In all, 5 separate meteorites are now listed at the Meteoritical Bulletin Database and appear to represent a minimum of at least 3 separate falls. For example, the 'Plainview (d)' meteorite, an L6 chondrite, is clearly a separate fall. The evidence for separate events for the small 'Plainview (c)' and 'Plainview (e)' stones, however, does not appear to be decisive at this time.

Select Mineral List Type

Standard Detailed Gallery Strunz Chemical Elements

Mineral List


20 valid minerals.

Meteorite/Rock Types Recorded

Note: data is currently VERY limited. Please bear with us while we work towards adding this information!

Select Rock List Type

Alphabetical List Tree Diagram

Detailed Mineral List:

β“˜ Augite
Formula: (CaxMgyFez)(Mgy1Fez1)Si2O6
Reference: Rubin, A.E., Trigo-Rodriguez, J.M., Kunihiro, T., Kallemeyn, G.W. & Wasson, J.T. (2005) Carbon-rich chondritic clast PV1 from the Plainview H-chondrite regolith breccia: Formation from H3 chondrite material by possible cometary impact. Geochimica et Cosmochimica Acta 69(13): 3419-3430. (July 2005).
β“˜ Chromite
Formula: Fe2+Cr3+2O4
Reference: Merrill, G.P. (1917) New find of meteoritic stones near Plainview. Hale County, Texas. Proceedings of the National Museum 52(2184): 419-422,2 plates.; Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages.; Grady, M.M., Pratesi, G. & Moggi-Cecchi, V. (2015) Atlas of Meteorites. Cambridge University Press: Cambridge, United Kingdom. 373 pages.
β“˜ 'Clinopyroxene Subgroup'
Reference: Merrill, G.P. (1917) New find of meteoritic stones near Plainview. Hale County, Texas. Proceedings of the National Museum 52(2184): 419-422,2 plates.; Grady, M.M., Pratesi, G. & Moggi-Cecchi, V. (2015) Atlas of Meteorites. Cambridge University Press: Cambridge, United Kingdom. 373 pages.
β“˜ Copper
Formula: Cu
Reference: Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages.
β“˜ Dolomite
Formula: CaMg(CO3)2
Reference: Briani et al. (2012) Xenoliths and microliths in H chondrites: Sampling the zodiacal cloud in the asteroid Main Belt. Meteoritics & Planetary Science 47(5): 880-902. (May 2012).
β“˜ 'Fayalite-Forsterite Series'
Description: Olivine in host (Fa19.5, Sipiera et al.,1983;Fa17.8, Rubin et al, 2005) w. exotic Olivine in clasts.
Reference: Merrill, G.P. (1917) New find of meteoritic stones near Plainview. Hale County, Texas. Proceedings of the National Museum 52(2184): 419-422,2 plates.; Sipiera, S. P., Olsen, E. J., Eatough, D. L., & Dod, B. D. (1983) Summary of several recent chondrite finds from the Texas Panhandle: Meteoritics 18 (1): 63-75. (March 1983).; Rubin, A.E., Trigo-Rodriguez, J.M., Kunihiro, T., Kallemeyn, G.W. & Wasson, J.T. (2005) Carbon-rich chondritic clast PV1 from the Plainview H-chondrite regolith breccia: Formation from H3 chondrite material by possible cometary impact. Geochimica et Cosmochimica Acta 69(13): 3419-3430. (July 2005).; Grady, M.M., Pratesi, G. & Moggi-Cecchi, V. (2015) Atlas of Meteorites. Cambridge University Press: Cambridge, United Kingdom. 373 pages.
β“˜ Forsterite
Formula: Mg2SiO4
Description: Fayalite content as low as Fa 0.6 and Fa2 reported for various grains.
Reference: Rubin, A.E. & Bottke, W.F. (2009) On the origin of shocked CM clasts in H-chondrite regolith breccias: Meteoritics & Planetary Science 44(5): 701-724. (May 2009).
β“˜ 'Glass'
Reference: Rubin, A.E., Trigo-Rodriguez, J.M., Kunihiro, T., Kallemeyn, G.W. & Wasson, J.T. (2005) Carbon-rich chondritic clast PV1 from the Plainview H-chondrite regolith breccia: Formation from H3 chondrite material by possible cometary impact. Geochimica et Cosmochimica Acta 69(13): 3419-3430. (July 2005).
β“˜ Goethite
Formula: Ξ±-Fe3+O(OH)
Description: Terrestrial weathering product often prominent along preexisting veins and cracks.
Reference: Rubin, A.E., Trigo-Rodriguez, J.M., Kunihiro, T., Kallemeyn, G.W. & Wasson, J.T. (2005) Carbon-rich chondritic clast PV1 from the Plainview H-chondrite regolith breccia: Formation from H3 chondrite material by possible cometary impact. Geochimica et Cosmochimica Acta 69(13): 3419-3430. (July 2005).
β“˜ Ilmenite
Formula: Fe2+TiO3
Reference: Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages.
β“˜ Iron
Formula: Fe
Reference: Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages.
β“˜ Iron var. Kamacite
Formula: (Fe,Ni)
Reference: Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages.
β“˜ Isocubanite
Formula: CuFe2S3
Reference: Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages.
β“˜ 'Limonite'
Reference: Rubin, A.E. & Bottke, W.F. (2009) On the origin of shocked CM clasts in H-chondrite regolith breccias: Meteoritics & Planetary Science 44(5): 701-724. (May 2009).
β“˜ Mackinawite
Formula: (Fe,Ni)9S8
Reference: Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages.
β“˜ Magnesite
Formula: MgCO3
Reference: Briani et al. (2012) Xenoliths and microliths in H chondrites: Sampling the zodiacal cloud in the asteroid Main Belt. Meteoritics & Planetary Science 47(5): 880-902. (May 2012).
β“˜ Magnesite var. Breunnerite
Formula: (Mg,Fe)CO3
Description: Present in microxenoliths.
Reference: Briani et al. (2012) Xenoliths and microliths in H chondrites: Sampling the zodiacal cloud in the asteroid Main Belt. Meteoritics & Planetary Science 47(5): 880-902. (May 2012).
β“˜ Magnetite
Formula: Fe2+Fe3+2O4
Reference: Rubin, A.E. & Bottke, W.F. (2009) On the origin of shocked CM clasts in H-chondrite regolith breccias: Meteoritics & Planetary Science 44(5): 701-724. (May 2009).; Briani et al. (2012) Xenoliths and microliths in H chondrites: Sampling the zodiacal cloud in the asteroid Main Belt. Meteoritics & Planetary Science 47(5): 880-902. (May 2012).
β“˜ 'Orthopyroxene Subgroup'
Reference: Merrill, G.P. (1917) New find of meteoritic stones near Plainview. Hale County, Texas. Proceedings of the National Museum 52(2184): 419-422,2 plates.; Grady, M.M., Pratesi, G. & Moggi-Cecchi, V. (2015) Atlas of Meteorites. Cambridge University Press: Cambridge, United Kingdom. 373 pages.
β“˜ Pentlandite
Formula: (NixFey)Ξ£9S8
Reference: Rubin, A.E. & Bottke, W.F. (2009) On the origin of shocked CM clasts in H-chondrite regolith breccias: Meteoritics & Planetary Science 44(5): 701-724. (May 2009).; Briani et al. (2012) Xenoliths and microliths in H chondrites: Sampling the zodiacal cloud in the asteroid Main Belt. Meteoritics & Planetary Science 47(5): 880-902. (May 2012).
β“˜ Perovskite
Formula: CaTiO3
Reference: Rubin, A.E. & Bottke, W.F. (2009) On the origin of shocked CM clasts in H-chondrite regolith breccias: Meteoritics & Planetary Science 44(5): 701-724. (May 2009).
β“˜ Pigeonite
Formula: (CaxMgyFez)(Mgy1Fez1)Si2O6
Reference: Rubin, A.E., Trigo-Rodriguez, J.M., Kunihiro, T., Kallemeyn, G.W. & Wasson, J.T. (2005) Carbon-rich chondritic clast PV1 from the Plainview H-chondrite regolith breccia: Formation from H3 chondrite material by possible cometary impact. Geochimica et Cosmochimica Acta 69(13): 3419-3430. (July 2005).
β“˜ 'Plagioclase'
Formula: (Na,Ca)[(Si,Al)AlSi2]O8
Description: Plagioclase composition (oligoclase)- An 18.8Ab75.0Or6.2.
Reference: Sipiera, S. P., Olsen, E. J., Eatough, D. L., & Dod, B. D. (1983) Summary of several recent chondrite finds from the Texas Panhandle: Meteoritics 18 (1): 63-75. (March 1983).; Grady, M.M., Pratesi, G. & Moggi-Cecchi, V. (2015) Atlas of Meteorites. Cambridge University Press: Cambridge, United Kingdom. 373 pages.
β“˜ 'Plessite'
Reference: Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages.
β“˜ 'Pyroxene Group'
Formula: ADSi2O6
Description: Several pyroxenes are present (pigeonite, augite, 'bronzite' and 'clinobronzite' as well as rare grains of either enstatite or clinoenstatite sensu strictu (Fs<10).
Reference: Rubin, A.E., Trigo-Rodriguez, J.M., Kunihiro, T., Kallemeyn, G.W. & Wasson, J.T. (2005) Carbon-rich chondritic clast PV1 from the Plainview H-chondrite regolith breccia: Formation from H3 chondrite material by possible cometary impact. Geochimica et Cosmochimica Acta 69(13): 3419-3430. (July 2005).
β“˜ Pyrrhotite
Formula: Fe1-xS
Description: Pyrrhotite is the dominant sulfide in a hydrated CM clast.
Reference: Rubin, A.E. & Bottke, W.F. (2009) On the origin of shocked CM clasts in H-chondrite regolith breccias: Meteoritics & Planetary Science 44(5): 701-724. (May 2009).; Briani et al. (2012) Xenoliths and microliths in H chondrites: Sampling the zodiacal cloud in the asteroid Main Belt. Meteoritics & Planetary Science 47(5): 880-902. (May 2012).
β“˜ Schreibersite
Formula: (Fe,Ni)3P
Reference: Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages.
β“˜ Spinel
Formula: MgAl2O4
Reference: Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages.; Rubin, A.E. & Bottke, W.F. (2009) On the origin of shocked CM clasts in H-chondrite regolith breccias: Meteoritics & Planetary Science 44(5): 701-724. (May 2009).
β“˜ Taenite
Formula: (Fe,Ni)
Reference: Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages.; Rubin, A.E., Trigo-Rodriguez, J.M., Kunihiro, T., Kallemeyn, G.W. & Wasson, J.T. (2005) Carbon-rich chondritic clast PV1 from the Plainview H-chondrite regolith breccia: Formation from H3 chondrite material by possible cometary impact. Geochimica et Cosmochimica Acta 69(13): 3419-3430. (July 2005).
β“˜ Troilite
Formula: FeS
Reference: Merrill, G.P. (1917) New find of meteoritic stones near Plainview. Hale County, Texas. Proceedings of the National Museum 52(2184): 419-422,2 plates.; Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages.; Grady, M.M., Pratesi, G. & Moggi-Cecchi, V. (2015) Atlas of Meteorites. Cambridge University Press: Cambridge, United Kingdom. 373 pages.

Gallery:

List of minerals arranged by Strunz 10th Edition classification

Group 1 - Elements
β“˜Copper1.AA.05Cu
β“˜Iron1.AE.05Fe
β“˜var. Kamacite1.AE.05(Fe,Ni)
β“˜Schreibersite1.BD.05(Fe,Ni)3P
β“˜Taenite1.AE.10(Fe,Ni)
Group 2 - Sulphides and Sulfosalts
β“˜Isocubanite2.CB.55bCuFe2S3
β“˜Mackinawite2.CC.25(Fe,Ni)9S8
β“˜Pentlandite2.BB.15(NixFey)Ξ£9S8
β“˜Pyrrhotite2.CC.10Fe1-xS
β“˜Troilite2.CC.10FeS
Group 4 - Oxides and Hydroxides
β“˜Chromite4.BB.05Fe2+Cr3+2O4
β“˜Goethite4.00.Ξ±-Fe3+O(OH)
β“˜Ilmenite4.CB.05Fe2+TiO3
β“˜Magnetite4.BB.05Fe2+Fe3+2O4
β“˜Perovskite4.CC.30CaTiO3
β“˜Spinel4.BB.05MgAl2O4
Group 5 - Nitrates and Carbonates
β“˜Dolomite5.AB.10CaMg(CO3)2
β“˜Magnesite5.AB.05MgCO3
β“˜var. Breunnerite5.AB.05(Mg,Fe)CO3
Group 9 - Silicates
β“˜Augite9.DA.15(CaxMgyFez)(Mgy1Fez1)Si2O6
β“˜Forsterite9.AC.05Mg2SiO4
β“˜Pigeonite9.DA.10(CaxMgyFez)(Mgy1Fez1)Si2O6
Unclassified Minerals, Rocks, etc.
β“˜'Clinopyroxene Subgroup'-
β“˜'Fayalite-Forsterite Series'-
β“˜'Glass'-
β“˜'Limonite'-
β“˜'Orthopyroxene Subgroup'-
β“˜'Plagioclase'-(Na,Ca)[(Si,Al)AlSi2]O8
β“˜'Plessite'-
β“˜'Pyroxene Group'-ADSi2O6

List of minerals for each chemical element

HHydrogen
Hβ“˜ GoethiteΞ±-Fe3+O(OH)
CCarbon
Cβ“˜ Magnesite var. Breunnerite(Mg,Fe)CO3
Cβ“˜ DolomiteCaMg(CO3)2
Cβ“˜ MagnesiteMgCO3
OOxygen
Oβ“˜ ChromiteFe2+Cr23+O4
Oβ“˜ Plagioclase(Na,Ca)[(Si,Al)AlSi2]O8
Oβ“˜ IlmeniteFe2+TiO3
Oβ“˜ SpinelMgAl2O4
Oβ“˜ Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
Oβ“˜ Pyroxene GroupADSi2O6
Oβ“˜ GoethiteΞ±-Fe3+O(OH)
Oβ“˜ Pigeonite(CaxMgyFez)(Mgy1Fez1)Si2O6
Oβ“˜ ForsteriteMg2SiO4
Oβ“˜ MagnetiteFe2+Fe23+O4
Oβ“˜ PerovskiteCaTiO3
Oβ“˜ Magnesite var. Breunnerite(Mg,Fe)CO3
Oβ“˜ DolomiteCaMg(CO3)2
Oβ“˜ MagnesiteMgCO3
NaSodium
Naβ“˜ Plagioclase(Na,Ca)[(Si,Al)AlSi2]O8
MgMagnesium
Mgβ“˜ SpinelMgAl2O4
Mgβ“˜ Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
Mgβ“˜ Pigeonite(CaxMgyFez)(Mgy1Fez1)Si2O6
Mgβ“˜ ForsteriteMg2SiO4
Mgβ“˜ Magnesite var. Breunnerite(Mg,Fe)CO3
Mgβ“˜ DolomiteCaMg(CO3)2
Mgβ“˜ MagnesiteMgCO3
AlAluminium
Alβ“˜ Plagioclase(Na,Ca)[(Si,Al)AlSi2]O8
Alβ“˜ SpinelMgAl2O4
SiSilicon
Siβ“˜ Plagioclase(Na,Ca)[(Si,Al)AlSi2]O8
Siβ“˜ Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
Siβ“˜ Pyroxene GroupADSi2O6
Siβ“˜ Pigeonite(CaxMgyFez)(Mgy1Fez1)Si2O6
Siβ“˜ ForsteriteMg2SiO4
PPhosphorus
Pβ“˜ Schreibersite(Fe,Ni)3P
SSulfur
Sβ“˜ TroiliteFeS
Sβ“˜ IsocubaniteCuFe2S3
Sβ“˜ Mackinawite(Fe,Ni)9S8
Sβ“˜ PyrrhotiteFe1-xS
Sβ“˜ Pentlandite(NixFey)Ξ£9S8
CaCalcium
Caβ“˜ Plagioclase(Na,Ca)[(Si,Al)AlSi2]O8
Caβ“˜ Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
Caβ“˜ Pigeonite(CaxMgyFez)(Mgy1Fez1)Si2O6
Caβ“˜ PerovskiteCaTiO3
Caβ“˜ DolomiteCaMg(CO3)2
TiTitanium
Tiβ“˜ IlmeniteFe2+TiO3
Tiβ“˜ PerovskiteCaTiO3
CrChromium
Crβ“˜ ChromiteFe2+Cr23+O4
FeIron
Feβ“˜ ChromiteFe2+Cr23+O4
Feβ“˜ TroiliteFeS
Feβ“˜ IlmeniteFe2+TiO3
Feβ“˜ IsocubaniteCuFe2S3
Feβ“˜ Iron var. Kamacite(Fe,Ni)
Feβ“˜ Mackinawite(Fe,Ni)9S8
Feβ“˜ Schreibersite(Fe,Ni)3P
Feβ“˜ Taenite(Fe,Ni)
Feβ“˜ Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
Feβ“˜ GoethiteΞ±-Fe3+O(OH)
Feβ“˜ Pigeonite(CaxMgyFez)(Mgy1Fez1)Si2O6
Feβ“˜ MagnetiteFe2+Fe23+O4
Feβ“˜ PyrrhotiteFe1-xS
Feβ“˜ Pentlandite(NixFey)Ξ£9S8
Feβ“˜ IronFe
Feβ“˜ Magnesite var. Breunnerite(Mg,Fe)CO3
NiNickel
Niβ“˜ Iron var. Kamacite(Fe,Ni)
Niβ“˜ Mackinawite(Fe,Ni)9S8
Niβ“˜ Schreibersite(Fe,Ni)3P
Niβ“˜ Taenite(Fe,Ni)
Niβ“˜ Pentlandite(NixFey)Ξ£9S8
CuCopper
Cuβ“˜ CopperCu
Cuβ“˜ IsocubaniteCuFe2S3

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
Merrill, G.P. (1917) New find of meteoritic stones near Plainview. Hale County, Texas. Proceedings of the National Museum 52(2184): 419-422,2 plates.
Nininger, H.H. (1972). Find a Falling Star. Paul S. Eriksson, Inc.: New York. 254 pages.
Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages.
Sipiera, S. P., Olsen, E. J., Eatough, D. L., & Dod, B. D. (1983) Summary of several recent chondrite finds from the Texas Panhandle: Meteoritics 18 (1): 63-75. (March 1983).
Grady, M.M (2000). Catalogue of Meteorites (5/e). Cambridge University Press: Cambridge; New York; Oakleigh; Madrid; Cape Town. 689 pages.
Rubin, A.E., Trigo-Rodriguez, J.M., Kunihiro, T., Kallemeyn, G.W. & Wasson, J.T. (2005) Carbon-rich chondritic clast PV1 from the Plainview H-chondrite regolith breccia: Formation from H3 chondrite material by possible cometary impact. Geochimica et Cosmochimica Acta 69(13): 3419-3430. (July 2005).
Rubin, A.E. & Bottke, W.F. (2009) On the origin of shocked CM clasts in H-chondrite regolith breccias: Meteoritics & Planetary Science 44(5): 701-724. (May 2009).
Briani et al. (2012) Xenoliths and microliths in H chondrites: Sampling the zodiacal cloud in the asteroid Main Belt. Meteoritics & Planetary Science 47(5): 880-902. (May 2012).
Grady, M.M., Pratesi, G. & Moggi-Cecchi, V. (2015) Atlas of Meteorites. Cambridge University Press: Cambridge, United Kingdom. 373 pages.

External Links


Other Regions, Features and Areas containing this locality


This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
 
Mineral and/or Locality  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2024, except where stated. Most political location boundaries are Β© OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: April 25, 2024 16:48:47 Page updated: January 13, 2023 20:06:23
Go to top of page