IMPORTANT MESSAGE. We need your support now to keep mindat.org running. Click here to find out why.
Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for Educators
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
StatisticsThe ElementsUsersBooks & MagazinesMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery

Estherville meteorite, Emmet Co., Iowa, USA

This page is currently not sponsored. Click here to sponsor this page.
Key
Lock Map
Latitude & Longitude (WGS84): 43° 25' North , 94° 50' West
Latitude & Longitude (decimal): 43.41667,-94.83333
GeoHash:G#: 9zswfpb2r
Locality type:Meteorite Fall Location
Meteorite Class:Mesosiderite-A3/4 meteorite
Meteoritical Society Class:Mesosiderite-A3/4
Metbull:View entry in Meteoritical Bulletin Database
Köppen climate type:Dfa : Hot-summer humid continental climate


Mesosiderite-A3/4 (Stony-Iron)
Fall, 10 May 1879, 320 kg, shower with several 'stones'

Late in the afternoon a terribly loud explosion was heard from high above followed quickly by a number of additional thunderous blasts. Alerted by these sounds witnesses soon found a 4 m wide, 2 m deep crater with a 195 kg mass inside. Another large 65 kg mass and several smaller pieces were subsequently found in the next days and weeks. Estherville has been given considerable attention in the past 130+ years as it is the most massive of only 7 witnessed mesosiderite falls. Mesosiderites are complex stony-irons which have experienced dramatic impacts which have mixed once molten Fe-Ni metal with an assortment of silicate clasts. Several larger mesosiderite finds are known, but weathering creates substantive interpretation problems — especially when trying to determine which sulfides, sulfates and phosphates within an exposed meteoritical mass are pre-terrestrial and by products of exposure to the earth's environment. Estherville's Fe-Ni metal (56 wt%), with prominent nodules and frequent Widmanstätten patterns provide ample Fe-rich material for study. Likewise, Estherville's often clastic silicates (~40 wt%)— compositionally dominated by orthopyroxene with accessory plagioclase and other minor silicates — also provide ample 'stony' material for material. Schreibersite, troilite, chromite and other phases account for <5 wt% of the meteorite. Estherville is the 'Type Locality' for two minor phases, stanfieldite (a phosphate) and tetrataenite (Ni-rich tetragonal metal), discovered several decades ago.

As the research referenced here spans over a century, the reader should be alerted to changing nomenclature conventions used by various authors which are difficult to render with complete consistency. Thus, the 'whitlockite' reported here is referred to as 'merrillite' by other equally competent sources.

Alternative Label Names

This is a list of additional names that have been recorded for mineral labels associated with this locality in the minID database. This may include previous versions of the locality name hierarchy from mindat.org, data entry errors, and it may also include unconfirmed sublocality names or other names that can only be matched to this level.

ESTHERVILLE, EMMET COUNTY, IOWA, USA

Select Mineral List Type

Standard Detailed Strunz Dana Chemical Elements

Mineral List


16 valid minerals. 2 (TL) - type locality of valid minerals.

Meteorite/Rock Types Recorded

Note: this is a very new system on mindat.org and data is currently VERY limited. Please bear with us while we work towards adding this information!

Select Rock List Type

Alphabetical List Tree Diagram

Detailed Mineral List:

'Albite-Anorthite Series'
Description: Plagioclase grains are somewhat variable in composition, but are normally unzoned.
Reference: Powell, B. N. (1971). Petrology and chemistry of mesosiderites—II. Silicate textures and compositions and metal-silicate relationships. Geochimica et Cosmochimica Acta 35(1): 5-34. (Jan 1971); Mittlefehldt, D. W., McCoy, T. J., Goodrich, C. A. & Kracher, A. (1998). Non-chondritic meteorites from asteroidal bodies. In: Planetary Materials (Papike, J. J., Editor): Chapter 4, 195 pages. Mineralogical Society of America: Washington, DC, USA. (1998)
Anorthite
Formula: Ca(Al2Si2O8)
Description: Present in anorthositic clasts.
Reference: Grady, M. M. , Pratesi, G. & Moggi-Cecchi, V. (2015) Atlas of Meteorites. Cambridge University Press: Cambridge, United Kingdom.
Anorthite var: Bytownite
Formula: (Ca,Na)[Al(Al,Si)Si2O8]
Reference: Fuchs L H (1967) Abstract of paper presented at the twelfth annual meeting: Stanfieldite, a new phosphate mineral in stony-iron meteorites. The Canadian Mineralogist 9, 289-290
'Antitaenite'
Formula: Fe3Ni
Reference: www.lpi.usra.edu/meetings/metsoc2002/pdf/5020.pdf.
'Apatite'
Reference: Powell, B. N. (1971). Petrology and chemistry of mesosiderites—II. Silicate textures and compositions and metal-silicate relationships. Geochimica et Cosmochimica Acta 35(1): 5-34. (Jan 1971)
Augite
Formula: (CaxMgyFez)(Mgy1Fez1)Si2O6
Reference: Powell, B. N. (1971). Petrology and chemistry of mesosiderites—II. Silicate textures and compositions and metal-silicate relationships. Geochimica et Cosmochimica Acta 35(1): 5-34. (Jan 1971)
Chromite
Formula: Fe2+Cr3+2O4
Reference: Fuchs L H (1967) Abstract of paper presented at the twelfth annual meeting: Stanfieldite, a new phosphate mineral in stony-iron meteorites. The Canadian Mineralogist 9, 289-290; Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages; Bunch, T. E. & Keil, K. (1970) Chromite and Ilmenite in non-chondritic meteorites. American Mineralogist 56 (1/2):146-157. (Jan/Feb 1971)
'Clinopyroxene Subgroup'
Description: Clinopyroxenes include at least one Ca-rich species (augite) and one Ca-rich species (pigeonite. [Cf. Powell (1971)]
Reference: Mittlefehldt, D. W., McCoy, T. J., Goodrich, C. A. & Kracher, A. (1998). Non-chondritic meteorites from asteroidal bodies. In: Planetary Materials (Papike, J. J., Editor): Chapter 4, 195 pages. Mineralogical Society of America: Washington, DC, USA. (1998)
Enstatite
Formula: MgSiO3
Description: Enstatite has both a general definition as magnesian Fe-Mg pyroxene (MgO mol%> FeO mol%) and as very Mg-rich pyroxene or even nearly pure Mg pyroxene [The latter usage is usually preferred in the meteoritical literature]. Almost all Estherville orthopyroxene contains a significant ferroan component.
Reference: Fuchs L H (1967) Abstract of paper presented at the twelfth annual meeting: Stanfieldite, a new phosphate mineral in stony-iron meteorites. The Canadian Mineralogist 9, 289-290
'Fayalite-Forsterite Series'
Reference: Fuchs L H (1967) Abstract of paper presented at the twelfth annual meeting: Stanfieldite, a new phosphate mineral in stony-iron meteorites. The Canadian Mineralogist 9, 289-290; Shepard, C. U. (1879). On the Estherville, Emmet County, Iowa meteorite of May 10, 1879.: American Journal of Arts and Science (3rd Series) 18:186-188.; Powell, B. N. (1971). Petrology and chemistry of mesosiderites—II. Silicate textures and compositions and metal-silicate relationships. Geochimica et Cosmochimica Acta 35(1): 5-34. (Jan 1971); Mittlefehldt, D. W., McCoy, T. J., Goodrich, C. A. & Kracher, A. (1998). Non-chondritic meteorites from asteroidal bodies. In: Planetary Materials (Papike, J. J., Editor): Chapter 4, 195 pages. Mineralogical Society of America: Washington, DC, USA. (1998)
Ilmenite
Formula: Fe2+TiO3
Reference: Fuchs L H (1967) Abstract of paper presented at the twelfth annual meeting: Stanfieldite, a new phosphate mineral in stony-iron meteorites. The Canadian Mineralogist 9, 289-290; Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages; Bunch, T. E. & Keil, K. (1970) Chromite and Ilmenite in non-chondritic meteorites. American Mineralogist 56 (1/2):146-157. (Jan/Feb 1971); Powell, B. N. (1971). Petrology and chemistry of mesosiderites—II. Silicate textures and compositions and metal-silicate relationships. Geochimica et Cosmochimica Acta 35(1): 5-34. (Jan 1971)
Iron
Formula: Fe
Reference: Geochimica et Cosmochimica Acta, Volume 54, Issue 11, November 1990, Pages 3197-3208; Fuchs L H (1967) Abstract of paper presented at the twelfth annual meeting: Stanfieldite, a new phosphate mineral in stony-iron meteorites. The Canadian Mineralogist 9, 289-290; Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages; Shepard, C. U. (1879). On the Estherville, Emmet County, Iowa meteorite of May 10, 1879.: American Journal of Arts and Science (3rd Series) 18:186-188.
Iron var: Kamacite
Formula: (Fe,Ni)
Reference: Geochimica et Cosmochimica Acta, Volume 54, Issue 11, November 1990, Pages 3197-3208; Fuchs L H (1967) Abstract of paper presented at the twelfth annual meeting: Stanfieldite, a new phosphate mineral in stony-iron meteorites. The Canadian Mineralogist 9, 289-290; Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages; Shepard, C. U. (1879). On the Estherville, Emmet County, Iowa meteorite of May 10, 1879.: American Journal of Arts and Science (3rd Series) 18:186-188.
'Mesosiderite-A3/4 meteorite'
Reference: Meteoritical Society Database
'Orthopyroxene Subgroup'
Description: Orthopyroxene(Fs29) [According to Powell (1971)] is mostly described as 'Hypersthene' in much of the meteoritical literature.
Reference: Powell, B. N. (1971). Petrology and chemistry of mesosiderites—II. Silicate textures and compositions and metal-silicate relationships. Geochimica et Cosmochimica Acta 35(1): 5-34. (Jan 1971); Mittlefehldt, D. W., McCoy, T. J., Goodrich, C. A. & Kracher, A. (1998). Non-chondritic meteorites from asteroidal bodies. In: Planetary Materials (Papike, J. J., Editor): Chapter 4, 195 pages. Mineralogical Society of America: Washington, DC, USA. (1998)
Pigeonite
Formula: (CaxMgyFez)(Mgy1Fez1)Si2O6
Reference: Powell, B. N. (1971). Petrology and chemistry of mesosiderites—II. Silicate textures and compositions and metal-silicate relationships. Geochimica et Cosmochimica Acta 35(1): 5-34. (Jan 1971)
'Pyroxene Group'
Description: Much of the pyroxene is intergrown with plagioclase
Reference: Shepard, C. U. (1879). On the Estherville, Emmet County, Iowa meteorite of May 10, 1879.: American Journal of Arts and Science (3rd Series) 18:186-188.
Rutile
Formula: TiO2
Reference: Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages; Powell, B. N. (1971). Petrology and chemistry of mesosiderites—II. Silicate textures and compositions and metal-silicate relationships. Geochimica et Cosmochimica Acta 35(1): 5-34. (Jan 1971)
Schreibersite
Formula: (Fe,Ni)3P
Reference: Fuchs L H (1967) Abstract of paper presented at the twelfth annual meeting: Stanfieldite, a new phosphate mineral in stony-iron meteorites. The Canadian Mineralogist 9, 289-290; Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages; Powell, B. N. (1971). Petrology and chemistry of mesosiderites—II. Silicate textures and compositions and metal-silicate relationships. Geochimica et Cosmochimica Acta 35(1): 5-34. (Jan 1971)
Stanfieldite (TL)
Formula: Ca4Mg5(PO4)6
Reference: Am Min 53: 508; Witzke, T. (2011): Stanfieldit-Kristalle aus dem Meteoriten Estherville (Mesosiderit A 3/4). Aufschluss 62, 119-123. ; Fuchs L H (1967) Abstract of paper presented at the twelfth annual meeting: Stanfieldite, a new phosphate mineral in stony-iron meteorites. The Canadian Mineralogist 9, 289-290
Taenite
Formula: (Fe,Ni)
Reference: Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages
Tetrataenite (TL)
Formula: FeNi
Reference: American Mineralogist, Volume 65, pages 624-630 1980
Tridymite
Formula: SiO2
Reference: Fuchs L H (1967) Abstract of paper presented at the twelfth annual meeting: Stanfieldite, a new phosphate mineral in stony-iron meteorites. The Canadian Mineralogist 9, 289-290; Powell, B. N. (1971). Petrology and chemistry of mesosiderites—II. Silicate textures and compositions and metal-silicate relationships. Geochimica et Cosmochimica Acta 35(1): 5-34. (Jan 1971); Mittlefehldt, D. W., McCoy, T. J., Goodrich, C. A. & Kracher, A. (1998). Non-chondritic meteorites from asteroidal bodies. In: Planetary Materials (Papike, J. J., Editor): Chapter 4, 195 pages. Mineralogical Society of America: Washington, DC, USA. (1998)
Troilite
Formula: FeS
Reference: Fuchs L H (1967) Abstract of paper presented at the twelfth annual meeting: Stanfieldite, a new phosphate mineral in stony-iron meteorites. The Canadian Mineralogist 9, 289-290; Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages; Powell, B. N. (1971). Petrology and chemistry of mesosiderites—II. Silicate textures and compositions and metal-silicate relationships. Geochimica et Cosmochimica Acta 35(1): 5-34. (Jan 1971)
Whitlockite
Formula: Ca9Mg(PO4)6(HPO4)
Reference: Fuchs L H (1967) Abstract of paper presented at the twelfth annual meeting: Stanfieldite, a new phosphate mineral in stony-iron meteorites. The Canadian Mineralogist 9, 289-290
Zircon
Formula: Zr(SiO4)
Reference: Powell, B. N. (1971). Petrology and chemistry of mesosiderites—II. Silicate textures and compositions and metal-silicate relationships. Geochimica et Cosmochimica Acta 35(1): 5-34. (Jan 1971)

List of minerals arranged by Strunz 10th Edition classification

Group 1 - Elements
'Antitaenite'1.AE.10Fe3Ni
Iron1.AE.05Fe
var: Kamacite1.AE.05(Fe,Ni)
Schreibersite1.BD.05(Fe,Ni)3P
Taenite1.AE.10(Fe,Ni)
Tetrataenite (TL)1.AE.10FeNi
Group 2 - Sulphides and Sulfosalts
Troilite2.CC.10FeS
Group 4 - Oxides and Hydroxides
Chromite4.BB.05Fe2+Cr3+2O4
Ilmenite4.CB.05Fe2+TiO3
Rutile4.DB.05TiO2
Tridymite4.DA.10SiO2
Group 8 - Phosphates, Arsenates and Vanadates
Stanfieldite (TL)8.AC.70Ca4Mg5(PO4)6
Whitlockite8.AC.45Ca9Mg(PO4)6(HPO4)
Group 9 - Silicates
'Anorthite'9.FA.35Ca(Al2Si2O8)
var: Bytownite9.FA.35(Ca,Na)[Al(Al,Si)Si2O8]
'Augite'9.DA.15(CaxMgyFez)(Mgy1Fez1)Si2O6
Enstatite9.DA.05MgSiO3
Pigeonite9.DA.10(CaxMgyFez)(Mgy1Fez1)Si2O6
Zircon9.AD.30Zr(SiO4)
Unclassified Minerals, Rocks, etc.
'Albite-Anorthite Series'-
'Apatite'-
Clinopyroxene Subgroup-
Fayalite-Forsterite Series-
Mesosiderite-A3/4 meteorite-
Orthopyroxene Subgroup-
Pyroxene Group-

List of minerals arranged by Dana 8th Edition classification

Group 1 - NATIVE ELEMENTS AND ALLOYS
Metals, other than the Platinum Group
Iron
var: Kamacite
1.1.11.1(Fe,Ni)
Schreibersite1.1.21.2(Fe,Ni)3P
Taenite1.1.11.2(Fe,Ni)
Tetrataenite (TL)1.1.11.3FeNi
Group 2 - SULFIDES
AmXp, with m:p = 1:1
Troilite2.8.9.1FeS
Group 4 - SIMPLE OXIDES
A2X3
Ilmenite4.3.5.1Fe2+TiO3
AX2
Rutile4.4.1.1TiO2
Group 7 - MULTIPLE OXIDES
AB2X4
Chromite7.2.3.3Fe2+Cr3+2O4
Group 38 - ANHYDROUS NORMAL PHOSPHATES, ARSENATES, AND VANADATES
(AB)3(XO4)2
Stanfieldite (TL)38.3.5.1Ca4Mg5(PO4)6
Whitlockite38.3.4.1Ca9Mg(PO4)6(HPO4)
Group 51 - NESOSILICATES Insular SiO4 Groups Only
Insular SiO4 Groups Only with cations in >[6] coordination
Zircon51.5.2.1Zr(SiO4)
Group 65 - INOSILICATES Single-Width,Unbranched Chains,(W=1)
Single-Width Unbranched Chains, W=1 with chains P=2
Augite65.1.3a.3(CaxMgyFez)(Mgy1Fez1)Si2O6
Enstatite65.1.2.1MgSiO3
Pigeonite65.1.1.4(CaxMgyFez)(Mgy1Fez1)Si2O6
Group 75 - TECTOSILICATES Si Tetrahedral Frameworks
Si Tetrahedral Frameworks - SiO2 with [4] coordinated Si
Tridymite75.1.2.1SiO2
Unclassified Minerals, Rocks, etc.
'Albite-Anorthite Series'-
Anorthite-Ca(Al2Si2O8)
var: Bytownite-(Ca,Na)[Al(Al,Si)Si2O8]
'Antitaenite'-Fe3Ni
'Apatite'-
'Clinopyroxene Subgroup'-
'Fayalite-Forsterite Series'-
Iron-Fe
'Mesosiderite-A3/4 meteorite'-
'Orthopyroxene Subgroup'-
'Pyroxene Group'-

List of minerals for each chemical element

HHydrogen
H WhitlockiteCa9Mg(PO4)6(HPO4)
OOxygen
O AnorthiteCa(Al2Si2O8)
O Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
O Anorthite (var: Bytownite)(Ca,Na)[Al(Al,Si)Si2O8]
O ChromiteFe2+Cr23+O4
O EnstatiteMgSiO3
O IlmeniteFe2+TiO3
O Pigeonite(CaxMgyFez)(Mgy1Fez1)Si2O6
O RutileTiO2
O StanfielditeCa4Mg5(PO4)6
O TridymiteSiO2
O WhitlockiteCa9Mg(PO4)6(HPO4)
O ZirconZr(SiO4)
NaSodium
Na Anorthite (var: Bytownite)(Ca,Na)[Al(Al,Si)Si2O8]
MgMagnesium
Mg Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
Mg EnstatiteMgSiO3
Mg Pigeonite(CaxMgyFez)(Mgy1Fez1)Si2O6
Mg StanfielditeCa4Mg5(PO4)6
Mg WhitlockiteCa9Mg(PO4)6(HPO4)
AlAluminium
Al AnorthiteCa(Al2Si2O8)
Al Anorthite (var: Bytownite)(Ca,Na)[Al(Al,Si)Si2O8]
SiSilicon
Si AnorthiteCa(Al2Si2O8)
Si Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
Si Anorthite (var: Bytownite)(Ca,Na)[Al(Al,Si)Si2O8]
Si EnstatiteMgSiO3
Si Pigeonite(CaxMgyFez)(Mgy1Fez1)Si2O6
Si TridymiteSiO2
Si ZirconZr(SiO4)
PPhosphorus
P Schreibersite(Fe,Ni)3P
P StanfielditeCa4Mg5(PO4)6
P WhitlockiteCa9Mg(PO4)6(HPO4)
SSulfur
S TroiliteFeS
CaCalcium
Ca AnorthiteCa(Al2Si2O8)
Ca Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
Ca Anorthite (var: Bytownite)(Ca,Na)[Al(Al,Si)Si2O8]
Ca Pigeonite(CaxMgyFez)(Mgy1Fez1)Si2O6
Ca StanfielditeCa4Mg5(PO4)6
Ca WhitlockiteCa9Mg(PO4)6(HPO4)
TiTitanium
Ti IlmeniteFe2+TiO3
Ti RutileTiO2
CrChromium
Cr ChromiteFe2+Cr23+O4
FeIron
Fe AntitaeniteFe3Ni
Fe Augite(CaxMgyFez)(Mgy1Fez1)Si2O6
Fe ChromiteFe2+Cr23+O4
Fe IlmeniteFe2+TiO3
Fe IronFe
Fe Iron (var: Kamacite)(Fe,Ni)
Fe Pigeonite(CaxMgyFez)(Mgy1Fez1)Si2O6
Fe Schreibersite(Fe,Ni)3P
Fe Taenite(Fe,Ni)
Fe TetrataeniteFeNi
Fe TroiliteFeS
NiNickel
Ni AntitaeniteFe3Ni
Ni Iron (var: Kamacite)(Fe,Ni)
Ni Schreibersite(Fe,Ni)3P
Ni Taenite(Fe,Ni)
Ni TetrataeniteFeNi
ZrZirconium
Zr ZirconZr(SiO4)

Regional Geology

This geological map and associated information on rock units at or nearby to the coordinates given for this locality is based on relatively small scale geological maps provided by various national Geological Surveys. This does not necessarily represent the complete geology at this locality but it gives a background for the region in which it is found.

Click on geological units on the map for more information. Click here to view full-screen map on Macrostrat.org

Late Cretaceous
66 - 100.5 Ma



ID: 3188050
Mesozoic sedimentary rocks

Age: Late Cretaceous (66 - 100.5 Ma)

Lithology: Siltstone,shale,sandstone

Reference: Chorlton, L.B. Generalized geology of the world: bedrock domains and major faults in GIS format: a small-scale world geology map with an extended geological attribute database. doi: 10.4095/223767. Geological Survey of Canada, Open File 5529. [154]

Cenomanian - Albian
93.9 - 113 Ma



ID: 2949905
Dakata and Windrow Formations

Age: Cretaceous (93.9 - 113 Ma)

Stratigraphic Name: Dakata Formation; Windrow Formation

Description: Dakota Formation widespread in western Iowa, lower sandstone-dominated Nishnabotna Member, upper mudstone/shale-dominated Woodbury Member. Correlative Windrow Formation found as erosional outliers in northeastern and north-central Iowa. Primary lithologies: sandstone, quartzose, very fine to medium grained; mudstone/shale, light to dark gray, variably silty-sandy, noncalcareous (Woodbury Mbr.). Secondary lithologies: sandstone, medium to very coarse grained, part pebbly to gravelly, locally cemented by iron oxides (Nishnabotna Mbr., Windrow Fm.), gravel, quartz and chert clasts; siltstone; mudstone, red, pink, yellow-brown, black (carbonaceous). Minor: lignite; siderite (concretions, pedogenic sphaerosiderite pellets, cemented siltstone); massive iron ore, silty to sandy (Windrow Fm.). Maximum thickness Dakota Fm. 500 ft (150 m), commonly 100-300 ft (30-90 m); Windrow Fm. 40 ft (12 m).

Lithology: Major:{sandstone,shale}, Minor:{siltstone mudstone}, Incidental:{lignite, siltstone, banded iron formation}

Reference: Horton, J.D., C.A. San Juan, and D.B. Stoeser. The State Geologic Map Compilation (SGMC) geodatabase of the conterminous United States. doi: 10.3133/ds1052. U.S. Geological Survey Data Series 1052. [133]

Cenomanian - Albian
93.9 - 113 Ma



ID: 2161631
Dakota Fm, Windrow Fm

Age: Cretaceous (93.9 - 113 Ma)

Stratigraphic Name: Dakota Formation; Windrow Formation;

Description: Dakota Formation widespread in western Iowa, lower sandstone-dominated Nishnabotna Member, upper mudstone/shale-dominated Woodbury Member. Correlative Windrow Formation found as erosional outliers in northeastern and north-central Iowa. Primary lithologies: sandstone, quartzose, very fine to medium grained; mudstone/shale, light to dark gray, variably silty-sandy, noncalcareous (Woodbury Mbr.). Secondary lithologies: sandstone, medium to very coarse grained, part pebbly to gravelly, locally cemented by iron oxides (Nishnabotna Mbr., Windrow Fm.), gravel, quartz and chert clasts; siltstone; mudstone, red, pink, yellow-brown, black (carbonaceous). Minor: lignite; siderite (concretions, pedogenic sphaerosiderite pellets, cemented siltstone); massive iron ore, silty to sandy (Windrow Fm.). Maximum thickness Dakota Fm. 500 ft (150 m), commonly 100-300 ft (30-90 m); Windrow Fm. 40 ft (12 m).

Reference: Witzke, B.J., R.R. Anderson, J.P. Pope. Iowa Bedrock Geologic Map. Iowa Geological and Water Survey, DNR. [26]

Data and map coding provided by Macrostrat.org, used under Creative Commons Attribution 4.0 License

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
Peckham, S. F. (1879). Fall of a meteorite on the 10th of May, in Iowa: American Journal of Arts and Science (3rd Series) 18:77-78
Shepard, C. U. (1879). On the Estherville, Emmet County, Iowa meteorite of May 10, 1879.: American Journal of Arts and Science (3rd Series) 18:186-188.
Bunch, T. E. & Keil, K. (1970) Chromite and Ilmenite in non-chondritic meteorites. American Mineralogist 56 (1/2):146-157. (Jan/Feb 1971)
Powell, B. N. (1971). Petrology and chemistry of mesosiderites—II. Silicate textures and compositions and metal-silicate relationships. Geochimica et Cosmochimica Acta 35(1): 5-34. (Jan 1971)
Ramdohr, P. (1973). The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages.
Mittlefehldt, D. W., McCoy, T. J., Goodrich, C. A. & Kracher, A. (1998). Non-chondritic meteorites from asteroidal bodies. In: Planetary Materials (Papike, J. J., Editor): Chapter 4, 195 pages. Mineralogical Society of America: Washington, DC, USA. (1998)
Witzke, T. (2011): Stanfieldit-Kristalle aus dem Meteoriten Estherville (Mesosiderit A 3/4). Aufschluss 62, 119-123.
Grady, M. M. , Pratesi, G. & Moggi-Cecchi, V. (2015) Atlas of Meteorites. Cambridge University Press: Cambridge, United Kingdom. 373 pages.

External Links



This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2018, except where stated. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: October 22, 2018 00:09:44 Page generated: August 16, 2018 09:28:49
Go to top of page