Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsBooks & Magazines
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryMineral Photography

Royal Mountain King Mine (North pit; Skyrocket pit; Gold Knoll pit; Hobo pit; Hilltop pit; Butcher Shop; Hodson Fault; Dublin property; McCarty; Snowstorm; Skyrocket; Gold Knoll; Wilbur Womble; Lillian; Pine Log), Hodson, Hodson Mining District (Madam Felix Mining District; Felix Mining District), West Belt, Calaveras Co., California, USAi
Regional Level Types
Royal Mountain King Mine (North pit; Skyrocket pit; Gold Knoll pit; Hobo pit; Hilltop pit; Butcher Shop; Hodson Fault; Dublin property; McCarty; Snowstorm; Skyrocket; Gold Knoll; Wilbur Womble; Lillian; Pine Log)Mine
Hodson- not defined -
Hodson Mining District (Madam Felix Mining District; Felix Mining District)Mining District
West Belt- not defined -
Calaveras Co.County
CaliforniaState
USACountry

This page is currently not sponsored. Click here to sponsor this page.
Key
Latitude & Longitude (WGS84):
37° 59' 52'' North , 120° 41' 12'' West
Latitude & Longitude (decimal):
Locality type:
Nearest Settlements:
PlacePopulationDistance
Copperopolis3,671 (2011)4.3km
Angels Camp2,677 (2012)15.1km
Tuttletown668 (2011)19.9km
Rancho Calaveras4,489 (2018)20.8km
Vallecito442 (2011)21.3km


This mine is a late stage project incorporating most of the former significant mines in the district.

A former Au-Ag-Cu-Zn-Fe-Pb-As-Sb mine located in secs. 19, 20, 29 & 30, T2N, R12E, MDM, 0.2 km (0.1 mile) NW of Hodson (site) and 4.4 km (2.7 miles) WNW of Copperopolis between Clover Creek and Littlejohns Creek on the W and Homestead Ridge on the E (80 miles SE of Sacramento; mine is accessible by paved road from Copperopolis). Discovered in 1851. Owned & operated by Meridian Gold Inc. MRDS database stated accuracy for this location is 100 meters. The Royal Mountain King Mine is a large open-pit operation that encompassed both the Royal and Mountain King mines and several smaller mines.

The area consists of sparsely populated low-relief, rolling foothills covered with oak woodland-grasslands. Ranges and valleys generally follow a NW strike; the mine is located in the southern end of Salt Springs Valley, one of these strike valleys. Annual precipitation is generally between 25-30? and occurs mostly as rain during the winter months. Temperatures reach freezing in the winter and exceed 100 degrees (F) in the summer. Two of the open pits (North and Skyrocket) have filled with water, while the third (Gold Knoll) is backfilled.

Early mining concentrated on very fine-grained free gold present in placers or in quartz veins and veinlets. The gold ranged from 627-700 fine. Some high grade pockets were found. Recent mining exploited invisible gold disseminated in carbonate-altered metasedimentary and metavolcanic rocks. The gold is initimately associated with euhedral pyrite, sometimes as a coating or as microveinlets in the pyrite. These deposits were low grade, ranging from 0.025-.074 ounces of gold per ton. The ore mineral was principally electrum, with a fineness of 500 to 750.

Gold in the district was discovered in placers in 1851. Lode mining began in 1857. Production was minor until the 1880's when extensive deposits were discovered at the Royal and Mountain King mines. Historic productivity reached its peak in the 1890's and early 1900's, with sporadic production until the late 1940's. The Royal Mine was operated extensively between 1895 and 1905, closed until 1914, idle between 1916 and 1919, and operated off and on from 1929 to 1949. Substantial development occurred in 1931. The Mountain King Mine was operated from 1900 to 1948.

Mining operations ceased in the 1940's. From then until the 1980's, nine mining companies conducted drilling programs outlining bulk deposits of low-grade ore. About 560 holes were drilled. In 1984, Meridian Gold leased the Gold Knoll and Wilbur Womble properties and conducted geologic mapping, a drilling program, soil geochemistry, and magnetic studies. In 1986, Meridian entered into an exploration option with Mother Lode Gold Mines Consolidated and initiated an accelerated exploration program. Permitting and feasibility studies were conducted in 1987. Construction began in January of 1988. Open-pit mining began in May of 1988 (Lechner, 1988) and continued until 1995.

Chaffee and Hill (1989) conducted a soil geochemistry survey in the Hodson District. They found that Ag, As, Au, Ca, Hg, Mg, Sb, and W concentrations were elevated and Ca and Mg concentrations were depressed. Tungsten proved to effectively delineate mineralized zones. The anomalies were greatest along mineralized faults and extended as much as several hundred meters laterally. King (1986) regarded As as the best pathfinder element for gold mineralization, based on soil and drill-core geochemistry.

Historically, several stamp mills existed at various underground operations. The Royal Mill, completed in 1903, was the largest mill in the country at that time and consisted of 120 stamps. The pulp of the stamp mills was passed over mercury-coated amalgamation plates. The tailings from the plates were then purified on a circuit of flotation tanks, vibration tables, and vanners. The gold was separated from the concentrates by a chlorination process. The mills processed ore from other mines, including copper ore during the war years.

The vast majority of the ore produced by the Meridian Gold Inc. operation was processed on-site in a multistage mill. Processing included crushing, grinding, flotation, cyanidation, activated carbon filtration, and electroplating. Recovery rates averaged about 78%. About 250,000 tons of oxide ore were cyanide heap-leached, but recovery rates were poor due to migrating fines, channeling, and compacting of the lower lifts by truck traffic.

Reclamation is still under way. The mill was dismantled in 1996, and the Gold Knoll Pit has been backfilled. The Skyrocket and North pits have been allowed to fill with naturally occurring water flow. The Sky Rocket Pit encompassed a portion of Littlejohns Creek, which has been diverted around the pit. Where the original downstream channel leaves the pit, a detention dam was constructed to prevent pit water from flowing into the old channel. Reclamation of the flotation tailings reservoir has not been approved yet.

Mineralization is a vein deposit (Mineral occurrence model information: Model code: 273; USGS model code: 36a; Deposit model name: Low-sulfide Au-quartz vein; Mark3 model number: 27), hosted in Late Jurassic Copper Hill volcanics (greenstone) and in Late Jurassic Salt Springs Slate. The ore body is tabular/lenticular in general form. Controls for ore emplacement included faults. Mineralization was restricted to quartz veins and wallrocks along the Hodson and Hilltop faults, which are low-angle imbricate thrusts. Some post-ore movement has occurred on these faults, brecciating the quartz veins. The faults provided the primary ore control by channeling hydrothermal fluids, while the host rock itself exerted a secondary control via lithologic permeability with associated replacement by disseminated auriferous sulfides.

The gold deposit is hosted in Jurassic metasedimentary and metavolcanic rocks along a thrust fault. In map view, the Jurassic rocks form slivers and blocks of mafic, ultramafic, and marine sedimentary rocks, interpreted to represent island arc, flysch, and ophiolite sequences accreted and deformed during the Nevadan Orogeny. Prior to ore deposition, the host rocks were regionally metamorphosed to greenschist facies and then complexly faulted along ductile and brittle shear zones of the Foothills Fault System. Ore fluids invaded these shear zones. Massive veins and stockworks of quartz formed within fractures. Ribbon quartz and crosscutting quartz veins indicate repeated faulting and ore-fluid invasion. The gold and pyrite formed within and along the margins of quartz veins and as low-grade disseminations in the wall rock. Local high-grade pockets also formed. A suite of other metals (most notably silver, copper, lead, and arsenic) were also deposited at the same time. The majority of gold was deposited as electrum, although native gold and silver also formed. The grains of gold and electrum were typically microscopic but are occasionally visible. The metavolcanic host rocks were intensely altered to a quartz-sericite-ankerite-mariposite assemblage.

The ore minerals are: electrum, native gold, pyrite, sphalerite and tetrahedrite. Tghe gangue minerals are: quartz, ankerite, calcite, sericite, chalcopyrite, galena, arsenopyrite, hematite, goethite.

Local alteration included carbonate: ankerite, quartz, sericite, calcite, pyrite, mariposite; Oxidation: hematite, goethite, limonite. Associated rocks include Mesozoic-Paleozoic serpentinite. Local rocks include Mesozoic volcanic rocks, unit 2 (Western Sierra Foothills and Western Klamath Mountains).

Geologic structures: Regional: Bear Mountains Fault Zone.
Local: Hodson Fault, Hilltop Fault, Littlejohns Fault Zone, McCarty Ranch Fault Zone.

The mesothermal gold ore deposits at Royal Mountain King Mine formed within a western splay of the Bear Mountains Fault Zone (BMFZ). The BMFZ along with the Melones Fault Zone define the Foothills Fault System of Clark (1964). The BMFZ hosts the West Gold Belt. The Melones Fault Zone hosts the Mother Lode Gold Belt. At Royal Mountain King Mine, brittle thrust faulting provided the necessary ground preparation for ore fluid transport and deposition. The ore bodies developed during multiple episodes of continued faulting. Thrust faulting along the southern BMFZ was active from 155-123 Ma (Saleeby and others, 1989).

The Royal Mountain King deposit (now largely mined-out) was located within the Jurassic rocks of the western Sierra Nevada metamorphic belt. The Jurassic rocks form slivers and blocks of mafic, ultramafic, and marine sedimentary rocks interpreted to represent island arc, flysch, and ophiolite sequences accreted and deformed during the Nevadan Orogeny. Diachronous metamorphism is ubiquitous and generally low-grade except in minor areas of amphibolite and blueschist grades. These higher-grade rocks generally represent older lithologies, possibly basement (Day, 1992). The structural and stratigraphic histories of these juxtaposed terranes of diverse origins and lithologies have been obscured by polyphase deformation, metamorphism, and poor exposure. The fabric of the region is dominated by the generally steeply east-dipping faults of the Foothills Fault System and generally parallel penetrative cleavage. Bedding is generally subparallel to the faults and cleavage, but dips less steeply (Clark, 1964). Belts of serpentinite and melange locally occur along the faults.

The above conditions result in a regional map pattern of northerly trending tectonostratigraphic units. On a regional scale, the terranes are progressively younger to the west. However, within individual terranes, the east-dipping stratigraphy places stratigraphically higher units east of older units. This reversal of younging direction is typical in zones of underthrusting (Landefeld, 1990). Interpretations vary regarding the regional tectonic setting, the significance and extent of faults, the sense of displacement along some of the faults, and stratigraphic correlations. Several schemes divide the rocks into a variety of fault-bounded terranes. Some enlist the two major strands of the Foothills Fault System, the Melones and Bear Mountains fault zones, as major structural boundaries, dividing the region into three subparallel tectonostratigraphic belts. These are generally referred to, from east to west, as the Calaveras belt, the central or Placerville belt, and the western belt. Interpretations vary regarding the extent to which these belts represent terranes. Graymer and Jones (1994, 1997) have subdivided a portion of the Placerville belt into five terranes based on biostratigraphic controls coupled with structural interpretations. They suggested that the faults of the Foothills Fault System may not be continuous, 300-km long structures as generally accepted. Instead, in their study area, they characterized the Foothills Fault System as a composite of small, incidentally aligned faults bounding many unrecognized terranes that comprise the region.

Nevadan and Laramide deformation prepared the ground for ore deposition at Royal Mountain King Mine by first folding the host rock, which was then pervasively sheared in the BMFZ. Ore formed during active faulting in the BMFZ, which was most active from Late Jurassic to Early Cretaceous. Only very limited Cenozoic extensional faulting occurred within the fault zone. The regional extent of gold in the Foothills Fault System suggests that deposition occurred during robust activity prior to the limited and regionally insignificant Cenozoic faulting. Below is a summary of fault structure related to the deposit.

The Royal Mountain King Mine consists of three open-pits, aligned along the NNW-trending Hodson Fault, a western splay of the BMFZ. From north to south, the pits are referred to as the North, Skyrocket, and Gold Knoll Pits. South of the mine, the Hodson Fault closely parallels and adjoins a poorly understood fault zone, informally named the Littlejohns fault zone.

The Hodson Fault varies from a single break with moderate dips to a system of low-angle splays. A ramp-and-flat profile was revealed during mining. Drag folds, slickensides and offsets of early quartz veins indicated SW-directed thrusting. Gold in all three ore bodies occurred within or adjacent to the Hodson Fault or its splays. The fault defines a generally sharp contact between a metavolcanic hanging-wall and metasedimentary foot-wall. However, deformation extended 50-200' into the walls. Ore grades increased in more intensely deformed areas. Post-mineralization faulting on the Hodson Fault and its splays sheared the ore and created abrupt ore-to-waste boundaries. Additionally, late (probably Cenozoic) NE-trending normal faults further disrupted the deposits with displacements up to 150 feet (Lechner and Kuhl, 1990; Kuhl and Garmoe, 1989).

The N-trending Littlejohns fault zone is barren and has not been studied in detail. The zone dips steeply to the east and consists of serpentine and metavolcanic rocks that have been intensely brecciated and locally mylonitized. The implications of these steep shear zones regarding mineralization and structural development of the Hodson Fault are unknown (Lechner and Kuhl, 1990; Meridian Gold Inc., unpublished geologic map).

South of the mine, the Hodson Fault, dips 45-60? NE and parallels and even adjoins the Littlejohns fault zone to the east. However, at the Gold Knoll Pit, the Hodson Fault flattened (dipping 10-30?) and split into several splays creating two distinct ore horizons (Meridian Gold Inc., unpublished geologic map). Kuhl and Garmoe (1989) reported that 1) hanging wall rocks were sheared, brecciated, and altered up to 100' from the fault; 2) footwall rocks (carbonaceous phyllite) were weakly brecciated for 5-20' adjacent to the fault, and contorted up to 50' from fault; and 3) a 1-3' thick layer of gouge and veins of ribbon quartz and calcite occupied the fault zone.

North of the Gold Knoll Pit, the Hodson Fault steepens somewhat and loses its ancillary splays. In the upper 300' of the Skyrocket Pit, the fault dipped approximately 45NE with prominent ramps and flats. Deeper, it steepened to 60?, again parallel with the Littlejohns Fault Zone (Meridian Gold Inc., unpublished geologic map). The fault zone was 10-50' wide, highly sheared and brecciated, and consisted of black carboneous phyllite and clayey gouge with slivers of mylonitized greenstone (Kuhl and Garmoe,1989). Conglomeratic lenses parallelled the foliation and were composed of rip-up clasts of the black carboneous phyllite (Carpenter, in press).
Farther north, the Hodson Fault diverges from the Littlejohns Fault Zone. In the North Pit, it became a shallow dipping system of imbricate faults forming multiple ore zones. The complicated structure in this pit caused problems with grade control and exploration, as did large stopes associated with historic mining. The original Mountain King and Royal mines followed two prominent quartz veins in this area.

Kuhl and Garmoe (1989) described three distinct structural styles in the North Pit as follows:
1) In the SE 1/3 of the pit, near the historic "Glory Hole", the Hodson Fault and vein associated with the Royal Mine were parallel, striking N45?W.
2) In the center of the pit was a complex area, known as the "Gut Area". A 200-300' wide, N70W-trending shear zone offset the N45W-trending "Glory Hole" structures with an apparent left lateral displacement of 700'. At least 5 anastomosing and en echelon low-angle faults composed the shear zone, dipped N-NE, and cut the ore body into lenses.
3) North of the "Gut Area," a NW-trending vein (mined in the Mountain King Mine) and a N-trending fault splay (the Hill Top Fault) extended from the "Gut Area". Gold mineralization developed predominantly in the metavolcanics forming the hanging wall of the Mountain King vein. Metasediments formed the footwall, were highly contorted, and locally mineralized. Both walls of the Hill Top Fault were mineralized, but too inconsistently for development.

Better ore grades were associated with: 1) the presence of euhedral pyrite, 2) increased quartz veining and alteration, and 3) proximity of the Hodson Fault. Gold and pyrite occurred primarily within quartz veins in the Gold Knoll and Skyrocket orebodies. In the North Pit orebody, however, the gold and pyrite were generally restricted to the margins of veins.

In the Gold Knoll Pit, both the footwall and hanging wall were mineralized about 300' down-dip. Grades in the metavolcanics that formed the hanging wall were more continuous and higher than in the metasediments that formed the footwall. In both walls, gold was found chiefly in tuff beds. Free gold formed along late NE-trending faults that cut the Hodson Fault indicates some remobilization. The free gold and either pyrite or sphalerite were visible along margins of quartz veins. Ag-poor electrum occurred as inclusions and microveinlets within pyrite and sphalerite grains. Chalcopyrite was present but barren. Auriferous quartz veins occurred both as lenticular pods of brecciated stockworks and as gash veins with medium-grained, euhedral pyrite. Individual quartz veins were 0.04- 4" thick and formed composite veins that were usually 1-5' thick, but up to 10' locally. Overall, veins composed 5-50% of the host rock (Lechner and Kuhl, 1990; Kuhl and Garmoe, 1989).

In the Skyrocket Pit, mineralization extended 2,000' along strike and 750' down-dip. The pit reached a maximum depth of 360', which was 100' short of the bottom of mineralization; deeper mining was not economical. Ninety percent of the mineralization was restricted to brecciated phyllite in the footwall. The remainder of the mineralization occurred in the NE part of the pit in a sequence of intercalated metasediments and metavolcanics. Brecciated stockworks of quartz veinlets pervaded the footwall and penetrated into the fault zone. The stockworks contained coarse-grained euhedral pyrite and free gold. Gold predominantly occurred as microscopic (5-50 microns) inclusions and veinlets in the pyrite. Pyrite ore composed 0.5-5.0% of the host rock and carried 0.10 opt. Twenty-five per cent of the gold was free, but was rarely visible in hand samples (Lechner and Kuhl, 1990; Kuhl and Garmoe, 1989).
In the North Pit, mineralization extended about 3,000 feet along strike and 560' down-dip, reaching a maximum vertical depth of 210'. The maximum depth of the pit reached 120'. About 80% of the mineralization developed in the metavolcanics. Ore grade was directly proportional to the intensity of silicification. For example, in the highest-grade areas, quartz and calcite veins composed 10-50% of the host rock. The presence of late-stage translucent quartz also indicated higher grades. The quartz veins were typically 0.04-2.0" wide with thin calcite margins. The quartz was low-grade, but auriferous pyrite and free gold were disseminated along vein margins. The gold was microscopic (1-50 microns) and occurred as inclusions in very fine to medium-grained pyrite, sphalerite, and tetrahedrite, in association with a barren assemblage of arsenopyrite, galena, and chalcopyrite (Lechner and Kuhl, 1990; Kuhl and Garmoe, 1989).

The relative permeabilities of the wall rocks seem have to controlled the degree of alteration. For example, alteration of the metavolcanics of the hanging wall was much stronger than in the metasediments of the footwall. Additionally, alteration varied somewhat between the three principal ore bodies as described below.

Hanging wall alteration at the Gold Knoll Pit was zoned, consisting of a core of quartz-sericite-pyrite where the highest grades were found. This zone was enveloped by an ankerite-quartz-mariposite (sometimes with pyrite) zone, which was in turn surrounded by a halo of weak carbonate alteration. However, in the footwall phyllites, the pyrite was disseminated and carbonate alteration was weak. The phyllites appeared bleached due to leaching of organic carbon. Surface oxidation (hematite, goethite, and limonite) was very intense in the mineralized metavolcanics extending to a depth of at least 100 feet in the southern portion of the deposit (Lechner and Kuhl, 1990; Kuhl and Garmoe, 1989; Chaffee and Sutley, 1994).

In the Skyrocket orebody, the positive correlation between the degree of alteration and higher ore grades did not hold. In this area, the fault zone is dominantly brecciated phyllite that was favorable for mineralization but less susceptible to alteration than the metavolcanics. Alteration of the footwall and fault zone phyllites was subtle with weak sericitization, local silicification, and late-stage carbonate veinlets. Remobilization of organic carbon produced a silky, sericitic sheen in the phyllites. In contrast, the hanging-wall metavolcanics were intensely altered to quartz-sericite-ankerite-mariposite along a 10-200' wide zone adjacent to the fault. Oxidation was shallow, reaching a maximum depth of 20-30'.

In the North Pit, alteration was dominantly in the hanging walls along faults. Silicic alteration extended for 20-50' from the faults; whereas, carbonate alteration extended to 250'. In the footwall, carbonate alteration was limited to 60' from faults. The type of alteration at the North Pit was similar to the Gold Knoll Pit, except silicic alteration and sericite development were more strongly developed here than in the other ore bodies. As in the Skyrocket Pit, remobilization of organic carbon produced a silky, sericitic sheen in the phyllites. Oxidation extended to 80' below ground level (Lechner and Kuhl, 1990; Kuhl and Garmoe, 1989; Chaffee and Sutley, 1994).

Workingsw include surface and underground openings. At the Royal Mine, the main shaft reached 1,500' depth along the 20-25? incline. Drifts were extended at every 100-foot level. At the 700-foot and 1200-foot levels drifts were extended along strike for 1,000' and 600', respectively. Numerous stopes are located between the 1000-foot and 1200-foot levels, many with 80-foot backs. By 1905, the area between the 700-1200 levels was reportedly mined out. The room-and-pillar method was employed for support. Some of the ore was processed at the Royal Mill, one of the largest in state. At one time, it consisted of 120 stamps. Constructed in 1905, it operated for only 18 months (Logan and Franke, 1936).

By 1925, the main shaft of the Mountain King Mine had reached 1,044' in depth along the 28? incline. Six levels, the deepest at 800', were extended from the main shaft at irregular intervals. A 300' long drift, at Level 6, was the longest at the time. A 10-stamp mill was operated on the premises (Logan, 1925).

Immediately after the war, mining was begun at Mountain King Mine in the Hobo and Hill Top open pits. By 1947, 250,000 tons of ore were milled. Operations ceased later that year due to rising costs.

From 1988 to 1995, Meridian's Royal Mountain King Mine encompassed the above mines, as well as lesser mines. It consisted of thee open pits; from northwest to southeast these were the North Pit, Skyrocket Pit, and Gold Knoll Pit. The Skyrocket Pit, which was the largest, reached a maximum depth of 360' by 2,200 feet by 1,000 feet, covering 24 acres.

the total production of the district is estimated to be 467,800 to 504,300 ounces of gold and 75,000 to 100,000 ounces of silver from 5.7 million tons of ore and 50 million tons of overburden. The average grade was 0.05 ounces of gold per ton. By 1936, 800,000 tons of ore had been mined with an average grade of 0.20 ounces of gold per ton. The historic Mountain King Mine, alone, produced 20,000 to 35,000 ounces of gold. The deposit is essentially mined out, although scattered ore-grade pockets remain. Mineralization extends deeper than the pit bottoms, but was uneconomical to mine. Although some reserves (30,000-40,000 ounces Au) exist in ponded leach-concentrate, extraction of gold from the concentrate is not economically feasible at this time.

Select Mineral List Type

Standard Detailed Strunz Dana Chemical Elements

Mineral List


13 valid minerals.

Detailed Mineral List:

Ankerite
Formula: Ca(Fe2+,Mg)(CO3)2
Reference: USGS (2005), Mineral Resources Data System (MRDS): U.S. Geological Survey, Reston, Virginia, loc. file ID #10310580.
Arsenopyrite
Formula: FeAsS
Reference: USGS (2005), Mineral Resources Data System (MRDS): U.S. Geological Survey, Reston, Virginia, loc. file ID #10310580.
Calcite
Formula: CaCO3
Reference: USGS (2005), Mineral Resources Data System (MRDS): U.S. Geological Survey, Reston, Virginia, loc. file ID #10310580.
Chalcopyrite
Formula: CuFeS2
Reference: USGS (2005), Mineral Resources Data System (MRDS): U.S. Geological Survey, Reston, Virginia, loc. file ID #10310580.
'Electrum'
Formula: (Au,Ag)
Reference: USGS (2005), Mineral Resources Data System (MRDS): U.S. Geological Survey, Reston, Virginia, loc. file ID #10310580.
Galena
Formula: PbS
Reference: USGS (2005), Mineral Resources Data System (MRDS): U.S. Geological Survey, Reston, Virginia, loc. file ID #10310580.
Goethite
Formula: α-Fe3+O(OH)
Reference: USGS (2005), Mineral Resources Data System (MRDS): U.S. Geological Survey, Reston, Virginia, loc. file ID #10310580.
Gold
Formula: Au
Reference: USGS (2005), Mineral Resources Data System (MRDS): U.S. Geological Survey, Reston, Virginia, loc. file ID #10310580.
Hematite
Formula: Fe2O3
Reference: USGS (2005), Mineral Resources Data System (MRDS): U.S. Geological Survey, Reston, Virginia, loc. file ID #10310580.
'Mariposite'
Formula: K(Al,Cr)2(Al,Si)4O10(OH)2
Reference: USGS (2005), Mineral Resources Data System (MRDS): U.S. Geological Survey, Reston, Virginia, loc. file ID #10310580.
Muscovite
Formula: KAl2(AlSi3O10)(OH)2
Reference: USGS (2005), Mineral Resources Data System (MRDS): U.S. Geological Survey, Reston, Virginia, loc. file ID #10310580.
Muscovite var: Phengite
Formula: KAl1.5(Mg,Fe)0.5(Al0.5Si3.5O10)(OH)2
Reference: USGS (2005), Mineral Resources Data System (MRDS): U.S. Geological Survey, Reston, Virginia, loc. file ID #10310580.
Muscovite var: Sericite
Formula: KAl2(AlSi3O10)(OH)2
Reference: USGS (2005), Mineral Resources Data System (MRDS): U.S. Geological Survey, Reston, Virginia, loc. file ID #10310580.
Pyrite
Formula: FeS2
Reference: USGS (2005), Mineral Resources Data System (MRDS): U.S. Geological Survey, Reston, Virginia, loc. file ID #10310580.
Quartz
Formula: SiO2
Reference: USGS (2005), Mineral Resources Data System (MRDS): U.S. Geological Survey, Reston, Virginia, loc. file ID #10310580.
Silver
Formula: Ag
Reference: USGS (2005), Mineral Resources Data System (MRDS): U.S. Geological Survey, Reston, Virginia, loc. file ID #10310580.
Sphalerite
Formula: ZnS
Reference: USGS (2005), Mineral Resources Data System (MRDS): U.S. Geological Survey, Reston, Virginia, loc. file ID #10310580.
'Tetrahedrite'
Formula: Cu6(Cu4X2)Sb4S13
Reference: USGS (2005), Mineral Resources Data System (MRDS): U.S. Geological Survey, Reston, Virginia, loc. file ID #10310580.

List of minerals arranged by Strunz 10th Edition classification

Group 1 - Elements
'Electrum'1.AA.05(Au,Ag)
Gold1.AA.05Au
Silver1.AA.05Ag
Group 2 - Sulphides and Sulfosalts
Arsenopyrite2.EB.20FeAsS
Chalcopyrite2.CB.10aCuFeS2
Galena2.CD.10PbS
Pyrite2.EB.05aFeS2
Sphalerite2.CB.05aZnS
'Tetrahedrite'2.GB.05Cu6(Cu4X2)Sb4S13
Group 4 - Oxides and Hydroxides
Goethite4.00.α-Fe3+O(OH)
Hematite4.CB.05Fe2O3
Quartz4.DA.05SiO2
Group 5 - Nitrates and Carbonates
Ankerite5.AB.10Ca(Fe2+,Mg)(CO3)2
Calcite5.AB.05CaCO3
Group 9 - Silicates
Muscovite9.EC.15KAl2(AlSi3O10)(OH)2
var: Phengite9.EC.15KAl1.5(Mg,Fe)0.5(Al0.5Si3.5O10)(OH)2
var: Sericite9.EC.15KAl2(AlSi3O10)(OH)2
Unclassified Minerals, Rocks, etc.
'Mariposite'-K(Al,Cr)2(Al,Si)4O10(OH)2

List of minerals arranged by Dana 8th Edition classification

Group 1 - NATIVE ELEMENTS AND ALLOYS
Metals, other than the Platinum Group
Gold1.1.1.1Au
Silver1.1.1.2Ag
Group 2 - SULFIDES
AmXp, with m:p = 1:1
Galena2.8.1.1PbS
Sphalerite2.8.2.1ZnS
AmBnXp, with (m+n):p = 1:1
Chalcopyrite2.9.1.1CuFeS2
AmBnXp, with (m+n):p = 1:2
Arsenopyrite2.12.4.1FeAsS
Pyrite2.12.1.1FeS2
Group 3 - SULFOSALTS
3 <ø < 4
'Tetrahedrite'3.3.6.1Cu6(Cu4X2)Sb4S13
Group 4 - SIMPLE OXIDES
A2X3
Hematite4.3.1.2Fe2O3
Group 6 - HYDROXIDES AND OXIDES CONTAINING HYDROXYL
XO(OH)
Goethite6.1.1.2α-Fe3+O(OH)
Group 14 - ANHYDROUS NORMAL CARBONATES
A(XO3)
Calcite14.1.1.1CaCO3
AB(XO3)2
Ankerite14.2.1.2Ca(Fe2+,Mg)(CO3)2
Group 71 - PHYLLOSILICATES Sheets of Six-Membered Rings
Sheets of 6-membered rings with 2:1 layers
Muscovite71.2.2a.1KAl2(AlSi3O10)(OH)2
Group 75 - TECTOSILICATES Si Tetrahedral Frameworks
Si Tetrahedral Frameworks - SiO2 with [4] coordinated Si
Quartz75.1.3.1SiO2
Unclassified Minerals, Mixtures, etc.
'Electrum'-(Au,Ag)
'Mariposite'-K(Al,Cr)2(Al,Si)4O10(OH)2
Muscovite
var: Phengite
-KAl1.5(Mg,Fe)0.5(Al0.5Si3.5O10)(OH)2
var: Sericite-KAl2(AlSi3O10)(OH)2

List of minerals for each chemical element

HHydrogen
H Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
H Goethiteα-Fe3+O(OH)
H MaripositeK(Al,Cr)2(Al,Si)4O10(OH)2
H MuscoviteKAl2(AlSi3O10)(OH)2
H Muscovite (var: Phengite)KAl1.5(Mg,Fe)0.5(Al0.5Si3.5O10)(OH)2
CCarbon
C AnkeriteCa(Fe2+,Mg)(CO3)2
C CalciteCaCO3
OOxygen
O QuartzSiO2
O AnkeriteCa(Fe2+,Mg)(CO3)2
O CalciteCaCO3
O Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
O HematiteFe2O3
O Goethiteα-Fe3+O(OH)
O MaripositeK(Al,Cr)2(Al,Si)4O10(OH)2
O MuscoviteKAl2(AlSi3O10)(OH)2
O Muscovite (var: Phengite)KAl1.5(Mg,Fe)0.5(Al0.5Si3.5O10)(OH)2
MgMagnesium
Mg AnkeriteCa(Fe2+,Mg)(CO3)2
Mg Muscovite (var: Phengite)KAl1.5(Mg,Fe)0.5(Al0.5Si3.5O10)(OH)2
AlAluminium
Al Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
Al MaripositeK(Al,Cr)2(Al,Si)4O10(OH)2
Al MuscoviteKAl2(AlSi3O10)(OH)2
Al Muscovite (var: Phengite)KAl1.5(Mg,Fe)0.5(Al0.5Si3.5O10)(OH)2
SiSilicon
Si QuartzSiO2
Si Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
Si MaripositeK(Al,Cr)2(Al,Si)4O10(OH)2
Si MuscoviteKAl2(AlSi3O10)(OH)2
Si Muscovite (var: Phengite)KAl1.5(Mg,Fe)0.5(Al0.5Si3.5O10)(OH)2
SSulfur
S PyriteFeS2
S SphaleriteZnS
S TetrahedriteCu6(Cu4X2)Sb4S13
S ChalcopyriteCuFeS2
S GalenaPbS
S ArsenopyriteFeAsS
KPotassium
K Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
K MaripositeK(Al,Cr)2(Al,Si)4O10(OH)2
K MuscoviteKAl2(AlSi3O10)(OH)2
K Muscovite (var: Phengite)KAl1.5(Mg,Fe)0.5(Al0.5Si3.5O10)(OH)2
CaCalcium
Ca AnkeriteCa(Fe2+,Mg)(CO3)2
Ca CalciteCaCO3
CrChromium
Cr MaripositeK(Al,Cr)2(Al,Si)4O10(OH)2
FeIron
Fe PyriteFeS2
Fe AnkeriteCa(Fe2+,Mg)(CO3)2
Fe ChalcopyriteCuFeS2
Fe ArsenopyriteFeAsS
Fe HematiteFe2O3
Fe Goethiteα-Fe3+O(OH)
Fe Muscovite (var: Phengite)KAl1.5(Mg,Fe)0.5(Al0.5Si3.5O10)(OH)2
CuCopper
Cu TetrahedriteCu6(Cu4X2)Sb4S13
Cu ChalcopyriteCuFeS2
ZnZinc
Zn SphaleriteZnS
AsArsenic
As ArsenopyriteFeAsS
AgSilver
Ag Electrum(Au,Ag)
Ag SilverAg
SbAntimony
Sb TetrahedriteCu6(Cu4X2)Sb4S13
AuGold
Au Electrum(Au,Ag)
Au GoldAu
PbLead
Pb GalenaPbS

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
Logan, C.A. (1925), Calaveras County: California State Mining Bureau 21st Report of the State Mineralogist (Report 21): 21: 155-156.
Hershey, O.H. (1933), Geologic report on the Royal Mine: Unpublished report, Hershey and White Consulting Engineers, 17 p. (CDMG Library, Sacramento).
Logan, C.A. and Franke, H. (1936), Calaveras County: California Journal of Mines and Geology (Report 32): 32: 285-287.
Julihn, C.E. and Horton, F.W. (1938), Mines of the southern Mother Lode region, Part I - Calaveras County: U.S. Bureau of Mines Bulletin 413, 140 p.
Clark, W.B. and Lydon, P.A. (1962), Mines and mineral resources of Calaveras County, California: California Division of Mines and Geology County Report 2, 217 p.
Clark, L.D. (1964), Stratigraphy and structure of part of the western Sierra Nevada metamophic belt, California: USGS Professional Paper 410, 70 p.
Clark, L.D. (1970), Geology of the San Andreas 15-minute Quadrangle, Calaveras County, California: California Division of Mines and Geology Bulletin 195, 23 p.
Clark, W.B. (1970), Gold districts of California: California Division of Mines and Geology Bulletin 193, 186 p.
Clark, L.D. (1976), Stratigraphy of the north half of the westen Sierra Nevada Metamophic Belt: USGS Professional Paper 923, 26 p.
Behrman, P.S. (1978), Pre-Callovian rocks, west of the Melones Fault Zone, central Sierra Nevada foothills, in Howell, D.G. and McDougall, K.A., editors, Mesozoic paleogeography of the western United States: Pacific Coast Paleogeography Symposium 2, Society of Economic Paleontologists and Mineralogists, Pacific Section: 303-310.
Saleeby, J.B. (1981), Ocean floor accretion and volcano-plutonic arc evolution of the Mesozoic Sierra Nevada, California, in Ernst, W.G., editor, Geotectonic development of California: Rubey Volume 1, Prentice-Hall, Englewood Cliffs, New Jersey: 132-181.
Wagner, D.L. and others (1981), Geologic map of the Sacramento quadrangle, California: California Division of Mines and Geology Regional Map Series Map 1A, scale 1:250,000.
Ernst, W.G. (1983), Phanerzoic continental accretion and metamorphic evolution of northern and central California: Tectonophysics: 100: 287-320.
Moores, E.M. and Day, H.W. (1984), An overthrust model for the Sierra Nevada: Geology: 12: 416-419.
Day, H.W. and others (1985), Structure and tectonics of the northern Sierra Nevada: Geological Society of America Bulletin: 96: 436-450.
Engebretson, D.C. and others (1985), Relative motions between oceanic and continental plates in the Pacific basin: Geological Society of America Special Paper 206, 59 p.
Ingersoll, R.V. and Schweickert, R.A. (1986), A plate-tectonic model for Late Jurassic ophiolite genesis, Nevadan orogeny and forearc initiation, northern California: Tectonics: 50: 901-912.
King, D.A. (1986), Controls of gold mineralization in the southern portion of the Hodson Mining District, west Mother Lode Gold Belt: Unpublished Master's thesis, University of Montana, 60 p.
Newton, M.C. (1986), The southern part of the Bear Mountains fault zone, Foothills terrane, western Sierra Nevada, California: Geologic Society of America Abstracts with Programs: 18: 164.
Berger, B.R. (1987), Descriptive model of low-sulfide Au-quartz veins, in Cox, D.P and Singer, D.A, editors, Mineral deposit models: USGS Bulletin 1693: 239.
Paterson, S.R. and others (1987), Post-Nevadan deformation along the Bear Mountains fault zone: implications for the Foothills terrane, central Sierra Nevada, California: Geology: 15: 513-516.
Lechner, M.J. (1988), Royal Mountain King Mine Project: Unpublished report for Meridian Gold Company, 15 p.
Schweickert, R.A. and others (1988), Deformational and metamorphic history of Paleozoic and Mesozoic basement terranes in the western Sierra Nevada metamorphic belt, in Ernst, W.G., editor, Metamorphism and crustal evolution of the western United States: Rubey Volume VII, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, p. 789-820.
Sharp, W.H. (1988), Pre-Cretaceous crustal evolution in the Sierra Nevada region, in: Ernst, W.G., editor, Metamorphism and crustal evolution of the western United States: Prentice-Hall, Englewood Cliffs, New Jersey, p. 824-864.
Chaffee, M.A. and Hill, R.H. (1989), Soil geochemistry of Mother Lode-type gold deposits in the Hodson mining district, central California, U SA: Journal of Geochemical Exploration: 32: 53-55.
Edelman, S.H. and Sharp, W.H. (1989), Terranes, early faults, and pre-Late Jurassic amalgamation of the western Sierra Nevada metamorphic Belt, California: Geological Society of America Bulletin: 101: 1420-1433.
Edelman, S.H. and others (1989), Structure across a Mesozoic ocean-continent suture zone in the northern Sierra Nevada, California: Geological Society of America Special Paper: 224: 1-56.
Gefell, M.J. and others (1989), Ductile and brittle shear sense for the "Melones Fault Zone", northern Sierra Nevada, California: Geological Society of America Abstracts with Programs: 21(5): 83.
Kuhl, T.O. and Garmoe, W.J. (1989), Geology of the Royal-Mountain King Mine Hodson District, Calaveras County, California: Unpublished paper presented at Society of Mining Engineers annual meeting, 11 p.
Saleeby, J.B. and others (1989), Isotpoic systematics of Pb/U (zircon) and 40-Ar/39-Ar (biotite-hornblende) from rocks of the central Foothills terrane, Sierra Nevada, California: Geologic Society of America Bulletin: 101: 1481-1492.
Tobisch, O.T. and others (1989), Nature and timing of deformation in the the Foothills terrane, central Sierra Nevada, California: its bearing on orogenesis: Geological Society of America Bulletin: 101: 401-413.
Kuhl, T.O. (1990), The Royal-Mountain King project, Calaveras County, California, in Landefield, L.A. and Snow, G., editors, Yosemite and the Mother Lode Gold Belt: geology, tectonics, and the evolution of hydrothermal fluids in the Sierra Nevada of California: Pacific Section, AAPG Volume and Guidebook, p. 155-170.
Landefeld, L.A. (1990), The geology of the Mother Lode Gold Belt, Foothills Metamorphic Belt, Sierra Nevada, California, in Landefield, L.A. and Snow, G., editors, Yosemite and the Mother Lode Gold Belt: geology, tectonics, and the evolution of hydrothermal fluids in the Sierra Nevada of California: Pacific Section, AAPG Volume and Guidebook: 117-124.
Lechner, M.J. and Kuhl, T. (1990), Geology of the Royal Mountain King Mine: Unpublished report presented at the 96th Annual Northwest Mining Association Meeting, 19 p.
Newton, M.C. (1990a), Structural control of gold mineralization in the southern Mother Lode region, in Seedorf, E., editor, Geology and ore deposits of the Sierra Nevada and foothills: Mary Harrison Prospect, Royal Mountain King Mine, Spanish Mine: Geological Society of Nevada Special Publication No. 11: 84-92.
Newton, M.C. (1990b), Tectonostratigraphic history of the southern Foothills terrane: Ph.D dissertation, University of Arizona, Tucson, 203 pp.
Miller, R.B. and Paterson, S.R. (1991), Geology and tectonic evolution of the Bear Mountains Fault Zone, central Sierra Nevada, California, Tectonics: 10: 995-1006.
Paterson, S.R. and Wainger, L. (1991), Strains and structures asociated with a terrane bounding stretching fault: the Melones fault zone, central Sierra Nevada, California: Tectonophysics: 194: 69-90.
Burchfiel, B.C. and others (1992), Tectonic overview of the Cordilleran orogen in the western United States, in Burchfiel, B.C. and others, editors, The Cordilleran Orogen: Conterminous U.S.: Geological Society of America, The Geology of North America: vol. G-3: 407-479.
Day, H.W. (1992), Tectonic setting and metamorphism of the Sierra Nevada, California, in Schiffman, P. and Wagner, D. L., editors, Field guide to the geology and metamorphism of the Franciscan Complex and Western Metamorphic Belt of northern California: 12-28.
Graymer, R.W. (1992), Structural evolution of the central part of the Foothills Terrane, Sierra Nevada, California: Unpublished Ph.D dissertation, University of California, Berkeley, 173 p.
Saleeby, J.B. (1992), Petrotectonic and paleogeographic setting of U.S. Cordilleran ophiolites, in Burchfiel, B.C. and others, editors, The Cordilleran Orogen: Conterminous U.S.: Geological Society of America, The Geology of North America: vol. G-3: 653-682.
Barry, T.F. (1993), Structure and tectonics of the Bear Mountains fault zone and western Foothills terrane between Lake Don Pedro and Lake McSwain, central Sierra Nevada: M.S. thesis, San Jose State University, 56 p.
Taylor, G.C. and others (1993), Mineral land classification of the San Andreas 15-minute Quadrangle, Calaveras County, California: California Division of Mines and Geology Special Report 169, 77 p.
Chaffee, M.A. and Sutley, S.J. (1994), Analytical results, mineralogical data, and distributions of anomalies for elements and minerals in three Mother Lode-type gold deposits, Hodson Mining District, Calaveras County, California: USGS Open-File Report 94-640-A, 216 p.
Graymer, R.W. and Jones, D.L. (1994), Tectonic implications of radiolarian cherts from the Placerville Belt, Sierra Nevada Foothills, California: Nevadan-age continental growth by accretion of multiple terranes: Geological Society of America Bulletin: 106: 531-540.
Wolf, M.B. and Saleeby, J.B. (1995), Late Jurassic dike swarms in the southwestern Sierra Nevada Foothills Terrane, California: implications for the Nevadan Orogeny and North American Plate motion, in Miller, D.M. and Busby, C., editors, Jurassic magmatism and tectonics of the North American Cordillera: Geological Society of America Special Paper 299, p. 203-228.
Fuller, W.P. and others (1996), Madam Felix's gold: the story of the Madam Felix Mining District, Calaveras County, California: Calaveras Historical Society and Foothill Resources, Ltd., 166 p.
Graymer, R.W. (1997), Geologic history of the Placerville Belt, in Jones, D.L. and Lawler, D., editors, Northern Sierra Nevada region geological field trip guidebook: Northern California Geological Society, October 11-12, 1997.
Graymer, R.W. and Jones, D.L. (1997), Stratigraphic and structural significance of new 40Ar/39Ar dates from the Placerville Belt, Sierra Nevada Foothills, California, in Jones, D.L. and Lawler, D., editors, Northern Sierra Nevada region geological field trip guidebook: Northern California Geological Society, October 11-12, 1997.
Schweickert, R.A. and others (1999), Accretionary tectonics of the western Sierra Nevada metamorphic belt, in Wagner, D.L. and Graham, S.A., editors, Geologic field trips in northern California: California Division of Mines and Geology Special Publication 119: 33-79.
USGS (2005), Mineral Resources Data System (MRDS): U.S. Geological Survey, Reston, Virginia, loc. file ID #10310580.

USGS MRDS Record:10310580

Other Regions, Features and Areas containing this locality

North America PlateTectonic Plate

This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
 
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization. Public Relations by Blytheweigh.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2020, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: January 24, 2020 16:50:00 Page generated: November 22, 2019 05:23:25
Go to top of page