Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Glenburgh Project, Glenburgh Station, Upper Gascoyne Shire, Western Australia, Australiai
Regional Level Types
Glenburgh ProjectProject (Planned Future Operation)
Glenburgh StationStation (farming)
Upper Gascoyne ShireShire
Western AustraliaState
AustraliaCountry

This page is currently not sponsored. Click here to sponsor this page.
PhotosMapsSearch
Latitude & Longitude (WGS84):
25° 24' 10'' South , 116° 5' 44'' East
Latitude & Longitude (decimal):
Locality type:
Project (Planned Future Operation) - last checked 2020
Deposit first discovered:
1994 (approx.)
KΓΆppen climate type:


Glenburgh Station is 111 kilometres east south-east of Gascoyne Junction.

The Glenburgh Project extends along a course north-east to south-west, about 10 kilometres north north-west of the pastoral station homestead.

Discovered by Helix Resources in 1994, and acquired by Gascoyne Resources from 2010. A feasibility study was conducted in 2013.

The Project contains a JORC Indicated and Inferred resource of 21.1 Mt of ore at 1.5 g/t Au for 1.0 million ounces. The site is of interest as gold deposits are rare in upper amphibolite, and there is almost no alteration assemblages surrounding the deposits.

The Project is in the paleoproterozoic upper amphibolite facies of the Glenburgh Terrane. Gold is free and disseminated within quartz-biotite-garnet gneiss, amphibolite, and quartz-chlorite veins. The lodes are discontinuous trending east north-east, within tight folds, dipping steeply north. It is offset by the Deadman Fault, which bisects the area.

Rock units are more specifically quartzofeldspathic biotite-cordierite-sillimanite-spinel-garnet gneiss, with inclusions of minor mafic granulite, mafic schist, pelite, psammite, metapegmatite, metagranite, amphibolite, Fe metasandstone, and quartzite. This dips either steeply north or south.

There is some disseminated pyrrhotite, pyrite and minor chalcopyrite.

The deposit was formed in a package of sedimentary rocks before the peak of the high grade metamorphism during 2005-1950 Ma Glenburgh Orogeny. The gold has been described as enigmatic, usually referring to an unknown or little understood process of how it was formed.

Prospects with the Project include from the north North-East 3, Zone 126, Zone 102, Hurricane, Shelby, Mustang, Apollo, Icon, Tuxedo, and Torino.




Select Mineral List Type

Standard Detailed Gallery Strunz Chemical Elements

Mineral List

Mineral list contains entries from the region specified including sub-localities

17 valid minerals.

Rock Types Recorded

Note: data is currently VERY limited. Please bear with us while we work towards adding this information!

Rock list contains entries from the region specified including sub-localities

Select Rock List Type

Alphabetical List Tree Diagram

Detailed Mineral List:

β“˜ Almandine
Formula: Fe2+3Al2(SiO4)3
Reference: Roche, L.K. (2016) Unravelling the upper-amphibolite facies Glenburgh gold deposit, Gascoyne Province β€” evidence for metamorphosed mineralization. Geological Survey of Western Australia, Report 155, (44 pages).
β“˜ 'Apatite'
Formula: Ca5(PO4)3(Cl/F/OH)
Reference: Roche, L.K. (2016) Unravelling the upper-amphibolite facies Glenburgh gold deposit, Gascoyne Province β€” evidence for metamorphosed mineralization. Geological Survey of Western Australia, Report 155, (44 pages).
β“˜ 'Biotite'
Formula: K(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3AlSi3O10(OH)2
Reference: Roche, L.K. (2016) Unravelling the upper-amphibolite facies Glenburgh gold deposit, Gascoyne Province β€” evidence for metamorphosed mineralization. Geological Survey of Western Australia, Report 155, (44 pages).
β“˜ Calcite
Formula: CaCO3
Reference: Roche, L.K. (2016) Unravelling the upper-amphibolite facies Glenburgh gold deposit, Gascoyne Province β€” evidence for metamorphosed mineralization. Geological Survey of Western Australia, Report 155, (44 pages).
β“˜ Chalcopyrite
Formula: CuFeS2
Reference: Roche, L.K. (2016) Unravelling the upper-amphibolite facies Glenburgh gold deposit, Gascoyne Province β€” evidence for metamorphosed mineralization. Geological Survey of Western Australia, Report 155, (44 pages).
β“˜ 'Chlorite Group'
Reference: Roche, L.K. (2016) Unravelling the upper-amphibolite facies Glenburgh gold deposit, Gascoyne Province β€” evidence for metamorphosed mineralization. Geological Survey of Western Australia, Report 155, (44 pages).
β“˜ Cobaltite
Formula: CoAsS
Reference: Roche, L.K. (2016) Unravelling the upper-amphibolite facies Glenburgh gold deposit, Gascoyne Province β€” evidence for metamorphosed mineralization. Geological Survey of Western Australia, Report 155, (44 pages).
β“˜ Cordierite
Formula: (Mg,Fe)2Al3(AlSi5O18)
Reference: Roche, L.K. (2016) Unravelling the upper-amphibolite facies Glenburgh gold deposit, Gascoyne Province β€” evidence for metamorphosed mineralization. Geological Survey of Western Australia, Report 155, (44 pages).
β“˜ 'Garnet Group'
Formula: X3Z2(SiO4)3
Reference: Roche, L.K. (2016) Unravelling the upper-amphibolite facies Glenburgh gold deposit, Gascoyne Province β€” evidence for metamorphosed mineralization. Geological Survey of Western Australia, Report 155, (44 pages).
β“˜ Gold
Formula: Au
Reference: Roche, L.K. (2016) Unravelling the upper-amphibolite facies Glenburgh gold deposit, Gascoyne Province β€” evidence for metamorphosed mineralization. Geological Survey of Western Australia, Report 155, (44 pages).
β“˜ 'Hornblende'
Reference: Roche, L.K. (2016) Unravelling the upper-amphibolite facies Glenburgh gold deposit, Gascoyne Province β€” evidence for metamorphosed mineralization. Geological Survey of Western Australia, Report 155, (44 pages).
β“˜ Ilmenite
Formula: Fe2+TiO3
Reference: Roche, L.K. (2016) Unravelling the upper-amphibolite facies Glenburgh gold deposit, Gascoyne Province β€” evidence for metamorphosed mineralization. Geological Survey of Western Australia, Report 155, (44 pages).
β“˜ Magnetite
Formula: Fe2+Fe3+2O4
Reference: Roche, L.K. (2016) Unravelling the upper-amphibolite facies Glenburgh gold deposit, Gascoyne Province β€” evidence for metamorphosed mineralization. Geological Survey of Western Australia, Report 155, (44 pages).
β“˜ Muscovite
Formula: KAl2(AlSi3O10)(OH)2
Reference: Roche, L.K. (2016) Unravelling the upper-amphibolite facies Glenburgh gold deposit, Gascoyne Province β€” evidence for metamorphosed mineralization. Geological Survey of Western Australia, Report 155, (44 pages).
β“˜ Pentlandite
Formula: (NixFey)Ξ£9S8
Reference: Roche, L.K. (2016) Unravelling the upper-amphibolite facies Glenburgh gold deposit, Gascoyne Province β€” evidence for metamorphosed mineralization. Geological Survey of Western Australia, Report 155, (44 pages).
β“˜ Phlogopite
Formula: KMg3(AlSi3O10)(OH)2
Reference: Roche, L.K. (2016) Unravelling the upper-amphibolite facies Glenburgh gold deposit, Gascoyne Province β€” evidence for metamorphosed mineralization. Geological Survey of Western Australia, Report 155, (44 pages).
β“˜ 'Plagioclase'
Formula: (Na,Ca)[(Si,Al)AlSi2]O8
Reference: Roche, L.K. (2016) Unravelling the upper-amphibolite facies Glenburgh gold deposit, Gascoyne Province β€” evidence for metamorphosed mineralization. Geological Survey of Western Australia, Report 155, (44 pages).
β“˜ Pyrite
Formula: FeS2
Reference: Roche, L.K. (2016) Unravelling the upper-amphibolite facies Glenburgh gold deposit, Gascoyne Province β€” evidence for metamorphosed mineralization. Geological Survey of Western Australia, Report 155, (44 pages).
β“˜ Pyrrhotite
Formula: Fe1-xS
Reference: Roche, L.K. (2016) Unravelling the upper-amphibolite facies Glenburgh gold deposit, Gascoyne Province β€” evidence for metamorphosed mineralization. Geological Survey of Western Australia, Report 155, (44 pages).
β“˜ Quartz
Formula: SiO2
Reference: Roche, L.K. (2016) Unravelling the upper-amphibolite facies Glenburgh gold deposit, Gascoyne Province β€” evidence for metamorphosed mineralization. Geological Survey of Western Australia, Report 155, (44 pages).
β“˜ Sillimanite
Formula: Al2(SiO4)O
Reference: Roche, L.K. (2016) Unravelling the upper-amphibolite facies Glenburgh gold deposit, Gascoyne Province β€” evidence for metamorphosed mineralization. Geological Survey of Western Australia, Report 155, (44 pages).
β“˜ Spinel
Formula: MgAl2O4
Reference: Roche, L.K. (2016) Unravelling the upper-amphibolite facies Glenburgh gold deposit, Gascoyne Province β€” evidence for metamorphosed mineralization. Geological Survey of Western Australia, Report 155, (44 pages).
β“˜ Tschermakite ?
Formula: ◻(Ca2)(Mg3Al2)(Al2Si6O22)(OH)2
Description: Roche (2016) tentatively identififies a calcic amphibole as tschermakite based on semi-quantitive SEM and XRD, and states himself that: "Interpretation of thin sections and XRD and SEM data has resulted in identifying the presence of hornblende, tschermakite, actinolite and tremolite. Tschermakite is a rare amphibole, and, although XRD and SEM results are semiquantitative, Ca-rich amphibole is classified as tschermakite from here onwards."
Reference: Roche, L.K. (2016), Unravelling the Upper Amphibolite Facies Glenburgh Gold Deposit. Gascoyne Province- Evidence for Metamorphosed Mineralisation, GSWA, State Government of Western Australia, Report 155, 2016

Gallery:

List of minerals arranged by Strunz 10th Edition classification

Group 1 - Elements
β“˜Gold1.AA.05Au
Group 2 - Sulphides and Sulfosalts
β“˜Chalcopyrite2.CB.10aCuFeS2
β“˜Cobaltite2.EB.25CoAsS
β“˜Pentlandite2.BB.15(NixFey)Ξ£9S8
β“˜Pyrite2.EB.05aFeS2
β“˜Pyrrhotite2.CC.10Fe1-xS
Group 4 - Oxides and Hydroxides
β“˜Ilmenite4.CB.05Fe2+TiO3
β“˜Magnetite4.BB.05Fe2+Fe3+2O4
β“˜Quartz4.DA.05SiO2
β“˜Spinel4.BB.05MgAl2O4
Group 5 - Nitrates and Carbonates
β“˜Calcite5.AB.05CaCO3
Group 9 - Silicates
β“˜Almandine9.AD.25Fe2+3Al2(SiO4)3
β“˜Cordierite9.CJ.10(Mg,Fe)2Al3(AlSi5O18)
β“˜Muscovite9.EC.15KAl2(AlSi3O10)(OH)2
β“˜Phlogopite9.EC.20KMg3(AlSi3O10)(OH)2
β“˜Sillimanite9.AF.05Al2(SiO4)O
β“˜Tschermakite ?9.DE.10β—»(Ca2)(Mg3Al2)(Al2Si6O22)(OH)2
Unclassified Minerals, Rocks, etc.
β“˜'Apatite'-Ca5(PO4)3(Cl/F/OH)
β“˜'Biotite'-K(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3AlSi3O10(OH)2
β“˜'Chlorite Group'-
β“˜'Garnet Group'-X3Z2(SiO4)3
β“˜'Hornblende'-
β“˜'Plagioclase'-(Na,Ca)[(Si,Al)AlSi2]O8

List of minerals for each chemical element

HHydrogen
Hβ“˜ BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3AlSi3O10(OH)2
Hβ“˜ PhlogopiteKMg3(AlSi3O10)(OH)2
Hβ“˜ ApatiteCa5(PO4)3(Cl/F/OH)
Hβ“˜ MuscoviteKAl2(AlSi3O10)(OH)2
Hβ“˜ Tschermakite◻(Ca2)(Mg3Al2)(Al2Si6O22)(OH)2
CCarbon
Cβ“˜ CalciteCaCO3
OOxygen
Oβ“˜ QuartzSiO2
Oβ“˜ BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3AlSi3O10(OH)2
Oβ“˜ MagnetiteFe2+Fe23+O4
Oβ“˜ CalciteCaCO3
Oβ“˜ IlmeniteFe2+TiO3
Oβ“˜ Cordierite(Mg,Fe)2Al3(AlSi5O18)
Oβ“˜ SillimaniteAl2(SiO4)O
Oβ“˜ PhlogopiteKMg3(AlSi3O10)(OH)2
Oβ“˜ Plagioclase(Na,Ca)[(Si,Al)AlSi2]O8
Oβ“˜ ApatiteCa5(PO4)3(Cl/F/OH)
Oβ“˜ MuscoviteKAl2(AlSi3O10)(OH)2
Oβ“˜ SpinelMgAl2O4
Oβ“˜ AlmandineFe32+Al2(SiO4)3
Oβ“˜ Garnet GroupX3Z2(SiO4)3
Oβ“˜ Tschermakite◻(Ca2)(Mg3Al2)(Al2Si6O22)(OH)2
FFluorine
Fβ“˜ BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3AlSi3O10(OH)2
Fβ“˜ ApatiteCa5(PO4)3(Cl/F/OH)
NaSodium
Naβ“˜ Plagioclase(Na,Ca)[(Si,Al)AlSi2]O8
MgMagnesium
Mgβ“˜ BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3AlSi3O10(OH)2
Mgβ“˜ Cordierite(Mg,Fe)2Al3(AlSi5O18)
Mgβ“˜ PhlogopiteKMg3(AlSi3O10)(OH)2
Mgβ“˜ SpinelMgAl2O4
Mgβ“˜ Tschermakite◻(Ca2)(Mg3Al2)(Al2Si6O22)(OH)2
AlAluminium
Alβ“˜ BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3AlSi3O10(OH)2
Alβ“˜ Cordierite(Mg,Fe)2Al3(AlSi5O18)
Alβ“˜ SillimaniteAl2(SiO4)O
Alβ“˜ PhlogopiteKMg3(AlSi3O10)(OH)2
Alβ“˜ Plagioclase(Na,Ca)[(Si,Al)AlSi2]O8
Alβ“˜ MuscoviteKAl2(AlSi3O10)(OH)2
Alβ“˜ SpinelMgAl2O4
Alβ“˜ AlmandineFe32+Al2(SiO4)3
Alβ“˜ Tschermakite◻(Ca2)(Mg3Al2)(Al2Si6O22)(OH)2
SiSilicon
Siβ“˜ QuartzSiO2
Siβ“˜ BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3AlSi3O10(OH)2
Siβ“˜ Cordierite(Mg,Fe)2Al3(AlSi5O18)
Siβ“˜ SillimaniteAl2(SiO4)O
Siβ“˜ PhlogopiteKMg3(AlSi3O10)(OH)2
Siβ“˜ Plagioclase(Na,Ca)[(Si,Al)AlSi2]O8
Siβ“˜ MuscoviteKAl2(AlSi3O10)(OH)2
Siβ“˜ AlmandineFe32+Al2(SiO4)3
Siβ“˜ Garnet GroupX3Z2(SiO4)3
Siβ“˜ Tschermakite◻(Ca2)(Mg3Al2)(Al2Si6O22)(OH)2
PPhosphorus
Pβ“˜ ApatiteCa5(PO4)3(Cl/F/OH)
SSulfur
Sβ“˜ PyrrhotiteFe1-xS
Sβ“˜ PyriteFeS2
Sβ“˜ ChalcopyriteCuFeS2
Sβ“˜ CobaltiteCoAsS
Sβ“˜ Pentlandite(NixFey)Ξ£9S8
ClChlorine
Clβ“˜ ApatiteCa5(PO4)3(Cl/F/OH)
KPotassium
Kβ“˜ BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3AlSi3O10(OH)2
Kβ“˜ PhlogopiteKMg3(AlSi3O10)(OH)2
Kβ“˜ MuscoviteKAl2(AlSi3O10)(OH)2
CaCalcium
Caβ“˜ CalciteCaCO3
Caβ“˜ Plagioclase(Na,Ca)[(Si,Al)AlSi2]O8
Caβ“˜ ApatiteCa5(PO4)3(Cl/F/OH)
Caβ“˜ Tschermakite◻(Ca2)(Mg3Al2)(Al2Si6O22)(OH)2
TiTitanium
Tiβ“˜ BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3AlSi3O10(OH)2
Tiβ“˜ IlmeniteFe2+TiO3
FeIron
Feβ“˜ BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2 or Simplified: K(Mg,Fe)3AlSi3O10(OH)2
Feβ“˜ MagnetiteFe2+Fe23+O4
Feβ“˜ PyrrhotiteFe1-xS
Feβ“˜ PyriteFeS2
Feβ“˜ ChalcopyriteCuFeS2
Feβ“˜ IlmeniteFe2+TiO3
Feβ“˜ Cordierite(Mg,Fe)2Al3(AlSi5O18)
Feβ“˜ AlmandineFe32+Al2(SiO4)3
Feβ“˜ Pentlandite(NixFey)Ξ£9S8
CoCobalt
Coβ“˜ CobaltiteCoAsS
NiNickel
Niβ“˜ Pentlandite(NixFey)Ξ£9S8
CuCopper
Cuβ“˜ ChalcopyriteCuFeS2
AsArsenic
Asβ“˜ CobaltiteCoAsS
AuGold
Auβ“˜ GoldAu

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
Roche, L.K. (2016) Unravelling the upper-amphibolite facies Glenburgh gold deposit, Gascoyne Province β€” evidence for metamorphosed mineralization. Geological Survey of Western Australia, Report 155, (44 pages).

External Links


Localities in this Region

Other Regions, Features and Areas containing this locality

Australia
Australian PlateTectonic Plate

This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
 
Mineral and/or Locality  
Mindat Discussions Facebook Logo Instagram Logo Discord Logo
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2024, except where stated. Most political location boundaries are Β© OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: April 25, 2024 00:49:06 Page updated: January 20, 2023 19:52:32
Go to top of page