LIVE REPORT! Dallas Mineral Collector Symposium 2019 - last updated 42 minutes ago. Click here to watch.
Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsBooks & Magazines
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryMineral Photography

Ausson meteorite, Ausson, Haute-Garonne, Occitanie, Francei
Regional Level Types
Ausson meteoriteMeteorite Fall Location
Ausson- not defined -
Haute-GaronneDepartment
OccitanieRegion
FranceCountry

This page is currently not sponsored. Click here to sponsor this page.
Key
Lock Map
Latitude & Longitude (WGS84): 43° 4' 58'' North , 0° 35' 40'' East
Latitude & Longitude (decimal): 43.08296,0.59458
GeoHash:G#: sp8mje0bq
Locality type:Meteorite Fall Location
Meteorite Class:L5 chondrite meteorite
Meteoritical Society Class:L5
Metbull:View entry in Meteoritical Bulletin Database
Köppen climate type:Cfb : Temperate oceanic climate
Nearest Settlements:
PlacePopulationDistance
Ausson614 (2016)0.1km
Huos454 (2016)0.8km
Pointis-de-Rivière900 (2016)1.8km
Gourdan-Polignan1,754 (2016)2.1km
Montréjeau2,930 (2016)2.4km
Other/historical names associated with this locality:, Midi-Pyrénées


Ordinary chondrite (L5, br; S2 or S3)
Fell, 9 December 1858, 7:30 hrs; 50 kg, 2 stones

During the early morning two stones (~41 kg & ~9 kg) fell ~ 5 kg apart near Ausson and Clarac. Bulk iron contents (23.8 wt%Fe) along with olivine (Fa~24) and low Ca-orthopyroxene (Fs~22) composition are characteristic of the L-chondrite geochemical group. Mineralogically the meteorite consists primarily of silicates (dominant olivine and orthopyroxene along with minor and somewhat variable plagioclase). Silicates are accompanied by lesser amounts of troilite and Fe-Ni metal (kamacite, taenite). Accessory chromite, apatite, copper, and diopsidic pyroxene have also been reported. The presence of plessite and variable plagioclase is consistent with significant post-metamorphic shock events in the pre-terrestrial meteoroid. The Catalogue of Meteorites lists Ausson as a shock level S2 meteorite, but a recent study using magnetic hysteresis suggests that an S3 shock level is more appropriate. However, it should be noted that Ausson specimens are somewhat inhomogeneous and may have been differentially shocked before final accretion onto the eventual earth-impacting meteoroid.

A formational age for the original parent body during the ~4.5 Ga formational epoch seems well established. A 3.17 Ga Pb,Th-He gas release age suggests at least one significant impact during the intervening eons. However, close inspection of a relatively long cosmic ray exposure age (very roughly, 70 Ma) suggests a complex exposure history during the preterrestrial meteoroid's final period before earth-encounter, perhaps due to multiple impacts during the last few millions of years.

The L-group of ordinary chondrites (relatively low in total iron) are the largest group of classified witnessed meteorite falls and account for ~45% of the well-classified meteorite falls. The L5 petrologic type account for ~ 20% of the group. Ausson is the 8th most massive of the 82 meteorite falls currently classified as exactly 'L5' chondrites at the Meteoritical Bulletin Database (June 2017).

The largest masses have been housed at the Museum d'Histoire Naturelle in Paris [1.0828 kg, 799.7 g, and 14 smaller specimens in 2017]. A number of masses, now in the 1.1 kg to 100 g range, were distributed to the corresponding Museum d'Histoire Naturelle in Toulouse and elsewhere.

Regions containing this locality

Eurasian PlateTectonic Plate
EuropeContinent

Select Mineral List Type

Standard Detailed Strunz Dana Chemical Elements

Mineral List


11 valid minerals.

Meteorite/Rock Types Recorded

Note: this is a very new system on mindat.org and data is currently VERY limited. Please bear with us while we work towards adding this information!

Select Rock List Type

Alphabetical List Tree Diagram

Detailed Mineral List:

'Albite-Anorthite Series'
Description: Plagioclase (An21,Ab74) is usually mildly anorthitic for an ordinary chondrite [Kessel,2002], but compositional excursions are present with plagioclase (An 18-25) in selected regions studied by Bischoff & Keil(1984).
Reference: Bischoff, A. & Keil, K. (1984) Al-rich objects in ordinary chondrites: Related origin of carbonaceous and ordinary chondrites and their constituents. Geochimica et Cosmochimica Acta 48 (4): 693-709.; Dunn, T.L., Cressy, G., McSween Jr, H.Y. & McCoy, T.J. (2010) Analysis of ordinary chondrites using powder X-ray diffraction: 1. Modal mineral abundances. Meteoritics & Planetary Science 45(1):123-134. (Jan 2010). between textural maturity and temperature: Geochimica et Cosmochimica Acta 71(7):1855-1881. (April 2007).; Kessel, R. (2002). The activity of chromite in multicomponent spinels: An experimental study with implications for the metamorphic history of equilibrated ordinary chondrites (Thesis). California Institute of Technology: Pasadena, California. 219 pages.
'Apatite'
Reference: Mold, P., Bull, R.K. & Durrani, S.A. (1982) Plutonium-244 concentrations in chondritic phosphates and their significance in fission-tracks dating of meteorites. IN: Solid State Nuclear Track Detectors: Proceedings of the 11 International Conference Bristol (Fowler, P., ed.): pp. 851-854.
Chromite
Formula: Fe2+Cr3+2O4
Reference: Buchner, O. (1863) Die Meteorite in Sammlungen, ihre Geschichte, mineralogische und chemische Beschaffenheit. Leipzig: Verlag W.Engelmann. 202 pp.; Ramdohr, P. (1973) The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages.; Bischoff, A. & Keil, K. (1984) Al-rich objects in ordinary chondrites: Related origin of carbonaceous and ordinary chondrites and their constituents. Geochimica et Cosmochimica Acta 48 (4): 693-709.; Kessel, R. (2002). The activity of chromite in multicomponent spinels: An experimental study with implications for the metamorphic history of equilibrated ordinary chondrites (Thesis). California Institute of Technology: Pasadena, California. 219 pages.
Copper
Formula: Cu
Reference: Ramdohr, P. (1973) The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages.
Diopside
Formula: CaMgSi2O6
Reference: Dunn, T.L., Cressy, G., McSween Jr, H.Y. & McCoy, T.J. (2010) Analysis of ordinary chondrites using powder X-ray diffraction: 1. Modal mineral abundances. Meteoritics & Planetary Science 45(1):123-134. (Jan 2010). between textural maturity and temperature: Geochimica et Cosmochimica Acta 71(7):1855-1881. (April 2007).
'Fayalite-Forsterite Series'
Description: Olivine composition (Fa23.8)[Grady,2000] & (Fa24.9) [Kessel,2002] is typical for L-group ordinary chondrites
Reference: Buchner, O. (1863) Die Meteorite in Sammlungen, ihre Geschichte, mineralogische und chemische Beschaffenheit. Leipzig: Verlag W.Engelmann. 202 pp.; Bischoff, A. & Keil, K. (1984) Al-rich objects in ordinary chondrites: Related origin of carbonaceous and ordinary chondrites and their constituents. Geochimica et Cosmochimica Acta 48 (4): 693-709.; Dunn, T.L., Cressy, G., McSween Jr, H.Y. & McCoy, T.J. (2010) Analysis of ordinary chondrites using powder X-ray diffraction: 1. Modal mineral abundances. Meteoritics & Planetary Science 45(1):123-134. (Jan 2010). between textural maturity and temperature: Geochimica et Cosmochimica Acta 71(7):1855-1881. (April 2007).; Kessel, R. (2002). The activity of chromite in multicomponent spinels: An experimental study with implications for the metamorphic history of equilibrated ordinary chondrites (Thesis). California Institute of Technology: Pasadena, California. 219 pages.
Ilmenite
Formula: Fe2+TiO3
Reference: Ramdohr, P. (1973) The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages.
Iron
Formula: Fe
Reference: Wood, J. A. (1967) Chondrites: Their metallic minerals, thermal histories, and parent planets. Icarus 6 (1):1-49.
Iron var: Kamacite
Formula: (Fe,Ni)
Reference: Wood, J. A. (1967) Chondrites: Their metallic minerals, thermal histories, and parent planets. Icarus 6 (1):1-49.; Ramdohr, P. (1973) The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages.; Uehara, M. et al. (2010) New developments in magneto-optical imaging applied to rock magnetism: a case study on meteorites (Invited) [abstract #GP33D-07]: American Geophysical Union, Fall Meeting 2010.
Isocubanite
Formula: CuFe2S3
Reference: Ramdohr, P. (1973) The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages.
Mackinawite
Formula: (Fe,Ni)9S8
Reference: Ramdohr, P. (1973) The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages.
'Orthopyroxene Subgroup'
Description: Ca-poor orthopyroxene (Fs21.7)[Kessel, 2002] typical for L-group ordinary chondrites.
Reference: Dunn, T.L., Cressy, G., McSween Jr, H.Y. & McCoy, T.J. (2010) Analysis of ordinary chondrites using powder X-ray diffraction: 1. Modal mineral abundances. Meteoritics & Planetary Science 45(1):123-134. (Jan 2010). between textural maturity and temperature: Geochimica et Cosmochimica Acta 71(7):1855-1881. (April 2007).
'Plessite'
Reference: Wood, J. A. (1967) Chondrites: Their metallic minerals, thermal histories, and parent planets. Icarus 6 (1):1-49.; Ramdohr, P. (1973) The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages.
'Pyroxene Group'
Reference: Bischoff, A. & Keil, K. (1984) Al-rich objects in ordinary chondrites: Related origin of carbonaceous and ordinary chondrites and their constituents. Geochimica et Cosmochimica Acta 48 (4): 693-709.; Kessel, R. (2002). The activity of chromite in multicomponent spinels: An experimental study with implications for the metamorphic history of equilibrated ordinary chondrites (Thesis). California Institute of Technology: Pasadena, California. 219 pages.
Spinel
Formula: MgAl2O4
Reference: Bischoff, A. & Keil, K. (1984) Al-rich objects in ordinary chondrites: Related origin of carbonaceous and ordinary chondrites and their constituents. Geochimica et Cosmochimica Acta 48 (4): 693-709.
Taenite
Formula: (Fe,Ni)
Reference: Wood, J. A. (1967) Chondrites: Their metallic minerals, thermal histories, and parent planets. Icarus 6 (1):1-49.; Ramdohr, P. (1973) The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages.; Uehara, M. et al. (2010) New developments in magneto-optical imaging applied to rock magnetism: a case study on meteorites (Invited) [abstract #GP33D-07]: American Geophysical Union, Fall Meeting 2010.
Tetrataenite
Formula: FeNi
Reference: Uehara, M. et al. (2010) New developments in magneto-optical imaging applied to rock magnetism: a case study on meteorites (Invited) [abstract #GP33D-07]: American Geophysical Union, Fall Meeting 2010.
Troilite
Formula: FeS
Reference: Buchner, O. (1863) Die Meteorite in Sammlungen, ihre Geschichte, mineralogische und chemische Beschaffenheit. Leipzig: Verlag W.Engelmann. 202 pp.; Ramdohr, P. (1973) The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages.; Dunn, T.L., Cressy, G., McSween Jr, H.Y. & McCoy, T.J. (2010) Analysis of ordinary chondrites using powder X-ray diffraction: 1. Modal mineral abundances. Meteoritics & Planetary Science 45(1):123-134. (Jan 2010). between textural maturity and temperature: Geochimica et Cosmochimica Acta 71(7):1855-1881. (April 2007).

List of minerals arranged by Strunz 10th Edition classification

Group 1 - Elements
Copper1.AA.05Cu
Iron1.AE.05Fe
var: Kamacite1.AE.05(Fe,Ni)
Taenite1.AE.10(Fe,Ni)
Tetrataenite1.AE.10FeNi
Group 2 - Sulphides and Sulfosalts
Isocubanite2.CB.55bCuFe2S3
Mackinawite2.CC.25(Fe,Ni)9S8
Troilite2.CC.10FeS
Group 4 - Oxides and Hydroxides
Chromite4.BB.05Fe2+Cr3+2O4
Ilmenite4.CB.05Fe2+TiO3
Spinel4.BB.05MgAl2O4
Group 9 - Silicates
Diopside9.DA.15CaMgSi2O6
Unclassified Minerals, Rocks, etc.
'Albite-Anorthite Series'-
'Apatite'-
'Fayalite-Forsterite Series'-
'Orthopyroxene Subgroup'-
'Plessite'-
'Pyroxene Group'-

List of minerals arranged by Dana 8th Edition classification

Group 1 - NATIVE ELEMENTS AND ALLOYS
Metals, other than the Platinum Group
Copper1.1.1.3Cu
Iron
var: Kamacite
1.1.11.1(Fe,Ni)
Taenite1.1.11.2(Fe,Ni)
Tetrataenite1.1.11.3FeNi
Group 2 - SULFIDES
AmBnXp, with (m+n):p = 9:8
Mackinawite2.7.2.1(Fe,Ni)9S8
AmXp, with m:p = 1:1
Troilite2.8.9.1FeS
AmBnXp, with (m+n):p = 1:1
Isocubanite2.9.13.3CuFe2S3
Group 4 - SIMPLE OXIDES
A2X3
Ilmenite4.3.5.1Fe2+TiO3
Group 7 - MULTIPLE OXIDES
AB2X4
Chromite7.2.3.3Fe2+Cr3+2O4
Spinel7.2.1.1MgAl2O4
Group 65 - INOSILICATES Single-Width,Unbranched Chains,(W=1)
Single-Width Unbranched Chains, W=1 with chains P=2
Diopside65.1.3a.1CaMgSi2O6
Unclassified Minerals, Mixtures, etc.
'Albite-Anorthite Series'-
'Apatite'-
'Fayalite-Forsterite Series'-
Iron-Fe
'Orthopyroxene Subgroup'-
'Plessite'-
'Pyroxene Group'-

List of minerals for each chemical element

OOxygen
O ChromiteFe2+Cr23+O4
O IlmeniteFe2+TiO3
O SpinelMgAl2O4
O DiopsideCaMgSi2O6
MgMagnesium
Mg SpinelMgAl2O4
Mg DiopsideCaMgSi2O6
AlAluminium
Al SpinelMgAl2O4
SiSilicon
Si DiopsideCaMgSi2O6
SSulfur
S TroiliteFeS
S IsocubaniteCuFe2S3
S Mackinawite(Fe,Ni)9S8
CaCalcium
Ca DiopsideCaMgSi2O6
TiTitanium
Ti IlmeniteFe2+TiO3
CrChromium
Cr ChromiteFe2+Cr23+O4
FeIron
Fe ChromiteFe2+Cr23+O4
Fe TroiliteFeS
Fe Iron (var: Kamacite)(Fe,Ni)
Fe Taenite(Fe,Ni)
Fe IronFe
Fe IlmeniteFe2+TiO3
Fe IsocubaniteCuFe2S3
Fe Mackinawite(Fe,Ni)9S8
Fe TetrataeniteFeNi
NiNickel
Ni Iron (var: Kamacite)(Fe,Ni)
Ni Taenite(Fe,Ni)
Ni Mackinawite(Fe,Ni)9S8
Ni TetrataeniteFeNi
CuCopper
Cu CopperCu
Cu IsocubaniteCuFe2S3

Regional Geology

This geological map and associated information on rock units at or nearby to the coordinates given for this locality is based on relatively small scale geological maps provided by various national Geological Surveys. This does not necessarily represent the complete geology at this locality but it gives a background for the region in which it is found.

Click on geological units on the map for more information. Click here to view full-screen map on Macrostrat.org

Early Cretaceous
100.5 - 145 Ma



ID: 3187706
Mesozoic sedimentary rocks

Age: Early Cretaceous (100.5 - 145 Ma)

Comments: Cantabrian Orogen

Lithology: Sedimentary rocks

Reference: Chorlton, L.B. Generalized geology of the world: bedrock domains and major faults in GIS format: a small-scale world geology map with an extended geological attribute database. doi: 10.4095/223767. Geological Survey of Canada, Open File 5529. [154]

Early Cretaceous
100.5 - 145 Ma



ID: 3161930
detrital and biogenic deposit

Age: Early Cretaceous (100.5 - 145 Ma)

Lithology: Major:{limestone}, Minor{claystone,sandstone,marlstone}

Reference: Asch, K. The 1:5M International Geological Map of Europe and Adjacent Areas: Development and Implementation of a GIS-enabled Concept. Geologisches Jahrbuch, SA 3. [147]

Data and map coding provided by Macrostrat.org, used under Creative Commons Attribution 4.0 License

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
Buchner, O. (1863) Die Meteorite in Sammlungen, ihre Geschichte, mineralogische und chemische Beschaffenheit. Leipzig: Verlag W.Engelmann. 202 pp.
Prior, G. T. (1923) Catalogue of Meteorites: with special reference to those represented in the collection of the British Museum of Natural History. Richard Clay & Sons, Limited: Bungay, Suffolk.
Keil, K. & Fredriksson, K. (1964) The Fe, Mg, and Ca Distribution in Coexisting Olivines and Rhombic Pyroxenes of Chondrites. Journal of Geophysical Research Atmospheres 69 (16): 3487-3515. (August 1964).
Wood, J. A. (1967) Chondrites: Their metallic minerals, thermal histories, and parent planets. Icarus 6 (1):1-49.
Ramdohr, P. (1973) The Opaque Minerals in Stony Meteorites. Elsevier Publishing Company: Amsterdam; London: New York. 245 pages.
Dodd, R. T. & Jarosewich, E. (1980). Chemical variations among L-group chondrites. I - The Air, Apt and Tourinnes-la-Grosse /L6/ chondrites: Meteoritics 15(1): 69-83. (Mar1980).
Herr, W., Herpers, U. & Englert, P. (1981) 53Mn and 26Al in Observed Chondrite Falls with High Exposure Ages: Meteoritics 16 (4): p.324. (Dec 1981).
Mold, P., Bull, R.K. & Durrani, S.A. (1982) Plutonium-244 concentrations in chondritic phosphates and their significance in fission-tracks dating of meteorites. IN: Solid State Nuclear Track Detectors: Proceedings of the 11 International Conference Bristol (Fowler, P., ed.): pp. 851-854.
Bischoff, A. & Keil, K. (1984) Al-rich objects in ordinary chondrites: Related origin of carbonaceous and ordinary chondrites and their constituents. Geochimica et Cosmochimica Acta 48 (4): 693-709.
Podosek, F.A. & Brannon, J.C. (1991) Chondrite chronology by initial Sr-87/Sr-86 in phosphates?: Meteoritics 26(2): 145-152. (June 1991).
Wasson, J, & Wang, S. (1991) The histories of ordinary chondrite parent bodies: U,Th-He age distributions. Meteoritics 26(2): 161-167. (June 1991).
Bennett, III, M.E. & McSween, Jr., H.Y. (1996) Shock features in iron-nickel metal and troilite of L-group ordinary chondrites: Meteoritics & Planetary Science 31(2): 255-264. (March 1996).
Grady, M.M (2000). Catalogue of Meteorites (5/e). Cambridge University Press: Cambridge; New York; Oakleigh; Madrid; Cape Town. 689 pages.
Ronit Kessel (2002). The activity of chromite in multicomponent spinels: An experimental study with implications for the metamorphic history of equilibrated ordinary chondrites (Thesis). California Institute of Technology: Pasadena, California. 219 pages.
Bouvier, A. et al. (2007) Pb-Pb dating constraints on the accretion and cooling history of chondrites: Geochimica et Cosmochimica Acta, Volume 71, Issue 6, p. 1583-1604. (March 2007).
Kessel, R., Beckett, J.R. & Stolper, E.M. (2007) The thermal history of equilibrated ordinary chondrites and the relationship between textural maturity and temperature: Geochimica et Cosmochimica Acta 71(7):1855-1881. (1 April 2007).
Dunn, T.L. (2008) Determination of Mineral Abundances in Ordinary Chondrites Using Powder X-ray Diffraction: Applications to Parent Body Processes and Asteroid Spectroscopy. Doctoral Dissertation: Univ. Tenn., Knoxville. 161 pages.
Dunn, T.L., Cressy, G., McSween Jr, H.Y. & McCoy, T.J. (2010) Analysis of ordinary chondrites using powder X-ray diffraction: 1. Modal mineral abundances. Meteoritics & Planetary Science 45(1):123-134. (Jan 2010).
Uehara, M. et al. (2010) New developments in magneto-optical imaging applied to rock magnetism: a case study on meteorites (Invited) [abstract #GP33D-07]: American Geophysical Union, Fall Meeting 2010,
Gattacceca, J., Suavet, C., Rochette, P., Weis, B.P., Winklhofer, M., Uehara, M. & Friedrich, J.M. (2014) Metal phases in ordinary chondrites: Magnetic hysteresis properties and implications for thermal history: Meteoritics & Planetary Science 49(4): 652–676. (April 2014).
Leya, I. et al. (2015) Calibration of cosmogenic noble gas production based on 36Cl-36Ar ages. Part 2. The 81Kr-Kr dating technique: Meteoritics & Planetary Science 50(11): 1863-1879. (Nov 2015).

External Links



This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
 
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization. Public Relations by Blytheweigh.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2019, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: August 23, 2019 16:43:35 Page generated: February 15, 2019 06:30:29
Go to top of page