IMPORTANT MESSAGE. We need your support now to keep mindat.org running. Click here to find out why.
Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat Articles
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsThe ElementsUsersBooks & MagazinesMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery

Musina (Messina), Vhembe District, Limpopo Province, South Africa

This page is currently not sponsored. Click here to sponsor this page.
Key
Lock Map
Location is approximate, estimate based on other nearby localities.
 
Latitude & Longitude: 22° South , 30° East (est.)
Margin of Error:~150km


Note: The town, which was founded and settled by people of originally-European descent, was long-named Messina, in 2003, the Limpopo Government changed the name to Musina. However, the name of the mine is still registered as Messina and did not change when the town name changed.

The following is an extract from Cairncross and Dixon (1995):

HISTORY

The copper deposits in the Limpopo river area were known to ancient indigenous African tribes for centuries. The word "Messina" is thought to be a corruption of the word "Musina", which was the name of one of the tribes that moved into the area from Mphumalanga. Prior to the arrival of these migratory tribes, the earlier inhabitants may have had tentative links with the groups that were associated with the Zimbabwe ruins in southern Zimbabwe. Ancient mine excavations have yielded stone hammers, soapstone artifacts and iron tools and wedges. "Musina" is believed to mean "Spoiler" because the small amounts of copper tended to spoil or down-grade the iron produced by the ancient miners. Ancient smelting sites are still known today along the high ridges and hills within 20 kilometres of the town of Messina and particularly from the nearby summit of Singelele Kop.

It was the tales of the ancient copper miners that led Lt. Colonel J.P. Grenfell to send a prospecting team to investigate the region in the years following the second Anglo-Boer war. The Digby, Harper and Campbell shafts are named after members of this exploration party. The outcome of the expedition was the registration of the Messina (Transvaal) Development Company in 1905. This had an initial capital of ,110 000 and ,50 000 in debentures. Emery (1930), provides some details on the Grenfell expedition:

"To the courage and foresight of Colonel J.P. Grenfell, the Messina mines owe their existence. The ancient workings at Messina which were some 80 feet deep (water level) and some 30 feet wide and which contained ... rich copper sulphides, were investigated by Colonel Grenfell in 1903".

In 1914 a reduction works was put into commission, and a small Welsh reverberating furnace turned low-grade concentrates into high-grade matte, which, together with the high-grade concentrations, was shipped overseas to Welsh refineries. In 1920, the Messina mines were closed down pending the erection of the new addition to the concentration plant, and the erection of the new smelting works.

Mining operations were resumed in 1922. Production statistics show that between 1938 and 1940, the Messina plant was producing 10 000 tonnes of copper annually. Ore reserves in 1939 were estimated at 2 811 605 tonnes at a grade of 2.09% Cu. Since the initial establishment of the Messina (Transvaal) Development Company, 40 million tonnes of ore have been mined yielding approximately 700 000 tonnes of copper. It is interesting to note that all of the modern shafts have been sunk on or next to ancient workings.

GEOLOGY

The copper deposits are hosted by various complexly folded gneisses of the Beit Bridge Complex which were metamorphosed to granulite grade. The position of the copper ores is controlled by two brittle shear zones, the Messina and the Dowe-Tokwe Faults, along which copper-bearing fluids were able to penetrate the country rocks. The copper mineralisation is generally found in veins, lodes and pipe-like breccia bodies. The exact age of the mineralisation around Messina is not known. One theory is that the ore was emplaced during Soutpansberg times (circa 1 900 million years ago), and then partly remobilised during Karoo igneous activity in Jurassic times. Another theory is that the copper mineralisation is genetically linked to the alkaline intrusions of the Nuanetsi Complex in southern Zimbabwe, which are also of Karoo age.

Copper is the only economic metal won from the ore bodies. It occurs in the primary sulphide minerals chalcopyrite, bornite and chalcocite. Chalcopyrite is present along the peripheries of ore bodies and is gradually replaced by bornite, chalcocite and native copper towards the centre and downwards. Host rock alteration follows the zonation of the sulphides by a general increase in hydration of silicate minerals, leaching of quartz and the development of albite, zoisite and epidote, leading to complete destruction of the host rock.

In a detailed study of the Artonvilla Mine, it has been observed that disseminated replacement bodies are best developed at this particular mine. Four separate lodes are developed where mineralisation is accompanied by intense hydrothermal alteration. These disseminated ore bodies, such as the Emery lode, show concentric zoning with respect to both the sulphides and the hydrothermal minerals; an outer zone of sericitisation is followed inward by zones of albitisation, chloritisation and epidotisation.

Accompanying these stages are changes in the sulphides which display a zonation from an outer pyrite zone, through chalcopyrite and bornite, to chalcocite and occasional native copper zones in the core. These minerals formed from an ore fluid that was introduced into the host rocks. This fluid entered the structural traps at temperatures in excess of 650C and passed through the rocks down a temperature gradient which reached about 400C at the outer extremity, resulting in well-developed mineral zonation. The central parts of the ore body indicate mineral associations which equilibrated at temperatures ranging from 140C to 280C.

There are five separate mines, located along an east-northeast trending line and are named the Artonvilla, Spence, Messina, Harper, and the Western Campbell mines. These mines show slight variation in their local geology and mineralisation. At the end of 1992 the Messina Mine (No. 5 Shaft) ended production and was closed down. This was the last remaining operating mine in the region and brought to a close 88 years of copper mining.

MINERALOGY

By far the most abundant and attractive mineral, from a collectors standpoint, is quartz. The habits and varieties of sizes and groups, together with several colourful secondary mineral inclusions, make the Messina mines quartz specimens interesting items. In particular, inclusions of shattuckite, papagoite and ajoite make spectacular specimens. Minerals that occur associated with the ore bodies and breccia zones are listed below. Due to the brecciation of the ore bodies, a multitude of cavities, vugs and fissures provided the space for growth of crystals, in some cases almost 1m long.

Several publications have documented the abundance and diversity of quartz crystals; for example: "a notable feature ... throughout the breccia pipe (Campbell mine) ... is the development of vugs which are often lined with well-formed crystals of quartz and calcite".

"The early stage of open space filling is dominated by the deposition of quartz which grew from the breccia fragment surfaces outwards, encrusting succeeding layers of quartz forming a typical 'cockade' (phantom) texture. In some cases, well-formed prismatic crystals are formed ... Where permeability of the breccia fragments was low and (sulphide) mineralisation scarce, open spaces ... contain well-terminated prismatic crystals".

The Messina Mine (No. 5 Shaft) is noted for its wealth of beautiful quartz crystals ranging from microscopic size to individual crystals half a metre long. Doubly terminated crystals over 10cm in length have been found in many vugs. The larger crystals are, almost without exception, zoned internally with over a dozen phantom layers occurring in some crystals. These zones can consist of minute inclusions of specular hematite, kaolinite, epidote and chlorite. It is common to find an outer layer of clear euhedral quartz that has grown on the zoned core after the latter has been coated by hematite, epidote, talc, sericite, chlorite, zeolites, malachite or azurite. The presence of flaky specular hematite imparts a striking sheen to the well-formed clear crystals. Hollow kaolinitic spherules are also sometimes incorporated in the core of quartz crystals.

Select Mineral List Type

Standard Detailed Strunz Dana Chemical Elements

Commodity List

This is a list of exploitable or exploited mineral commodities recorded from this region.


Mineral List

Mineral list contains entries from the region specified including sub-localities

46 valid minerals.

Detailed Mineral List:

Ajoite
Formula: (K,Na)Cu7AlSi9O24(OH)6 · 3H2O
Reference: Cairncross, B. (1991) The Messina Mining District, South Africa. Mineralogical Record 22(3) 187-199; Cairncross, B., and Dixon, R., (1995) Minerals of South Africa. The Geological Society of South Africa, Linden 2014, RSA
Albite
Formula: Na(AlSi3O8)
Reference: Cairncross, B. (1991) The Messina Mining District, South Africa. Mineralogical Record 22(3) 187-199; Cairncross, B., and Dixon, R., (1995) Minerals of South Africa. The Geological Society of South Africa, Linden 2014, RSA
Almandine
Formula: Fe2+3Al2(SiO4)3
Reference: Cairncross, B. (1991) The Messina Mining District, South Africa. Mineralogical Record 22(3) 187-199; Cairncross, B., and Dixon, R., (1995) Minerals of South Africa. The Geological Society of South Africa, Linden 2014, RSA
Analcime
Formula: Na(AlSi2O6) · H2O
Reference: Cairncross, B. (1991) The Messina Mining District, South Africa. Mineralogical Record 22(3) 187-199; Cairncross, B., and Dixon, R., (1995) Minerals of South Africa. The Geological Society of South Africa, Linden 2014, RSA
Anhydrite
Formula: CaSO4
'Apatite'
Azurite
Formula: Cu3(CO3)2(OH)2
Reference: Cairncross, B. (1991) The Messina Mining District, South Africa. Mineralogical Record 22(3) 187-199; Cairncross, B., and Dixon, R., (1995) Minerals of South Africa. The Geological Society of South Africa, Linden 2014, RSA
Baryte
Formula: BaSO4
Reference: Cairncross, B. (1991) The Messina Mining District, South Africa. Mineralogical Record 22(3) 187-199; Cairncross, B., and Dixon, R., (1995) Minerals of South Africa. The Geological Society of South Africa, Linden 2014, RSA
Beryl
Formula: Be3Al2(Si6O18)
Reference: Cairncross, B., and Dixon, R., (1995) Minerals of South Africa. The Geological Society of South Africa, Linden 2014, RSA
Beryl var: Heliodor
Formula: Be3Al2(Si6O18)
'Biotite'
Reference: Cairncross, B. (1991) The Messina Mining District, South Africa. Mineralogical Record 22(3) 187-199
Bornite
Formula: Cu5FeS4
Reference: Dana 7:I:196; Cairncross, B. (1991) The Messina Mining District, South Africa. Mineralogical Record 22(3) 187-199; Cairncross, B., and Dixon, R., (1995) Minerals of South Africa. The Geological Society of South Africa, Linden 2014, RSA
Brucite
Formula: Mg(OH)2
Reference: Cairncross, B., and Dixon, R., (1995) Minerals of South Africa. The Geological Society of South Africa, Linden 2014, RSA
Calcite
Formula: CaCO3
Reference: Cairncross, B. (1991) The Messina Mining District, South Africa. Mineralogical Record 22(3) 187-199; Cairncross, B., and Dixon, R., (1995) Minerals of South Africa. The Geological Society of South Africa, Linden 2014, RSA
Chalcocite
Formula: Cu2S
Reference: Cairncross, B. (1991) The Messina Mining District, South Africa. Mineralogical Record 22(3) 187-199; Cairncross, B., and Dixon, R., (1995) Minerals of South Africa. The Geological Society of South Africa, Linden 2014, RSA
Chalcopyrite
Formula: CuFeS2
Reference: Cairncross, B. (1991) The Messina Mining District, South Africa. Mineralogical Record 22(3) 187-199; Cairncross, B., and Dixon, R., (1995) Minerals of South Africa. The Geological Society of South Africa, Linden 2014, RSA
'Chlorite Group'
Reference: Cairncross, B. (1991) The Messina Mining District, South Africa. Mineralogical Record 22(3) 187-199
Clausthalite
Formula: PbSe
Reference: Cairncross, B. (1991) The Messina Mining District, South Africa. Mineralogical Record 22(3) 187-199; Cairncross, B., and Dixon, R., (1995) Minerals of South Africa. The Geological Society of South Africa, Linden 2014, RSA
Clinochlore
Formula: Mg5Al(AlSi3O10)(OH)8
Reference: Cairncross, B. (1991) The Messina Mining District, South Africa. Mineralogical Record 22(3) 187-199; Cairncross, B., and Dixon, R., (1995) Minerals of South Africa. The Geological Society of South Africa, Linden 2014, RSA
Clinozoisite
Formula: {Ca2}{Al3}(Si2O7)(SiO4)O(OH)
Reference: Cairncross, B. (1991) The Messina Mining District, South Africa. Mineralogical Record 22(3) 187-199; Cairncross, B., and Dixon, R., (1995) Minerals of South Africa. The Geological Society of South Africa, Linden 2014, RSA
Copper
Formula: Cu
Reference: Cairncross, B. (1991) The Messina Mining District, South Africa. Mineralogical Record 22(3) 187-199; Cairncross, B., and Dixon, R., (1995) Minerals of South Africa. The Geological Society of South Africa, Linden 2014, RSA
'commodity:Copper'
Formula: Cu
Cordierite
Formula: (Mg,Fe)2Al3(AlSi5O18)
Reference: Cairncross, B. (1991) The Messina Mining District, South Africa. Mineralogical Record 22(3) 187-199; Cairncross, B., and Dixon, R., (1995) Minerals of South Africa. The Geological Society of South Africa, Linden 2014, RSA
Covellite
Formula: CuS
Reference: Cairncross, B. (1991) The Messina Mining District, South Africa. Mineralogical Record 22(3) 187-199; Cairncross, B., and Dixon, R., (1995) Minerals of South Africa. The Geological Society of South Africa, Linden 2014, RSA
Cuprite
Formula: Cu2O
Reference: Cairncross, B. (1991) The Messina Mining District, South Africa. Mineralogical Record 22(3) 187-199; Cairncross, B., and Dixon, R., (1995) Minerals of South Africa. The Geological Society of South Africa, Linden 2014, RSA
Digenite
Formula: Cu9S5
Reference: Cairncross, B. (1991) The Messina Mining District, South Africa. Mineralogical Record 22(3) 187-199; Cairncross, B., and Dixon, R., (1995) Minerals of South Africa. The Geological Society of South Africa, Linden 2014, RSA
Epidote
Formula: {Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Reference: Cairncross, B. (1991) The Messina Mining District, South Africa. Mineralogical Record 22(3) 187-199; Cairncross, B., and Dixon, R., (1995) Minerals of South Africa. The Geological Society of South Africa, Linden 2014, RSA
Fluorapatite
Formula: Ca5(PO4)3F
Goethite
Formula: α-Fe3+O(OH)
Reference: Cairncross, B. (1991) The Messina Mining District, South Africa. Mineralogical Record 22(3) 187-199; Cairncross, B., and Dixon, R., (1995) Minerals of South Africa. The Geological Society of South Africa, Linden 2014, RSA
Graphite
Formula: C
Hematite
Formula: Fe2O3
Reference: Cairncross, B. (1991) The Messina Mining District, South Africa. Mineralogical Record 22(3) 187-199; Cairncross, B., and Dixon, R., (1995) Minerals of South Africa. The Geological Society of South Africa, Linden 2014, RSA
'Hornblende'
Kaolinite
Formula: Al2(Si2O5)(OH)4
Reference: Cairncross, B. (1991) The Messina Mining District, South Africa. Mineralogical Record 22(3) 187-199; Cairncross, B., and Dixon, R., (1995) Minerals of South Africa. The Geological Society of South Africa, Linden 2014, RSA
Magnesite
Formula: MgCO3
Magnetite
Formula: Fe2+Fe3+2O4
Reference: Cairncross, B. (1991) The Messina Mining District, South Africa. Mineralogical Record 22(3) 187-199
Malachite
Formula: Cu2(CO3)(OH)2
Reference: Cairncross, B. (1991) The Messina Mining District, South Africa. Mineralogical Record 22(3) 187-199; Cairncross, B., and Dixon, R., (1995) Minerals of South Africa. The Geological Society of South Africa, Linden 2014, RSA
Molybdenite
Formula: MoS2
Reference: Cairncross, B. (1991) The Messina Mining District, South Africa. Mineralogical Record 22(3) 187-199
Muscovite
Formula: KAl2(AlSi3O10)(OH)2
Reference: [MinRec 22:187]
Muscovite var: Fuchsite
Formula: K(Al,Cr)3Si3O10(OH)2
Reference: Cairncross, B. (1991) The Messina Mining District, South Africa. Mineralogical Record 22(3) 187-199; Cairncross, B., and Dixon, R., (1995) Minerals of South Africa. The Geological Society of South Africa, Linden 2014, RSA
Muscovite var: Sericite
Formula: KAl2(AlSi3O10)(OH)2
Reference: Cairncross, B. (1991): The Messina Mining District, South Africa. Mineralogical Record 22(3) 187-199.
Papagoite
Formula: CaCu[H3AlSi2O9]
Reference: Cairncross, B. (1991) The Messina Mining District, South Africa. Mineralogical Record 22(3) 187-199; Cairncross, B., and Dixon, R., (1995) Minerals of South Africa. The Geological Society of South Africa, Linden 2014, RSA
Pennantite
Formula: Mn2+5Al(AlSi3O10)(OH)8
Piemontite
Formula: {Ca2}{Al2Mn3+}(Si2O7)(SiO4)O(OH)
Reference: [MinRec 22:187]
Plancheite
Formula: Cu8(Si8O22)(OH)4 · H2O
Prehnite
Formula: Ca2Al2Si3O10(OH)2
Reference: [MinRec 22:187]
Pyrite
Formula: FeS2
Reference: [MinRec 22:187]
Pyrrhotite
Formula: Fe7S8
Reference: [MinRec 22:187]
Quartz
Formula: SiO2
Reference: [MinRec 22:187]
Quartz var: Carnelian
Reference: Cairncross, B., and Dixon, R., (1995) Minerals of South Africa. The Geological Society of South Africa, Linden 2014, RSA
Quartz var: Chalcedony
Formula: SiO2
Reference: Cairncross, B., and Dixon, R., (1995) Minerals of South Africa. The Geological Society of South Africa, Linden 2014, RSA
Riebeckite
Formula: ◻[Na2][Fe2+3Fe3+2]Si8O22(OH)2
Sapphirine
Formula: Mg4(Mg3Al9)O4[Si3Al9O36]
Shattuckite
Formula: Cu5(Si2O6)2(OH)2
Reference: Cairncross, B. (1991) The Messina Mining District, South Africa. Mineralogical Record 22(3) 187-199; Cairncross, B., and Dixon, R., (1995) Minerals of South Africa. The Geological Society of South Africa, Linden 2014, RSA
Sphalerite
Formula: ZnS
Reference: [MinRec 22:187]
Talc
Formula: Mg3Si4O10(OH)2
Zoisite
Formula: {Ca2}{Al3}(Si2O7)(SiO4)O(OH)
Reference: [MinRec 22:187]

List of minerals arranged by Strunz 10th Edition classification

Group 1 - Elements
Copper1.AA.05Cu
Graphite1.CB.05aC
Group 2 - Sulphides and Sulfosalts
'Bornite'2.BA.15Cu5FeS4
Chalcocite2.BA.05Cu2S
Chalcopyrite2.CB.10aCuFeS2
Clausthalite2.CD.10PbSe
Covellite2.CA.05aCuS
Digenite2.BA.10Cu9S5
Molybdenite2.EA.30MoS2
Pyrite2.EB.05aFeS2
Pyrrhotite2.CC.10Fe7S8
Sphalerite2.CB.05aZnS
Group 4 - Oxides and Hydroxides
'Brucite'4.FE.05Mg(OH)2
Cuprite4.AA.10Cu2O
Goethite4.00.α-Fe3+O(OH)
Hematite4.CB.05Fe2O3
Magnetite4.BB.05Fe2+Fe3+2O4
Quartz4.DA.05SiO2
var: Carnelian4.DA.05SiO2
var: Chalcedony4.DA.05SiO2
Group 5 - Nitrates and Carbonates
'Azurite'5.BA.05Cu3(CO3)2(OH)2
'Calcite'5.AB.05CaCO3
Magnesite5.AB.05MgCO3
Malachite5.BA.10Cu2(CO3)(OH)2
Group 7 - Sulphates, Chromates, Molybdates and Tungstates
'Anhydrite'7.AD.30CaSO4
'Baryte'7.AD.35BaSO4
Group 8 - Phosphates, Arsenates and Vanadates
Fluorapatite8.BN.05Ca5(PO4)3F
Group 9 - Silicates
'Ajoite'9.EA.70(K,Na)Cu7AlSi9O24(OH)6 · 3H2O
'Albite'9.FA.35Na(AlSi3O8)
'Almandine'9.AD.25Fe2+3Al2(SiO4)3
'Analcime'9.GB.05Na(AlSi2O6) · H2O
'Beryl'9.CJ.05Be3Al2(Si6O18)
var: Heliodor9.CJ.05Be3Al2(Si6O18)
Clinochlore9.EC.55Mg5Al(AlSi3O10)(OH)8
Clinozoisite9.BG.05a{Ca2}{Al3}(Si2O7)(SiO4)O(OH)
Cordierite9.CJ.10(Mg,Fe)2Al3(AlSi5O18)
Epidote9.BG.05a{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Kaolinite9.ED.05Al2(Si2O5)(OH)4
Muscovite9.EC.15KAl2(AlSi3O10)(OH)2
var: Fuchsite9.EC.15K(Al,Cr)3Si3O10(OH)2
var: Sericite9.EC.15KAl2(AlSi3O10)(OH)2
Papagoite9.CE.05CaCu[H3AlSi2O9]
Pennantite9.EC.55Mn2+5Al(AlSi3O10)(OH)8
Piemontite9.BG.05{Ca2}{Al2Mn3+}(Si2O7)(SiO4)O(OH)
Plancheite9.DB.35Cu8(Si8O22)(OH)4 · H2O
Prehnite9.DP.20Ca2Al2Si3O10(OH)2
Riebeckite9.DE.25◻[Na2][Fe2+3Fe3+2]Si8O22(OH)2
Sapphirine9.DH.45Mg4(Mg3Al9)O4[Si3Al9O36]
Shattuckite9.DB.40Cu5(Si2O6)2(OH)2
Talc9.EC.05Mg3Si4O10(OH)2
Zoisite9.BG.10{Ca2}{Al3}(Si2O7)(SiO4)O(OH)
Unclassified Minerals, Rocks, etc.
'Apatite'-
'Biotite'-
Chlorite Group-
Hornblende-

List of minerals arranged by Dana 8th Edition classification

Group 1 - NATIVE ELEMENTS AND ALLOYS
Metals, other than the Platinum Group
Copper1.1.1.3Cu
Semi-metals and non-metals
Graphite1.3.6.2C
Group 2 - SULFIDES
AmBnXp, with (m+n):p = 2:1
Chalcocite2.4.7.1Cu2S
Digenite2.4.7.3Cu9S5
AmBnXp, with (m+n):p = 3:2
Bornite2.5.2.1Cu5FeS4
AmXp, with m:p = 1:1
Clausthalite2.8.1.2PbSe
Covellite2.8.12.1CuS
Pyrrhotite2.8.10.1Fe7S8
Sphalerite2.8.2.1ZnS
AmBnXp, with (m+n):p = 1:1
Chalcopyrite2.9.1.1CuFeS2
AmBnXp, with (m+n):p = 1:2
Molybdenite2.12.10.1MoS2
Pyrite2.12.1.1FeS2
Group 4 - SIMPLE OXIDES
A2X
Cuprite4.1.1.1Cu2O
A2X3
Hematite4.3.1.2Fe2O3
Group 6 - HYDROXIDES AND OXIDES CONTAINING HYDROXYL
XO(OH)
Goethite6.1.1.2α-Fe3+O(OH)
X(OH)2
Brucite6.2.1.1Mg(OH)2
Group 7 - MULTIPLE OXIDES
AB2X4
Magnetite7.2.2.3Fe2+Fe3+2O4
Group 14 - ANHYDROUS NORMAL CARBONATES
A(XO3)
Calcite14.1.1.1CaCO3
Magnesite14.1.1.2MgCO3
Group 16a - ANHYDROUS CARBONATES CONTAINING HYDROXYL OR HALOGEN
Azurite16a.2.1.1Cu3(CO3)2(OH)2
Malachite16a.3.1.1Cu2(CO3)(OH)2
Group 28 - ANHYDROUS ACID AND NORMAL SULFATES
AXO4
Anhydrite28.3.2.1CaSO4
Baryte28.3.1.1BaSO4
Group 41 - ANHYDROUS PHOSPHATES, ETC.CONTAINING HYDROXYL OR HALOGEN
A5(XO4)3Zq
Fluorapatite41.8.1.1Ca5(PO4)3F
Group 51 - NESOSILICATES Insular SiO4 Groups Only
Insular SiO4 Groups Only with cations in [6] and >[6] coordination
Almandine51.4.3a.2Fe2+3Al2(SiO4)3
Group 58 - SOROSILICATES Insular, Mixed, Single, and Larger Tetrahedral Groups
Insular, Mixed, Single, and Larger Tetrahedral Groups with cations in [6] and higher coordination; single and double groups (n = 1, 2)
Clinozoisite58.2.1a.4{Ca2}{Al3}(Si2O7)(SiO4)O(OH)
Epidote58.2.1a.7{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Piemontite58.2.1a.11{Ca2}{Al2Mn3+}(Si2O7)(SiO4)O(OH)
Zoisite58.2.1b.1{Ca2}{Al3}(Si2O7)(SiO4)O(OH)
Group 60 - CYCLOSILICATES Four-Membered Rings
Four-Membered Rings, as Titanosilicates
Papagoite60.1.4.1CaCu[H3AlSi2O9]
Group 61 - CYCLOSILICATES Six-Membered Rings
Six-Membered Rings with [Si6O18] rings; possible (OH) and Al substitution
Beryl61.1.1.1Be3Al2(Si6O18)
Six-Membered Rings with Al substituted rings
Cordierite61.2.1.1(Mg,Fe)2Al3(AlSi5O18)
Group 65 - INOSILICATES Single-Width,Unbranched Chains,(W=1)
Single-Width Unbranched Chains, W=1 with chains P=2
Shattuckite65.1.7.1Cu5(Si2O6)2(OH)2
Group 66 - INOSILICATES Double-Width,Unbranched Chains,(W=2)
Amphiboles - Ca subgroup
Plancheite66.2.1.1Cu8(Si8O22)(OH)4 · H2O
Group 69 - INOSILICATES Chains with Side Branches or Loops
Chains with Side Branches or Loops with P>2
Sapphirine69.2.1b.1Mg4(Mg3Al9)O4[Si3Al9O36]
Group 71 - PHYLLOSILICATES Sheets of Six-Membered Rings
Sheets of 6-membered rings with 2:1 layers
Muscovite71.2.2a.1KAl2(AlSi3O10)(OH)2
Talc71.2.1.3Mg3Si4O10(OH)2
Sheets of 6-membered rings interlayered 1:1, 2:1, and octahedra
Clinochlore71.4.1.4Mg5Al(AlSi3O10)(OH)8
Pennantite71.4.1.8Mn2+5Al(AlSi3O10)(OH)8
Group 72 - PHYLLOSILICATES Two-Dimensional Infinite Sheets with Other Than Six-Membered Rings
Two-Dimensional Infinite Sheets with Other Than Six-Membered Rings with 4-membered rings
Prehnite72.1.3.1Ca2Al2Si3O10(OH)2
Group 75 - TECTOSILICATES Si Tetrahedral Frameworks
Si Tetrahedral Frameworks - SiO2 with [4] coordinated Si
Quartz75.1.3.1SiO2
Group 76 - TECTOSILICATES Al-Si Framework
Al-Si Framework with Al-Si frameworks
Albite76.1.3.1Na(AlSi3O8)
Group 77 - TECTOSILICATES Zeolites
Zeolite group - True zeolites
Analcime77.1.1.1Na(AlSi2O6) · H2O
Group 78 - Unclassified Silicates
Ajoite78.5.1.1(K,Na)Cu7AlSi9O24(OH)6 · 3H2O
Unclassified Minerals, Rocks, etc.
'Apatite'-
Beryl
var: Heliodor
-Be3Al2(Si6O18)
'Biotite'-
'Chlorite Group'-
'Hornblende'-
Kaolinite-Al2(Si2O5)(OH)4
Muscovite
var: Fuchsite
-K(Al,Cr)3Si3O10(OH)2
var: Sericite-KAl2(AlSi3O10)(OH)2
Quartz
var: Carnelian
-SiO2
var: Chalcedony-SiO2
Riebeckite-◻[Na2][Fe2+3Fe3+2]Si8O22(OH)2

List of minerals for each chemical element

HHydrogen
H Ajoite(K,Na)Cu7AlSi9O24(OH)6 · 3H2O
H AnalcimeNa(AlSi2O6) · H2O
H AzuriteCu3(CO3)2(OH)2
H BruciteMg(OH)2
H ClinochloreMg5Al(AlSi3O10)(OH)8
H Clinozoisite{Ca2}{Al3}(Si2O7)(SiO4)O(OH)
H Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
H Muscovite (var: Fuchsite)K(Al,Cr)3Si3O10(OH)2
H Goethiteα-Fe3+O(OH)
H KaoliniteAl2(Si2O5)(OH)4
H MalachiteCu2(CO3)(OH)2
H MuscoviteKAl2(AlSi3O10)(OH)2
H PapagoiteCaCu[H3AlSi2O9]
H PennantiteMn52+Al(AlSi3O10)(OH)8
H Piemontite{Ca2}{Al2Mn3+}(Si2O7)(SiO4)O(OH)
H PlancheiteCu8(Si8O22)(OH)4 · H2O
H PrehniteCa2Al2Si3O10(OH)2
H Riebeckite◻[Na2][Fe32+Fe23+]Si8O22(OH)2
H Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
H ShattuckiteCu5(Si2O6)2(OH)2
H TalcMg3Si4O10(OH)2
H Zoisite{Ca2}{Al3}(Si2O7)(SiO4)O(OH)
BeBeryllium
Be BerylBe3Al2(Si6O18)
Be Beryl (var: Heliodor)Be3Al2(Si6O18)
CCarbon
C AzuriteCu3(CO3)2(OH)2
C CalciteCaCO3
C GraphiteC
C MagnesiteMgCO3
C MalachiteCu2(CO3)(OH)2
OOxygen
O Ajoite(K,Na)Cu7AlSi9O24(OH)6 · 3H2O
O AlbiteNa(AlSi3O8)
O AlmandineFe32+Al2(SiO4)3
O AnalcimeNa(AlSi2O6) · H2O
O AnhydriteCaSO4
O AzuriteCu3(CO3)2(OH)2
O BaryteBaSO4
O BerylBe3Al2(Si6O18)
O BruciteMg(OH)2
O CalciteCaCO3
O Quartz (var: Chalcedony)SiO2
O ClinochloreMg5Al(AlSi3O10)(OH)8
O Clinozoisite{Ca2}{Al3}(Si2O7)(SiO4)O(OH)
O Cordierite(Mg,Fe)2Al3(AlSi5O18)
O CupriteCu2O
O Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
O FluorapatiteCa5(PO4)3F
O Muscovite (var: Fuchsite)K(Al,Cr)3Si3O10(OH)2
O Goethiteα-Fe3+O(OH)
O Beryl (var: Heliodor)Be3Al2(Si6O18)
O HematiteFe2O3
O KaoliniteAl2(Si2O5)(OH)4
O MagnesiteMgCO3
O MagnetiteFe2+Fe23+O4
O MalachiteCu2(CO3)(OH)2
O MuscoviteKAl2(AlSi3O10)(OH)2
O PapagoiteCaCu[H3AlSi2O9]
O PennantiteMn52+Al(AlSi3O10)(OH)8
O Piemontite{Ca2}{Al2Mn3+}(Si2O7)(SiO4)O(OH)
O PlancheiteCu8(Si8O22)(OH)4 · H2O
O PrehniteCa2Al2Si3O10(OH)2
O QuartzSiO2
O Riebeckite◻[Na2][Fe32+Fe23+]Si8O22(OH)2
O SapphirineMg4(Mg3Al9)O4[Si3Al9O36]
O Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
O ShattuckiteCu5(Si2O6)2(OH)2
O TalcMg3Si4O10(OH)2
O Zoisite{Ca2}{Al3}(Si2O7)(SiO4)O(OH)
FFluorine
F FluorapatiteCa5(PO4)3F
NaSodium
Na AlbiteNa(AlSi3O8)
Na AnalcimeNa(AlSi2O6) · H2O
Na Riebeckite◻[Na2][Fe32+Fe23+]Si8O22(OH)2
MgMagnesium
Mg BruciteMg(OH)2
Mg ClinochloreMg5Al(AlSi3O10)(OH)8
Mg Cordierite(Mg,Fe)2Al3(AlSi5O18)
Mg MagnesiteMgCO3
Mg SapphirineMg4(Mg3Al9)O4[Si3Al9O36]
Mg TalcMg3Si4O10(OH)2
AlAluminium
Al Ajoite(K,Na)Cu7AlSi9O24(OH)6 · 3H2O
Al AlbiteNa(AlSi3O8)
Al AlmandineFe32+Al2(SiO4)3
Al AnalcimeNa(AlSi2O6) · H2O
Al BerylBe3Al2(Si6O18)
Al ClinochloreMg5Al(AlSi3O10)(OH)8
Al Clinozoisite{Ca2}{Al3}(Si2O7)(SiO4)O(OH)
Al Cordierite(Mg,Fe)2Al3(AlSi5O18)
Al Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Al Muscovite (var: Fuchsite)K(Al,Cr)3Si3O10(OH)2
Al Beryl (var: Heliodor)Be3Al2(Si6O18)
Al KaoliniteAl2(Si2O5)(OH)4
Al MuscoviteKAl2(AlSi3O10)(OH)2
Al PapagoiteCaCu[H3AlSi2O9]
Al PennantiteMn52+Al(AlSi3O10)(OH)8
Al Piemontite{Ca2}{Al2Mn3+}(Si2O7)(SiO4)O(OH)
Al PrehniteCa2Al2Si3O10(OH)2
Al SapphirineMg4(Mg3Al9)O4[Si3Al9O36]
Al Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
Al Zoisite{Ca2}{Al3}(Si2O7)(SiO4)O(OH)
SiSilicon
Si Ajoite(K,Na)Cu7AlSi9O24(OH)6 · 3H2O
Si AlbiteNa(AlSi3O8)
Si AlmandineFe32+Al2(SiO4)3
Si AnalcimeNa(AlSi2O6) · H2O
Si BerylBe3Al2(Si6O18)
Si Quartz (var: Chalcedony)SiO2
Si ClinochloreMg5Al(AlSi3O10)(OH)8
Si Clinozoisite{Ca2}{Al3}(Si2O7)(SiO4)O(OH)
Si Cordierite(Mg,Fe)2Al3(AlSi5O18)
Si Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Si Muscovite (var: Fuchsite)K(Al,Cr)3Si3O10(OH)2
Si Beryl (var: Heliodor)Be3Al2(Si6O18)
Si KaoliniteAl2(Si2O5)(OH)4
Si MuscoviteKAl2(AlSi3O10)(OH)2
Si PapagoiteCaCu[H3AlSi2O9]
Si PennantiteMn52+Al(AlSi3O10)(OH)8
Si Piemontite{Ca2}{Al2Mn3+}(Si2O7)(SiO4)O(OH)
Si PlancheiteCu8(Si8O22)(OH)4 · H2O
Si PrehniteCa2Al2Si3O10(OH)2
Si QuartzSiO2
Si Riebeckite◻[Na2][Fe32+Fe23+]Si8O22(OH)2
Si SapphirineMg4(Mg3Al9)O4[Si3Al9O36]
Si Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
Si ShattuckiteCu5(Si2O6)2(OH)2
Si TalcMg3Si4O10(OH)2
Si Zoisite{Ca2}{Al3}(Si2O7)(SiO4)O(OH)
PPhosphorus
P FluorapatiteCa5(PO4)3F
SSulfur
S AnhydriteCaSO4
S BaryteBaSO4
S BorniteCu5FeS4
S ChalcociteCu2S
S ChalcopyriteCuFeS2
S CovelliteCuS
S DigeniteCu9S5
S MolybdeniteMoS2
S PyriteFeS2
S PyrrhotiteFe7S8
S SphaleriteZnS
KPotassium
K Ajoite(K,Na)Cu7AlSi9O24(OH)6 · 3H2O
K Muscovite (var: Fuchsite)K(Al,Cr)3Si3O10(OH)2
K MuscoviteKAl2(AlSi3O10)(OH)2
K Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
CaCalcium
Ca AnhydriteCaSO4
Ca CalciteCaCO3
Ca Clinozoisite{Ca2}{Al3}(Si2O7)(SiO4)O(OH)
Ca Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Ca FluorapatiteCa5(PO4)3F
Ca PapagoiteCaCu[H3AlSi2O9]
Ca Piemontite{Ca2}{Al2Mn3+}(Si2O7)(SiO4)O(OH)
Ca PrehniteCa2Al2Si3O10(OH)2
Ca Zoisite{Ca2}{Al3}(Si2O7)(SiO4)O(OH)
CrChromium
Cr Muscovite (var: Fuchsite)K(Al,Cr)3Si3O10(OH)2
MnManganese
Mn PennantiteMn52+Al(AlSi3O10)(OH)8
Mn Piemontite{Ca2}{Al2Mn3+}(Si2O7)(SiO4)O(OH)
FeIron
Fe AlmandineFe32+Al2(SiO4)3
Fe BorniteCu5FeS4
Fe ChalcopyriteCuFeS2
Fe Cordierite(Mg,Fe)2Al3(AlSi5O18)
Fe Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Fe Goethiteα-Fe3+O(OH)
Fe HematiteFe2O3
Fe MagnetiteFe2+Fe23+O4
Fe PyriteFeS2
Fe PyrrhotiteFe7S8
Fe Riebeckite◻[Na2][Fe32+Fe23+]Si8O22(OH)2
CuCopper
Cu Ajoite(K,Na)Cu7AlSi9O24(OH)6 · 3H2O
Cu AzuriteCu3(CO3)2(OH)2
Cu BorniteCu5FeS4
Cu ChalcociteCu2S
Cu ChalcopyriteCuFeS2
Cu CopperCu
Cu CovelliteCuS
Cu CupriteCu2O
Cu DigeniteCu9S5
Cu MalachiteCu2(CO3)(OH)2
Cu PapagoiteCaCu[H3AlSi2O9]
Cu PlancheiteCu8(Si8O22)(OH)4 · H2O
Cu ShattuckiteCu5(Si2O6)2(OH)2
ZnZinc
Zn SphaleriteZnS
SeSelenium
Se ClausthalitePbSe
MoMolybdenum
Mo MolybdeniteMoS2
BaBarium
Ba BaryteBaSO4
PbLead
Pb ClausthalitePbSe

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
Preller, G.S. (1941). Copper mining and smelting at Messina. Official Journal of the Department of Commerce, South Africa, 4(10), 159 161.
Söhnge, P.G., (1945). The geology of the Messina copper mines and surrounding country. Geological Survey of South Africa, Memoir 40, 272 pp.
Schwellnus, C.M. (1953). Geology of Messina copper deposits. South African Mining and Engineering Journal, 64, 557 559.
Spence, W.I., (1961). The Messina Copper Mine. Transactions of the Seventh Commonwealth Mining and Metallurgical Congress, Papers and Discussions Vol. I. South African Institute of Mining and Metallurgy, Johannesburg, 123 144.
Van Graan, S.J., (1964). Geology of the Messina copper deposits. In: Haughton, S.H., (Ed.). The Geology of some Ore Deposits in Southern Africa, vol. 2. Geological Society of South Africa, 739 pp.
Jacobsen, J.B.E. and McCarthy, T.S., (1975). Possible late Karroo carbonatite and basalt intrusions at Messina. Transactions of the Geological Society of South Africa, 78, 153 159.
Jacobsen, J.B.E., McCarthy, T.S. and Laing, G.J.S., (1976). The copper bearing breccia pipes of the Messina district, South Africa. Mineralium Deposita, 11, 33 45.
Mining Annual Review (1985): 410-411.
Bahnemann, K.P., (1986). A review of the geology of the Messina copper deposits, northern Transvaal. In: Anhaeusser, C.R. and Maske, S., (Eds.). Mineral Deposits of Southern Africa, Vols I & II, Geological Society of South Africa, Johannesburg, 1671 1688.
Cairncross, B. (1991): The Messina Mining District, South Africa. Mineralogical Record 22(3) 187-199.
Cairncross, B. and Dixon, R., (1995) Minerals of South Africa. The Geological Society of South Africa: 46-53.
Cairncross, B. (2016). Ajoite: Connoisseur’s Choice, Rocks & Minerals, 91, 426-432.

External Links


Localities in this Region
Show map

South Africa

This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2018, except where stated. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: November 17, 2018 05:04:26 Page generated: November 14, 2018 13:05:27
Go to top of page