Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsBooks & Magazines
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryMineral Photography

Panj-Kuh iron deposit (Panj-Kuh iron mine), Damghan County, Semnan, Irani
Regional Level Types
Panj-Kuh iron deposit (Panj-Kuh iron mine)Deposit
Damghan CountyCounty
SemnanProvince
IranCountry

This page is currently not sponsored. Click here to sponsor this page.
Key
Lock Map
Latitude & Longitude (WGS84):
35° 28' 19'' North , 54° 12' 0'' East
Latitude & Longitude (decimal):
Locality type:
Köppen climate type:


The Panj-Kuh iron deposit is located 50 km southeast of Damghan within the Central Iranian Zone (CIZ).

The Panj-Kuh deposit is hosted mainly in the Eocene andesite and basalt volcano-pyroclastic rocks as well as Oligocene syenite, monzonite and gabbro plutonic rocks. The mineralisation of the Panj-Kuh iron deposit occurred in both orthomagmatic and hydrothermal stages. In the orthomagmatic stage, associated with crystallisation of a gabbroic magma, iron mineralisation occurred in the form of disseminated and massive ores. In the second stage, the monzonitic intrusion was injected into the gabbroic, volcano-sedimentary and volcanic rocks and caused hydrothermal iron mineralisation such as skarnisation. Pyroxene, epidote and amphibole are the main silicate minerals; magnetite and less hematite are the principal ore mineral, pyrite, chalcopyrite, marcasite, galena, sphalerite, chalcocite, and covellite are minor ore constituents (Sheibi, 2014; Nabatian et al., 2015; Sheibi et al., 2016).

The Panj-Kuh Fe oxide deposit is estimated to contain 100 million tons of iron ore with an average Fe2O3 = 84.2%, and FeO = 8.5%. The deposit tends to be zoned vertically from magnetite dominant at depth to hematite-dominantat upper levels. The ore body occurs within volcanic rocks that were brecciated during fault movement along bounding shear zones. Mineralisation occurs dominantly as disseminations, veins, and breccia infill.

Regions containing this locality

Eurasian PlateTectonic Plate
AsiaContinent

Select Mineral List Type

Standard Detailed Strunz Dana Chemical Elements

Mineral List


25 valid minerals.

Rock Types Recorded

Note: this is a very new system on mindat.org and data is currently VERY limited. Please bear with us while we work towards adding this information!

Select Rock List Type

Alphabetical List Tree Diagram

Detailed Mineral List:

Actinolite
Formula: ☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
Albite
Formula: Na(AlSi3O8)
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
'Amphibole Supergroup'
Formula: AX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Reference: Nabatian, G., Rastad, E., Neubauer, F., Honarmand, M., and Ghaderi, M. (2015) Fe and Fe-Mn mineralization in Iran: Implication from Tethyan Metallogeny. Australian Journal of Earth Sciences, 62, 211-241.
Analcime
Formula: Na(AlSi2O6) · H2O
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
Azurite
Formula: Cu3(CO3)2(OH)2
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Nabatian, G., Rastad, E., Neubauer, F., Honarmand, M., and Ghaderi, M. (2015) Fe and Fe-Mn mineralization in Iran: Implication from Tethyan Metallogeny. Australian Journal of Earth Sciences, 62, 211-241.
'Biotite'
Formula: K(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
Calcite
Formula: CaCO3
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
Chalcocite
Formula: Cu2S
Reference: Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
Chalcopyrite
Formula: CuFeS2
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Nabatian, G., Rastad, E., Neubauer, F., Honarmand, M., and Ghaderi, M. (2015) Fe and Fe-Mn mineralization in Iran: Implication from Tethyan Metallogeny. Australian Journal of Earth Sciences, 62, 211-241; Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
'Chlorite Group'
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
'Clinopyroxene Subgroup'
Description: Diopside-hedenbergite series (Sheibi, 2014)
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Nabatian, G., Rastad, E., Neubauer, F., Honarmand, M., and Ghaderi, M. (2015) Fe and Fe-Mn mineralization in Iran: Implication from Tethyan Metallogeny. Australian Journal of Earth Sciences, 62, 211-241; Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
Covellite
Formula: CuS
Reference: Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
Diopside
Formula: CaMgSi2O6
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102.
Epidote
Formula: {Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Nabatian, G., Rastad, E., Neubauer, F., Honarmand, M., and Ghaderi, M. (2015) Fe and Fe-Mn mineralization in Iran: Implication from Tethyan Metallogeny. Australian Journal of Earth Sciences, 62, 211-241.
Ferro-actinolite
Formula: ☐{Ca2}{Fe2+5}(Si8O22)(OH)2
Reference: Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
Fluorapatite
Formula: Ca5(PO4)3F
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
Galena
Formula: PbS
Reference: Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
Hematite
Formula: Fe2O3
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
Ilmenite
Formula: Fe2+TiO3
Reference: Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
'K Feldspar'
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
Magnetite
Formula: Fe2+Fe3+2O4
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Nabatian, G., Rastad, E., Neubauer, F., Honarmand, M., and Ghaderi, M. (2015) Fe and Fe-Mn mineralization in Iran: Implication from Tethyan Metallogeny. Australian Journal of Earth Sciences, 62, 211-241; Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
Malachite
Formula: Cu2(CO3)(OH)2
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Nabatian, G., Rastad, E., Neubauer, F., Honarmand, M., and Ghaderi, M. (2015) Fe and Fe-Mn mineralization in Iran: Implication from Tethyan Metallogeny. Australian Journal of Earth Sciences, 62, 211-241.
Marcasite
Formula: FeS2
Reference: Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
Marialite
Formula: Na4Al3Si9O24Cl
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
Pyrite
Formula: FeS2
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Nabatian, G., Rastad, E., Neubauer, F., Honarmand, M., and Ghaderi, M. (2015) Fe and Fe-Mn mineralization in Iran: Implication from Tethyan Metallogeny. Australian Journal of Earth Sciences, 62, 211-241; Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
Quartz
Formula: SiO2
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
Rutile
Formula: TiO2
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102.
Sphalerite
Formula: ZnS
Reference: Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
Titanite
Formula: CaTi(SiO4)O
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102; Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.
Tremolite
Formula: ☐{Ca2}{Mg5}(Si8O22)(OH)2
Reference: Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102.

List of minerals arranged by Strunz 10th Edition classification

Group 2 - Sulphides and Sulfosalts
Chalcocite2.BA.05Cu2S
Chalcopyrite2.CB.10aCuFeS2
Covellite2.CA.05aCuS
Galena2.CD.10PbS
Marcasite2.EB.10aFeS2
Pyrite2.EB.05aFeS2
Sphalerite2.CB.05aZnS
Group 4 - Oxides and Hydroxides
Hematite4.CB.05Fe2O3
Ilmenite4.CB.05Fe2+TiO3
Magnetite4.BB.05Fe2+Fe3+2O4
Quartz4.DA.05SiO2
Rutile4.DB.05TiO2
Group 5 - Nitrates and Carbonates
Azurite5.BA.05Cu3(CO3)2(OH)2
Calcite5.AB.05CaCO3
Malachite5.BA.10Cu2(CO3)(OH)2
Group 8 - Phosphates, Arsenates and Vanadates
Fluorapatite8.BN.05Ca5(PO4)3F
Group 9 - Silicates
Actinolite9.DE.10☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2
Albite9.FA.35Na(AlSi3O8)
Analcime9.GB.05Na(AlSi2O6) · H2O
Diopside9.DA.15CaMgSi2O6
Epidote9.BG.05a{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Ferro-actinolite9.DE.10☐{Ca2}{Fe2+5}(Si8O22)(OH)2
Marialite9.FB.15Na4Al3Si9O24Cl
Titanite9.AG.15CaTi(SiO4)O
Tremolite9.DE.10☐{Ca2}{Mg5}(Si8O22)(OH)2
Unclassified Minerals, Rocks, etc.
'Amphibole Supergroup'-AX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
'Biotite'-K(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
'Chlorite Group'-
'Clinopyroxene Subgroup'-
'K Feldspar'-

List of minerals arranged by Dana 8th Edition classification

Group 2 - SULFIDES
AmBnXp, with (m+n):p = 2:1
Chalcocite2.4.7.1Cu2S
AmXp, with m:p = 1:1
Covellite2.8.12.1CuS
Galena2.8.1.1PbS
Sphalerite2.8.2.1ZnS
AmBnXp, with (m+n):p = 1:1
Chalcopyrite2.9.1.1CuFeS2
AmBnXp, with (m+n):p = 1:2
Marcasite2.12.2.1FeS2
Pyrite2.12.1.1FeS2
Group 4 - SIMPLE OXIDES
A2X3
Hematite4.3.1.2Fe2O3
Ilmenite4.3.5.1Fe2+TiO3
AX2
Rutile4.4.1.1TiO2
Group 7 - MULTIPLE OXIDES
AB2X4
Magnetite7.2.2.3Fe2+Fe3+2O4
Group 14 - ANHYDROUS NORMAL CARBONATES
A(XO3)
Calcite14.1.1.1CaCO3
Group 16a - ANHYDROUS CARBONATES CONTAINING HYDROXYL OR HALOGEN
Azurite16a.2.1.1Cu3(CO3)2(OH)2
Malachite16a.3.1.1Cu2(CO3)(OH)2
Group 41 - ANHYDROUS PHOSPHATES, ETC.CONTAINING HYDROXYL OR HALOGEN
A5(XO4)3Zq
Fluorapatite41.8.1.1Ca5(PO4)3F
Group 52 - NESOSILICATES Insular SiO4 Groups and O,OH,F,H2O
Insular SiO4 Groups and O, OH, F, and H2O with cations in [6] and/or >[6] coordination
Titanite52.4.3.1CaTi(SiO4)O
Group 58 - SOROSILICATES Insular, Mixed, Single, and Larger Tetrahedral Groups
Insular, Mixed, Single, and Larger Tetrahedral Groups with cations in [6] and higher coordination; single and double groups (n = 1, 2)
Epidote58.2.1a.7{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Group 65 - INOSILICATES Single-Width,Unbranched Chains,(W=1)
Single-Width Unbranched Chains, W=1 with chains P=2
Diopside65.1.3a.1CaMgSi2O6
Group 66 - INOSILICATES Double-Width,Unbranched Chains,(W=2)
Amphiboles - Mg-Fe-Mn-Li subgroup
Tremolite66.1.3a.1☐{Ca2}{Mg5}(Si8O22)(OH)2
Group 75 - TECTOSILICATES Si Tetrahedral Frameworks
Si Tetrahedral Frameworks - SiO2 with [4] coordinated Si
Quartz75.1.3.1SiO2
Group 76 - TECTOSILICATES Al-Si Framework
Al-Si Framework with Al-Si frameworks
Albite76.1.3.1Na(AlSi3O8)
Al-Si Framework with other Be/Al/Si frameworks
Marialite76.3.1.1Na4Al3Si9O24Cl
Group 77 - TECTOSILICATES Zeolites
Zeolite group - True zeolites
Analcime77.1.1.1Na(AlSi2O6) · H2O
Unclassified Minerals, Mixtures, etc.
Actinolite-☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2
'Amphibole Supergroup'-AX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
'Biotite'-K(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
'Chlorite Group'-
'Clinopyroxene Subgroup'-
Ferro-actinolite-☐{Ca2}{Fe2+5}(Si8O22)(OH)2
'K Feldspar'-

List of minerals for each chemical element

HHydrogen
H Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
H Amphibole SupergroupAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
H MalachiteCu2(CO3)(OH)2
H AzuriteCu3(CO3)2(OH)2
H Actinolite☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2
H Ferro-actinolite☐{Ca2}{Fe52+}(Si8O22)(OH)2
H BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
H AnalcimeNa(AlSi2O6) · H2O
H Tremolite☐{Ca2}{Mg5}(Si8O22)(OH)2
CCarbon
C MalachiteCu2(CO3)(OH)2
C AzuriteCu3(CO3)2(OH)2
C CalciteCaCO3
OOxygen
O Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
O Amphibole SupergroupAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
O MagnetiteFe2+Fe23+O4
O MalachiteCu2(CO3)(OH)2
O AzuriteCu3(CO3)2(OH)2
O AlbiteNa(AlSi3O8)
O HematiteFe2O3
O Actinolite☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2
O CalciteCaCO3
O QuartzSiO2
O Ferro-actinolite☐{Ca2}{Fe52+}(Si8O22)(OH)2
O BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
O TitaniteCaTi(SiO4)O
O IlmeniteFe2+TiO3
O AnalcimeNa(AlSi2O6) · H2O
O MarialiteNa4Al3Si9O24Cl
O FluorapatiteCa5(PO4)3F
O RutileTiO2
O DiopsideCaMgSi2O6
O Tremolite☐{Ca2}{Mg5}(Si8O22)(OH)2
FFluorine
F Amphibole SupergroupAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
F BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
F FluorapatiteCa5(PO4)3F
NaSodium
Na AlbiteNa(AlSi3O8)
Na AnalcimeNa(AlSi2O6) · H2O
Na MarialiteNa4Al3Si9O24Cl
MgMagnesium
Mg Actinolite☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2
Mg Ferro-actinolite☐{Ca2}{Fe52+}(Si8O22)(OH)2
Mg BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
Mg DiopsideCaMgSi2O6
Mg Tremolite☐{Ca2}{Mg5}(Si8O22)(OH)2
AlAluminium
Al Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Al Amphibole SupergroupAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Al AlbiteNa(AlSi3O8)
Al BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
Al AnalcimeNa(AlSi2O6) · H2O
Al MarialiteNa4Al3Si9O24Cl
SiSilicon
Si Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Si Amphibole SupergroupAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Si AlbiteNa(AlSi3O8)
Si Actinolite☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2
Si QuartzSiO2
Si Ferro-actinolite☐{Ca2}{Fe52+}(Si8O22)(OH)2
Si BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
Si TitaniteCaTi(SiO4)O
Si AnalcimeNa(AlSi2O6) · H2O
Si MarialiteNa4Al3Si9O24Cl
Si DiopsideCaMgSi2O6
Si Tremolite☐{Ca2}{Mg5}(Si8O22)(OH)2
PPhosphorus
P FluorapatiteCa5(PO4)3F
SSulfur
S PyriteFeS2
S ChalcopyriteCuFeS2
S MarcasiteFeS2
S GalenaPbS
S SphaleriteZnS
S ChalcociteCu2S
S CovelliteCuS
ClChlorine
Cl Amphibole SupergroupAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Cl MarialiteNa4Al3Si9O24Cl
KPotassium
K BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
CaCalcium
Ca Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Ca Actinolite☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2
Ca CalciteCaCO3
Ca Ferro-actinolite☐{Ca2}{Fe52+}(Si8O22)(OH)2
Ca TitaniteCaTi(SiO4)O
Ca FluorapatiteCa5(PO4)3F
Ca DiopsideCaMgSi2O6
Ca Tremolite☐{Ca2}{Mg5}(Si8O22)(OH)2
TiTitanium
Ti Amphibole SupergroupAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Ti TitaniteCaTi(SiO4)O
Ti IlmeniteFe2+TiO3
Ti RutileTiO2
FeIron
Fe Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Fe MagnetiteFe2+Fe23+O4
Fe PyriteFeS2
Fe ChalcopyriteCuFeS2
Fe HematiteFe2O3
Fe Actinolite☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2
Fe MarcasiteFeS2
Fe Ferro-actinolite☐{Ca2}{Fe52+}(Si8O22)(OH)2
Fe BiotiteK(Fe2+/Mg)2(Al/Fe3+/Mg)([Si/Al]Si2O10)(OH/F)2
Fe IlmeniteFe2+TiO3
CuCopper
Cu MalachiteCu2(CO3)(OH)2
Cu AzuriteCu3(CO3)2(OH)2
Cu ChalcopyriteCuFeS2
Cu ChalcociteCu2S
Cu CovelliteCuS
ZnZinc
Zn SphaleriteZnS
PbLead
Pb GalenaPbS

Regional Geology

This geological map and associated information on rock units at or nearby to the coordinates given for this locality is based on relatively small scale geological maps provided by various national Geological Surveys. This does not necessarily represent the complete geology at this locality but it gives a background for the region in which it is found.

Click on geological units on the map for more information. Click here to view full-screen map on Macrostrat.org

Quaternary - Pliocene
0 - 5.333 Ma



ID: 3312219

Age: Cenozoic (0 - 5.333 Ma)

Description: Unconsolidated to poorly consolidated, poorly sorted, polygenetic conglomerate

Reference: Sahandi, M.R., and M. Soheili (compilers). 1:1,000,000 scale Bedrock and Structural geology of Iran. National Geoscience Database of Iran. [191]

Neogene
2.588 - 23.03 Ma



ID: 3185708
Cenozoic sedimentary rocks

Age: Neogene (2.588 - 23.03 Ma)

Lithology: Sedimentary rocks

Reference: Chorlton, L.B. Generalized geology of the world: bedrock domains and major faults in GIS format: a small-scale world geology map with an extended geological attribute database. doi: 10.4095/223767. Geological Survey of Canada, Open File 5529. [154]

Data and map coding provided by Macrostrat.org, used under Creative Commons Attribution 4.0 License

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
Sheibi, M. (2014) Mineral chemistry and mass changes of elements during alteration of Panj-Kuh intrusive body (Damghan, Iran). Geopersia, 4, 1, 87-102.
Nabatian, G., Rastad, E., Neubauer, F., Honarmand, M., Ghaderi, M. (2015) Fe and Fe-Mn mineralization in Iran: Implication from Tethyan Metallogeny. Australian Journal of Earth Sciences, 62, 2, 211-241.
Sheibi, M., Mirnejad, H., and Pooralizadeh Moghaddam, M. (2016) Magnetic susceptibility anisotropy as a predictive exploration tool of metasomatic iron oxide deposits: Example from the Panj-Kuh iron ore body, NE Iran. Ore Geology Reviews, 72, 1, 612-628.


This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
 
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization. Public Relations by Blytheweigh.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2020, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: January 26, 2020 14:59:37 Page generated: June 4, 2019 23:15:08
Go to top of page