URGENT MESSAGE: Time is running out. Click here to find out why.
Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for Educators
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
StatisticsThe ElementsUsersBooks & MagazinesMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery

Magma Mine (Magma Superior Mine; Irene claim; Hub claim; Pomeroy; Superior Division; Silver Queen; Monarch claim; Magma Copper Mine; Broken Hill; Apex), Superior, Pioneer District, Pinal Mts, Pinal Co., Arizona, USA

This page is currently not sponsored. Click here to sponsor this page.
Key
Lock Map
Latitude & Longitude (WGS84): 33° 18' 11'' North , 111° 5' 58'' West
Latitude & Longitude (decimal): 33.30306,-111.09944
GeoHash:G#: 9tbvryeu7
Locality type:Mine
Köppen climate type:BSh : Hot semi-arid (steppe) climate


A former underground Cu-Mo-Au-Ag-Pb-Zn-Mn-As-Bi-Cd mine located in all of sec. 35, T1S, R12E (Superior 7.5 minute topo map), on the N side of Superior, on private property. Discovered by Charles C. Mason in 1874. Produced 1880 to 1981. Originally called the Silver Queen (1875-1909). Magma Copper Company began operating it in 1910 with minor production until 1911, when ownership passed to the Lake Superior and Arizona Mining Co. Previously owned by Newmont Mining. This mine was idle in recent years but was being explored through drilling early this year (2002) by new owners. This is a deep mine that is extrordinarily hot. Also known as / designated: Amalgamated Gold, Silver and Copper Co. property; Patneted claim MS340, MS 350, MS 2930a, MS 3144 and MS 4152; and the Magma King Manganese Mining Co. property. Claims extend into secs. 23-27, 29, 34-36, and into T2S, R12E, T1S, R13E, and T2S, R13E. The workings are located in secs. 35, 36, 25 and 26. Main shafts in the NE¼, sec. 35, and the NW¼ sec. 36. Magma Copper Co. has state leases in secs. 4, 5, 8 & 9, T2S, R13E.

The orebodies are replacements within the Magma and Koerner fault zones of the east-west system. Those of the Magma vein constitute by far the greater proportion of the tonnage extracted or developed. The ore consists of distinct shoots or bodies. The ore bodies dip 70-80N, at 1493.52 meters thick, 121.92 meters dept-to-top, 4900 meters depth-to-bottom, 152.4 meters wide, and 2651.76 meters long. Ore control was faults and fractures, mainly E-W-trending, associated with crushed fault fillings. Also Devonian (Martin) Limestone replacement on the eastern extremity.

The main or largest orebody has been developed laterally between the Main fault and No. 4 shaft and vertically from the 400 to below the 4600 level as measured below the collar of No. 1 shaft or 5,800 feet down the pitch. In the vicinity of the 1200 level at 4,600 coordinate, the ore consists of sphalerite and a little galena, with only traces of copper. Between the 1300 and 1400 levels it changes abruptly into a bornite-rich ore with little or no zinc and lead. In levels above the schist the width of the main orebody ranges from 5 to 40 feet. Where the vein is wide, the ore generally occurs as two or more rich stringers separated by poorer vein material.

The West orebody is a faulted segment, possibly of the Magma vein, west of the Main fault and east of the Concentrator fault. This vein segment strikes alomost east and dips steeply north. The West orebody averaged about 15 feet in width and 7% in Cu content together with subordinate zinc and lead.

The East orebodies or "zinc stopes" lie east of zero crosscut. These bodies are not continuous, and none of the known oreshoots persists for more than several hundred feet. In general sphalerite predominates above the 2550 level, and chalcopyrite below.

The Koerner vein orebody is similar to the Main orebody but smaller. Mineralogically, its ore is indistinguishable from that of the Main orebody on the same levels. Local serpentinization & uralitization, sericitization.

A dike of quartz monzonite porphyry occurs within the Magma fault zone from the surface to the 1200 level, and in many places deeper it forms either the orth or south wall of the vein. The dike was not sufficiently mineralized to constitute ore.

Diabase was the most favorable host rock for ore deposition in the Main oreshoot.

Practically all of the zinc orebodies have quartzite or limestone for one wall. Replacement bodies in limestone are limited chiefly to the zinc-copper area. Here the "Lake Superior and Arizona" zone, in Martin limestone about 20 feet stratigraphically above the Troy quartzite, has been replaced by ore of good grade for a thickness of 30-50 feet and a width ranging up to 30 feet.

In the Pinal schist, the zone of faulting and mineralization in the Magma vein is considerably wider than in the upper levels and commonly contains horses of relatively unbroken, unmineralizaed wall rock. Its walls are less distinct, in many places indefinite, and perhaps more than 100 feet apart. Orebodies here tend to be lenticular both horizontally and vertically. Where both walls are in schist, the mineable vein forms two branches.

The outcrop of the Magma vein has been so leached that gossan is generally lacking.

Host rock units include Pinal Schist, Dripping Springs Quartzite, Apache Group-Mescal Limestone, Martin Limestone and Apache Basalt. Alteration includes serpentinization and uralitization and sericitization.

Workings include 8 shafts. This is the deepest mine in the state. There are 36 levels, with levels every 100 feet in the upper 2000 feet, and then every 200 feet apart down to 4800 feet. Workings diminish in thickness to the east, and are mainly between the 3000 foot and 4000 foot levels. The length of workings is estimated.

Alternative Label Names

This is a list of additional names that have been recorded for mineral labels associated with this locality in the minID database. This may include previous versions of the locality name hierarchy from mindat.org, data entry errors, and it may also include unconfirmed sublocality names or other names that can only be matched to this level.

Magma Mine Pinal Co. AZ
Magma Mine, Superior, Arizona
Magma Mine, Superior, Pioneer District, Pinal Mts, Pinal Co., Arizona, USA
Magma Mine (Magma Superior Mine; Irene claim; Hub claim; Pomeroy; Superior Division; Silver Queen; Monarch claim; Magma Copper Mine; Broken Hill; Apex), Superior, Pioneer District, Pinal Mountains, Pinal County, Arizona, United States

Regions containing this locality

Sonoran Desert, North America

Desert - 1,135 mineral species & varietal names listed

Select Mineral List Type

Standard Detailed Strunz Dana Chemical Elements

Commodity List

This is a list of exploitable or exploited mineral commodities recorded from this region.


Mineral List

Mineral list contains entries from the region specified including sub-localities

57 valid minerals.

Detailed Mineral List:

Ankerite
Formula: Ca(Fe2+,Mg)(CO3)2
Reference: Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Min.Rec.: 14: 72-82.
Azurite
Formula: Cu3(CO3)2(OH)2
Reference: Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Min.Rec.: 14: 72-82; Wilson, E.D., et al (1950), Arizona zinc and lead deposits, part I, AZ Bur. Mines Bull. 156: 93.
Baryte
Formula: BaSO4
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 129; Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Min.Rec.: 14: 72-82.
Bornite
Formula: Cu5FeS4
Reference: Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Min.Rec.: 14: 72-82; Ransome, F.L. (1914), Copper deposits near Superior, AZ, USGS Bull. 540-D: 139-158; Harcourt, G.A. (1937), The distinction between enargite and famatinite (luzonite), Am.Min.: 22: 517-525; Short, M.N., et al (1943), Geology and ore deposits of the Superior mining area, AZ, AZ Bur. Mines Bull. 151; Brett, R. & R.A. Yund (1964), Sulfur-rich bornites, Am.Min.: 49: 1084-1098; Morimoto, N. & A. Gyobu (1971), The composition and stability of digenite, AmMin.: 56: 1889-1909; Galbraith, F.W. (1947), Minerals of AZ, AZ Bur. Mines Bull 153: 17; Wilson, E.D., et al (1950), Arizona zinc and lead deposits, part I, AZ Bur. Mines Bull. 156: 93.
Brochantite
Formula: Cu4(SO4)(OH)6
Reference: Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Min.Rec.: 14: 72-82.
Calcite
Formula: CaCO3
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 152; Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Min.Rec.: 14: 72-82; Galbraith, F.W. & D.J. Brennan (1959), Minerals of AZ: 46.
Chalcanthite
Formula: CuSO4 · 5H2O
Reference: Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Min.Rec.: 14: 72-82.
Chalcocite
Formula: Cu2S
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 163; Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Min.Rec.: 14: 72-82; Galbraith, F.W. (1947), Minerals of AZ, AZ Bur. Mines Bull 153: 15, 16; Wilson, E.D., et al (1950), Arizona zinc and lead deposits, part I, AZ Bur. Mines Bull. 156: 93.
Chalcopyrite
Formula: CuFeS2
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 166; Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Min.Rec.: 14: 72-82; Short, M.N., et al (1943), Geology and ore deposits of the Superior mining area, AZ, AZ Bur. Mines Bull. 151; Galbraith, F.W. (1947), Minerals of AZ, AZ Bur. Mines Bull 153: 19; Wilson, E.D., et al (1950), Arizona zinc and lead deposits, part I, AZ Bur. Mines Bull. 156: 93.
Chrysocolla
Formula: Cu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 287; Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Min.Rec.: 14: 72-82; Short, M.N., et al (1943), Geology and ore deposits of the Superior mining area, AZ, AZ Bur. Mines Bull. 151; Wilson, E.D., et al (1950), Arizona zinc and lead deposits, part I, AZ Bur. Mines Bull. 156: 93.
Colusite
Formula: Cu12VAs3S16
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 182; Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Min.Rec.: 14: 72-82; Hammer, D.F. & D.W. Peterson (1968), Geology of the Magma mine area, AZ, in J.D. Ridge (editor), Ore deposits of the United States, 1933-1967, A.I.M.E.: 1282-1310.
Copiapite
Formula: Fe2+Fe3+4(SO4)6(OH)2 · 20H2O
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 416.
Copper
Formula: Cu
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 186; Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Min.Rec.: 14: 72-82; Short, M.N., et al (1943), Geology and ore deposits of the Superior mining area, AZ, AZ Bur. Mines Bull. 151; Wilson, E.D., et al (1950), Arizona zinc and lead deposits, part I, AZ Bur. Mines Bull. 156: 93.
'commodity:Copper'
Formula: Cu
Reference: From USGS MRDS database
Coquimbite
Formula: Fe2-xAlx(SO4)3 · 9H2O, x ~0.5
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 186.
Coronadite
Formula: Pb(Mn4+6Mn3+2)O16
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 188; Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Min.Rec.: 14: 72-82; Short, M.N., et al (1943), Geology and ore deposits of the Superior mining area, AZ, AZ Bur. Mines Bull. 151; Fleischer, M. & W.E. Richmond (1943), The manganese oxide minerals: A preliminary report, Econ.Geol.: 38: 269-286; Hewett, D.F. & M. Fleischer (1960), Deposits of the manganese oxides, Econ.Geol.: 55: 1-55; Hewett, D.F., et al (1963), Deposits of the manganese oxides: supplement, Econ.Geol.: 58: 1-51; Wilson, E.D., et al (1950), Arizona zinc and lead deposits, part I, AZ Bur. Mines Bull. 156: 94.
Covellite
Formula: CuS
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 191; Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Min.Rec.: 14: 72-82; Short, M.N., et al (1943), Geology and ore deposits of the Superior mining area, AZ, AZ Bur. Mines Bull. 151; Bateman, A.M. (1929), Some covellite-chalcocite relationships, Econ.Geol.: 24: 424-439; Galbraith, F.W. (1947), Minerals of AZ, AZ Bur. Mines Bull 153: 21.
Cryptomelane
Formula: K(Mn4+7Mn3+)O16
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 195; Hewett, D.F. & M. Fleischer (1960), Deposits of the manganese oxides, Econ.Geol.: 55: 1-55.
Cubanite
Formula: CuFe2S3
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 195; Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Min.Rec.: 14: 72-82.
Cuprite
Formula: Cu2O
Reference: Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Min.Rec.: 14: 72-82; Wilson, E.D., et al (1950), Arizona zinc and lead deposits, part I, AZ Bur. Mines Bull. 156: 93.
Digenite
Formula: Cu9S5
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 163, 204; Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Min.Rec.: 14: 72-82; Short, M.N., et al (1943), Geology and ore deposits of the Superior mining area, AZ, AZ Bur. Mines Bull. 151; Pierce, L. & P.R. Buseck (1978), Superstructuring in the bornite-digenite series: A high-resolution electron microscopy study, Am.Min.: 63: 1-15; Morimoto, N. & A. Gyobu (1971), The composition and stability of digenite, AmMin.: 56: 1889-1909; Galbraith, F.W. (1947), Minerals of AZ, AZ Bur. Mines Bull 153: 15; Wilson, E.D., et al (1950), Arizona zinc and lead deposits, part I, AZ Bur. Mines Bull. 156: 93.
Dioptase
Formula: CuSiO3 · H2O
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 206; Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Min.Rec.: 14: 72-82; Min.Rec.: 20:69, 387; Galbraith, F.W. & D.J. Brennan (1959), Minerals of AZ: 72; Wilson, E.D., et al (1950), Arizona zinc and lead deposits, part I, AZ Bur. Mines Bull. 156: 94.
Djurleite
Formula: Cu31S16
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 163, 206; Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Min.Rec.: 14: 72-82; Morimoto, N. & A. Gyobu (1971), The composition and stability of digenite, AmMin.: 56: 1889-1909.
Enargite
Formula: Cu3AsS4
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 213 Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Min.Rec.: 14: 72-82; Short, M.N., et al (1943), Geology and ore deposits of the Superior mining area, AZ, AZ Bur. Mines Bull. 151; Galbraith, F.W. (1947), Minerals of AZ, AZ Bur. Mines Bull 153: 28; Wilson, E.D., et al (1950), Arizona zinc and lead deposits, part I, AZ Bur. Mines Bull. 156: 93.
Famatinite
Formula: Cu3SbS4
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 219; Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Min.Rec.: 14: 72-82; Hammer, D.F. & D.W. Peterson (1968), Geology of the Magma mine area, AZ, in J.D. Ridge (editor), Ore deposits of the United States, 1933-1967, A.I.M.E.: 1282-1310.
Fluorite
Formula: CaF2
Reference: Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Min.Rec.: 14: 72-82.
Galena
Formula: PbS
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 229; Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Min.Rec.: 14: 72-82; Short, M.N., et al (1943), Geology and ore deposits of the Superior mining area, AZ, AZ Bur. Mines Bull. 151; Galbraith, F.W. (1947), Minerals of AZ, AZ Bur. Mines Bull 153: 18; Wilson, E.D., et al (1950), Arizona zinc and lead deposits, part I, AZ Bur. Mines Bull. 156: 93.
Gold
Formula: Au
Reference: Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Min.Rec.: 14: 72-82.
Grossular
Formula: Ca3Al2(SiO4)3
Reference: Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Min.Rec.: 14: 72-82.
Groutite
Formula: Mn3+O(OH)
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 240.
Gypsum
Formula: CaSO4 · 2H2O
Reference: Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Min.Rec.: 14: 72-82.
'Halloysite'
Formula: Al2(Si2O5)(OH)4
Reference: Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Min.Rec.: 14: 72-82.
Hematite
Formula: Fe2O3
Reference: Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Min.Rec.: 14: 72-82.
Hemimorphite
Formula: Zn4Si2O7(OH)2 · H2O
Reference: Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Min.Rec.: 14: 72-82; Wilson, E.D., et al (1950), Arizona zinc and lead deposits, part I, AZ Bur. Mines Bull. 156: 93.
Hydrozincite
Formula: Zn5(CO3)2(OH)6
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 256; Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Min.Rec.: 14: 72-82; Short, M.N., et al (1943), Geology and ore deposits of the Superior mining area, AZ, AZ Bur. Mines Bull. 151; Galbraith, F.W. & D.J. Brennan (1959), Minerals of AZ: 53; Wilson, E.D., et al (1950), Arizona zinc and lead deposits, part I, AZ Bur. Mines Bull. 156: 94.
Lepidocrocite ?
Formula: γ-Fe3+O(OH)
Reference: Specimen aquired from Ray Grant
'Limonite'
Formula: (Fe,O,OH,H2O)
Reference: Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Min.Rec.: 14: 72-82.
Magnetite
Formula: Fe2+Fe3+2O4
Reference: Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Min.Rec.: 14: 72-82.
Malachite
Formula: Cu2(CO3)(OH)2
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 287; Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Min.Rec.: 14: 72-82; Short, M.N., et al (1943), Geology and ore deposits of the Superior mining area, AZ, AZ Bur. Mines Bull. 151; Wilson, E.D., et al (1950), Arizona zinc and lead deposits, part I, AZ Bur. Mines Bull. 156: 94.
Manganite
Formula: Mn3+O(OH)
Reference: Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Min.Rec.: 14: 72-82.
Muscovite
Formula: KAl2(AlSi3O10)(OH)2
Reference: Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Min.Rec.: 14: 72-82.
Muscovite var: Sericite
Formula: KAl2(AlSi3O10)(OH)2
Reference: Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Min.Rec.: 14: 72-82.
Olivenite
Formula: Cu2(AsO4)(OH)
Reference: Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Min.Rec.: 14: 72-82; Galbraith, F.W. & D.J. Brennan (1959), Minerals of AZ: 72; Wilson, E.D., et al (1950), Arizona zinc and lead deposits, part I, AZ Bur. Mines Bull. 156: 94.
'Psilomelane'
Reference: Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Min.Rec.: 14: 72-82; Wilson, E.D., et al (1950), Arizona zinc and lead deposits, part I, AZ Bur. Mines Bull. 156: 94.
Pyrite
Formula: FeS2
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 341; Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Min.Rec.: 14: 72-82; Short, M.N., et al (1943), Geology and ore deposits of the Superior mining area, AZ, AZ Bur. Mines Bull. 151; Mills, J.W. & H.T. Eyrich (1966), The rate of unconformities in the localization of epigenetic mineral deposits in the United States and Canada, Econ.Geol.: 61: 1232-1257; Galbraith, F.W. (1947), Minerals of AZ, AZ Bur. Mines Bull 153: 23; Wilson, E.D., et al (1950), Arizona zinc and lead deposits, part I, AZ Bur. Mines Bull. 156: 93.
Pyrolusite
Formula: Mn4+O2
Reference: Galbraith, F.W. & D.J. Brennan (1959), Minerals of AZ: 31.
Quartz
Formula: SiO2
Reference: Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Min.Rec.: 14: 72-82.
Rhodochrosite
Formula: MnCO3
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 353; Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Min.Rec.: 14: 72-82.
Rhomboclase
Formula: (H5O2)Fe3+(SO4)2 · 2H2O
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 354, 388.
Sauconite
Formula: Na0.3Zn3((Si,Al)4O10)(OH)2 · 4H2O
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 188, 361.
Siderite
Formula: FeCO3
Reference: Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Min.Rec.: 14: 72-82.
Silver
Formula: Ag
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 373; Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Min.Rec.: 14: 72-82; Galbraith, F.W. (1947), Minerals of AZ, AZ Bur. Mines Bull 153: 9.
Sphalerite
Formula: ZnS
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 377; Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Min.Rec.: 14: 72-82; Short, M.N., et al (1943), Geology and ore deposits of the Superior mining area, AZ, AZ Bur. Mines Bull. 151; Galbraith, F.W. (1947), Minerals of AZ, AZ Bur. Mines Bull 153: 18; Wilson, E.D., et al (1950), Arizona zinc and lead deposits, part I, AZ Bur. Mines Bull. 156: 93.
Stromeyerite
Formula: AgCuS
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 385; Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Min.Rec.: 14: 72-82; Short, M.N., et al (1943), Geology and ore deposits of the Superior mining area, AZ, AZ Bur. Mines Bull. 151; Galbraith, F.W. (1947), Minerals of AZ, AZ Bur. Mines Bull 153: 16; Wilson, E.D., et al (1950), Arizona zinc and lead deposits, part I, AZ Bur. Mines Bull. 156: 93.
Szomolnokite
Formula: FeSO4 · H2O
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 354, 388.
Tennantite
Formula: Cu6[Cu4(Fe,Zn)2]As4S13
Reference: Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Min.Rec.: 14: 72-82; Wilson, E.D., et al (1950), Arizona zinc and lead deposits, part I, AZ Bur. Mines Bull. 156: 93.
Tenorite
Formula: CuO
Reference: Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Min.Rec.: 14: 72-82.
Tetrahedrite
Formula: Cu6[Cu4(Fe,Zn)2]Sb4S13
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 393; Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Min.Rec.: 14: 72-82; Short, M.N., et al (1943), Geology and ore deposits of the Superior mining area, AZ, AZ Bur. Mines Bull. 151; Galbraith, F.W. (1947), Minerals of AZ, AZ Bur. Mines Bull 153: 27.
Vanadinite
Formula: Pb5(VO4)3Cl
Reference: American Museum of Natural History specimen 92111
Voltaite
Formula: K2Fe2+5Fe3+3Al(SO4)12 · 18H2O
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 354, 388, 416.
'Wad'
Reference: Galbraith, F.W. & D.J. Brennan (1959), Minerals of AZ: 31.
Wittichenite
Formula: Cu3BiS3
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 422; Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Min.Rec.: 14: 72-82; Hammer, D.F. & D.W. Peterson (1968), Geology of the Magma mine area, AZ, in J.D. Ridge (editor), Ore deposits of the United States, 1933-1967, A.I.M.E.: 1282-1310.
Wulfenite
Formula: Pb(MoO4)
Reference: Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Min.Rec.: 14: 72-82.

List of minerals arranged by Strunz 10th Edition classification

Group 1 - Elements
'Copper'1.AA.05Cu
'Gold'1.AA.05Au
Silver1.AA.05Ag
Group 2 - Sulphides and Sulfosalts
'Bornite'2.BA.15Cu5FeS4
'Chalcocite'2.BA.05Cu2S
'Chalcopyrite'2.CB.10aCuFeS2
'Colusite'2.CB.30Cu12VAs3S16
'Covellite'2.CA.05aCuS
'Cubanite'2.CB.55aCuFe2S3
'Digenite'2.BA.10Cu9S5
'Djurleite'2.BA.05Cu31S16
'Enargite'2.KA.05Cu3AsS4
'Famatinite'2.KA.10Cu3SbS4
'Galena'2.CD.10PbS
'Pyrite'2.EB.05aFeS2
Sphalerite2.CB.05aZnS
Stromeyerite2.BA.40AgCuS
Tennantite2.GB.05Cu6[Cu4(Fe,Zn)2]As4S13
Tetrahedrite2.GB.05Cu6[Cu4(Fe,Zn)2]Sb4S13
Wittichenite2.GA.20Cu3BiS3
Group 3 - Halides
'Fluorite'3.AB.25CaF2
Group 4 - Oxides and Hydroxides
'Coronadite'4.DK.05aPb(Mn4+6Mn3+2)O16
'Cryptomelane'4.DK.05aK(Mn4+7Mn3+)O16
'Cuprite'4.AA.10Cu2O
'Groutite'4.FD.10Mn3+O(OH)
'Hematite'4.CB.05Fe2O3
'Lepidocrocite' ?4.FE.15γ-Fe3+O(OH)
'Magnetite'4.BB.05Fe2+Fe3+2O4
'Manganite'4.FD.15Mn3+O(OH)
'Pyrolusite'4.DB.05Mn4+O2
'Quartz'4.DA.05SiO2
Tenorite4.AB.10CuO
Group 5 - Nitrates and Carbonates
'Ankerite'5.AB.10Ca(Fe2+,Mg)(CO3)2
'Azurite'5.BA.05Cu3(CO3)2(OH)2
'Calcite'5.AB.05CaCO3
'Hydrozincite'5.BA.15Zn5(CO3)2(OH)6
'Malachite'5.BA.10Cu2(CO3)(OH)2
'Rhodochrosite'5.AB.05MnCO3
Siderite5.AB.05FeCO3
Group 7 - Sulphates, Chromates, Molybdates and Tungstates
'Baryte'7.AD.35BaSO4
'Brochantite'7.BB.25Cu4(SO4)(OH)6
'Chalcanthite'7.CB.20CuSO4 · 5H2O
'Copiapite'7.DB.35Fe2+Fe3+4(SO4)6(OH)2 · 20H2O
'Coquimbite'7.CB.55Fe2-xAlx(SO4)3 · 9H2O, x ~0.5
'Gypsum'7.CD.40CaSO4 · 2H2O
'Rhomboclase'7.CB.55(H5O2)Fe3+(SO4)2 · 2H2O
Szomolnokite7.CB.05FeSO4 · H2O
Voltaite7.CC.25K2Fe2+5Fe3+3Al(SO4)12 · 18H2O
Wulfenite7.GA.05Pb(MoO4)
Group 8 - Phosphates, Arsenates and Vanadates
'Olivenite'8.BB.30Cu2(AsO4)(OH)
Vanadinite8.BN.05Pb5(VO4)3Cl
Group 9 - Silicates
'Chrysocolla'9.ED.20Cu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
'Dioptase'9.CJ.30CuSiO3 · H2O
'Grossular'9.AD.25Ca3Al2(SiO4)3
'Halloysite'9.ED.10Al2(Si2O5)(OH)4
'Hemimorphite'9.BD.10Zn4Si2O7(OH)2 · H2O
'Muscovite'9.EC.15KAl2(AlSi3O10)(OH)2
var: Sericite9.EC.15KAl2(AlSi3O10)(OH)2
'Sauconite'9.EC.45Na0.3Zn3((Si,Al)4O10)(OH)2 · 4H2O
Unclassified Minerals, Rocks, etc.
'Limonite'-(Fe,O,OH,H2O)
'Psilomelane'-
Wad-

List of minerals arranged by Dana 8th Edition classification

Group 1 - NATIVE ELEMENTS AND ALLOYS
Metals, other than the Platinum Group
Copper1.1.1.3Cu
Gold1.1.1.1Au
Silver1.1.1.2Ag
Group 2 - SULFIDES
AmBnXp, with (m+n):p = 2:1
Chalcocite2.4.7.1Cu2S
Digenite2.4.7.3Cu9S5
Djurleite2.4.7.2Cu31S16
Stromeyerite2.4.6.1AgCuS
AmBnXp, with (m+n):p = 3:2
Bornite2.5.2.1Cu5FeS4
AmXp, with m:p = 1:1
Covellite2.8.12.1CuS
Galena2.8.1.1PbS
Sphalerite2.8.2.1ZnS
AmBnXp, with (m+n):p = 1:1
Chalcopyrite2.9.1.1CuFeS2
Cubanite2.9.13.1CuFe2S3
AmBnXp, with (m+n):p = 1:2
Pyrite2.12.1.1FeS2
Group 3 - SULFOSALTS
ø > 4
Colusite3.1.1.1Cu12VAs3S16
ø = 4
Enargite3.2.1.1Cu3AsS4
Famatinite3.2.2.2Cu3SbS4
3 <ø < 4
Tennantite3.3.6.2Cu6[Cu4(Fe,Zn)2]As4S13
Tetrahedrite3.3.6.1Cu6[Cu4(Fe,Zn)2]Sb4S13
ø = 3
Wittichenite3.4.8.1Cu3BiS3
Group 4 - SIMPLE OXIDES
A2X
Cuprite4.1.1.1Cu2O
AX
Tenorite4.2.3.1CuO
A2X3
Hematite4.3.1.2Fe2O3
AX2
Pyrolusite4.4.1.4Mn4+O2
Group 6 - HYDROXIDES AND OXIDES CONTAINING HYDROXYL
XO(OH)
Groutite6.1.1.3Mn3+O(OH)
Lepidocrocite ?6.1.2.2γ-Fe3+O(OH)
Manganite6.1.3.1Mn3+O(OH)
Group 7 - MULTIPLE OXIDES
AB2X4
Magnetite7.2.2.3Fe2+Fe3+2O4
AB8X16
Coronadite7.9.1.4Pb(Mn4+6Mn3+2)O16
Cryptomelane7.9.1.2K(Mn4+7Mn3+)O16
Group 9 - NORMAL HALIDES
AX2
Fluorite9.2.1.1CaF2
Group 14 - ANHYDROUS NORMAL CARBONATES
A(XO3)
Calcite14.1.1.1CaCO3
Rhodochrosite14.1.1.4MnCO3
Siderite14.1.1.3FeCO3
AB(XO3)2
Ankerite14.2.1.2Ca(Fe2+,Mg)(CO3)2
Group 16a - ANHYDROUS CARBONATES CONTAINING HYDROXYL OR HALOGEN
Azurite16a.2.1.1Cu3(CO3)2(OH)2
Malachite16a.3.1.1Cu2(CO3)(OH)2
Hydrozincite16a.4.1.1Zn5(CO3)2(OH)6
Group 28 - ANHYDROUS ACID AND NORMAL SULFATES
AXO4
Baryte28.3.1.1BaSO4
Group 29 - HYDRATED ACID AND NORMAL SULFATES
Hydrated Acid Sulfates
Rhomboclase29.1.1.1(H5O2)Fe3+(SO4)2 · 2H2O
AXO4·xH2O
Chalcanthite29.6.7.1CuSO4 · 5H2O
Gypsum29.6.3.1CaSO4 · 2H2O
Szomolnokite29.6.2.2FeSO4 · H2O
A2(XO4)3·H2O
Coquimbite29.8.3.1Fe2-xAlx(SO4)3 · 9H2O, x ~0.5
Miscellaneous
Voltaite29.9.1.1K2Fe2+5Fe3+3Al(SO4)12 · 18H2O
Group 30 - ANHYDROUS SULFATES CONTAINING HYDROXYL OR HALOGEN
(AB)m(XO4)pZq, where m:p>2:1
Brochantite30.1.3.1Cu4(SO4)(OH)6
Group 31 - HYDRATED SULFATES CONTAINING HYDROXYL OR HALOGEN
Miscellaneous
Copiapite31.10.5.1Fe2+Fe3+4(SO4)6(OH)2 · 20H2O
Group 41 - ANHYDROUS PHOSPHATES, ETC.CONTAINING HYDROXYL OR HALOGEN
A2(XO4)Zq
Olivenite41.6.6.1Cu2(AsO4)(OH)
A5(XO4)3Zq
Vanadinite41.8.4.3Pb5(VO4)3Cl
Group 48 - ANHYDROUS MOLYBDATES AND TUNGSTATES
AXO4
Wulfenite48.1.3.1Pb(MoO4)
Group 51 - NESOSILICATES Insular SiO4 Groups Only
Insular SiO4 Groups Only with cations in [6] and >[6] coordination
Grossular51.4.3b.2Ca3Al2(SiO4)3
Group 56 - SOROSILICATES Si2O7 Groups, With Additional O, OH, F and H2O
Si2O7 Groups and O, OH, F, and H2O with cations in [4] coordination
Hemimorphite56.1.2.1Zn4Si2O7(OH)2 · H2O
Group 61 - CYCLOSILICATES Six-Membered Rings
Six-Membered Rings with [Si6O18] rings; possible (OH) and Al substitution
Dioptase61.1.3.1CuSiO3 · H2O
Group 71 - PHYLLOSILICATES Sheets of Six-Membered Rings
Sheets of 6-membered rings with 1:1 layers
'Halloysite'71.1.1.4Al2(Si2O5)(OH)4
Sheets of 6-membered rings with 2:1 layers
Muscovite71.2.2a.1KAl2(AlSi3O10)(OH)2
Sheets of 6-membered rings with 2:1 clays
Sauconite71.3.1b.3Na0.3Zn3((Si,Al)4O10)(OH)2 · 4H2O
Group 74 - PHYLLOSILICATES Modulated Layers
Modulated Layers with joined strips
Chrysocolla74.3.2.1Cu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Group 75 - TECTOSILICATES Si Tetrahedral Frameworks
Si Tetrahedral Frameworks - SiO2 with [4] coordinated Si
Quartz75.1.3.1SiO2
Unclassified Minerals, Rocks, etc.
'Limonite'-(Fe,O,OH,H2O)
Muscovite
var: Sericite
-KAl2(AlSi3O10)(OH)2
'Psilomelane'-
'Wad'-

List of minerals for each chemical element

HHydrogen
H AzuriteCu3(CO3)2(OH)2
H BrochantiteCu4(SO4)(OH)6
H ChalcanthiteCuSO4 · 5H2O
H ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
H CopiapiteFe2+Fe43+(SO4)6(OH)2 · 20H2O
H CoquimbiteFe2-xAlx(SO4)3 · 9H2O, x ~0.5
H DioptaseCuSiO3 · H2O
H GroutiteMn3+O(OH)
H GypsumCaSO4 · 2H2O
H HalloysiteAl2(Si2O5)(OH)4
H HemimorphiteZn4Si2O7(OH)2 · H2O
H HydrozinciteZn5(CO3)2(OH)6
H Lepidocrociteγ-Fe3+O(OH)
H Limonite(Fe,O,OH,H2O)
H MalachiteCu2(CO3)(OH)2
H ManganiteMn3+O(OH)
H MuscoviteKAl2(AlSi3O10)(OH)2
H OliveniteCu2(AsO4)(OH)
H Rhomboclase(H5O2)Fe3+(SO4)2 · 2H2O
H SauconiteNa0.3Zn3((Si,Al)4O10)(OH)2 · 4H2O
H Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
H SzomolnokiteFeSO4 · H2O
H VoltaiteK2Fe52+Fe33+Al(SO4)12 · 18H2O
CCarbon
C AnkeriteCa(Fe2+,Mg)(CO3)2
C AzuriteCu3(CO3)2(OH)2
C CalciteCaCO3
C HydrozinciteZn5(CO3)2(OH)6
C MalachiteCu2(CO3)(OH)2
C RhodochrositeMnCO3
C SideriteFeCO3
OOxygen
O AnkeriteCa(Fe2+,Mg)(CO3)2
O AzuriteCu3(CO3)2(OH)2
O BaryteBaSO4
O BrochantiteCu4(SO4)(OH)6
O CalciteCaCO3
O ChalcanthiteCuSO4 · 5H2O
O ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
O CopiapiteFe2+Fe43+(SO4)6(OH)2 · 20H2O
O CoquimbiteFe2-xAlx(SO4)3 · 9H2O, x ~0.5
O CoronaditePb(Mn64+Mn23+)O16
O CryptomelaneK(Mn74+Mn3+)O16
O CupriteCu2O
O DioptaseCuSiO3 · H2O
O GrossularCa3Al2(SiO4)3
O GroutiteMn3+O(OH)
O GypsumCaSO4 · 2H2O
O HalloysiteAl2(Si2O5)(OH)4
O HematiteFe2O3
O HemimorphiteZn4Si2O7(OH)2 · H2O
O HydrozinciteZn5(CO3)2(OH)6
O Lepidocrociteγ-Fe3+O(OH)
O Limonite(Fe,O,OH,H2O)
O MagnetiteFe2+Fe23+O4
O MalachiteCu2(CO3)(OH)2
O ManganiteMn3+O(OH)
O MuscoviteKAl2(AlSi3O10)(OH)2
O OliveniteCu2(AsO4)(OH)
O PyrolusiteMn4+O2
O QuartzSiO2
O RhodochrositeMnCO3
O Rhomboclase(H5O2)Fe3+(SO4)2 · 2H2O
O SauconiteNa0.3Zn3((Si,Al)4O10)(OH)2 · 4H2O
O Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
O SideriteFeCO3
O SzomolnokiteFeSO4 · H2O
O TenoriteCuO
O VanadinitePb5(VO4)3Cl
O VoltaiteK2Fe52+Fe33+Al(SO4)12 · 18H2O
O WulfenitePb(MoO4)
FFluorine
F FluoriteCaF2
NaSodium
Na SauconiteNa0.3Zn3((Si,Al)4O10)(OH)2 · 4H2O
MgMagnesium
Mg AnkeriteCa(Fe2+,Mg)(CO3)2
AlAluminium
Al ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Al GrossularCa3Al2(SiO4)3
Al HalloysiteAl2(Si2O5)(OH)4
Al MuscoviteKAl2(AlSi3O10)(OH)2
Al SauconiteNa0.3Zn3((Si,Al)4O10)(OH)2 · 4H2O
Al Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
Al VoltaiteK2Fe52+Fe33+Al(SO4)12 · 18H2O
SiSilicon
Si ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Si DioptaseCuSiO3 · H2O
Si GrossularCa3Al2(SiO4)3
Si HalloysiteAl2(Si2O5)(OH)4
Si HemimorphiteZn4Si2O7(OH)2 · H2O
Si MuscoviteKAl2(AlSi3O10)(OH)2
Si QuartzSiO2
Si SauconiteNa0.3Zn3((Si,Al)4O10)(OH)2 · 4H2O
Si Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
SSulfur
S BaryteBaSO4
S BorniteCu5FeS4
S BrochantiteCu4(SO4)(OH)6
S ChalcanthiteCuSO4 · 5H2O
S ChalcociteCu2S
S ChalcopyriteCuFeS2
S ColusiteCu12VAs3S16
S CopiapiteFe2+Fe43+(SO4)6(OH)2 · 20H2O
S CoquimbiteFe2-xAlx(SO4)3 · 9H2O, x ~0.5
S CovelliteCuS
S CubaniteCuFe2S3
S DigeniteCu9S5
S DjurleiteCu31S16
S EnargiteCu3AsS4
S FamatiniteCu3SbS4
S GalenaPbS
S GypsumCaSO4 · 2H2O
S PyriteFeS2
S Rhomboclase(H5O2)Fe3+(SO4)2 · 2H2O
S SphaleriteZnS
S StromeyeriteAgCuS
S SzomolnokiteFeSO4 · H2O
S TennantiteCu6[Cu4(Fe,Zn)2]As4S13
S TetrahedriteCu6[Cu4(Fe,Zn)2]Sb4S13
S VoltaiteK2Fe52+Fe33+Al(SO4)12 · 18H2O
S WitticheniteCu3BiS3
ClChlorine
Cl VanadinitePb5(VO4)3Cl
KPotassium
K CryptomelaneK(Mn74+Mn3+)O16
K MuscoviteKAl2(AlSi3O10)(OH)2
K Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
K VoltaiteK2Fe52+Fe33+Al(SO4)12 · 18H2O
CaCalcium
Ca AnkeriteCa(Fe2+,Mg)(CO3)2
Ca CalciteCaCO3
Ca FluoriteCaF2
Ca GrossularCa3Al2(SiO4)3
Ca GypsumCaSO4 · 2H2O
VVanadium
V ColusiteCu12VAs3S16
V VanadinitePb5(VO4)3Cl
MnManganese
Mn CoronaditePb(Mn64+Mn23+)O16
Mn CryptomelaneK(Mn74+Mn3+)O16
Mn GroutiteMn3+O(OH)
Mn ManganiteMn3+O(OH)
Mn PyrolusiteMn4+O2
Mn RhodochrositeMnCO3
FeIron
Fe AnkeriteCa(Fe2+,Mg)(CO3)2
Fe BorniteCu5FeS4
Fe ChalcopyriteCuFeS2
Fe CopiapiteFe2+Fe43+(SO4)6(OH)2 · 20H2O
Fe CoquimbiteFe2-xAlx(SO4)3 · 9H2O, x ~0.5
Fe CubaniteCuFe2S3
Fe HematiteFe2O3
Fe Lepidocrociteγ-Fe3+O(OH)
Fe Limonite(Fe,O,OH,H2O)
Fe MagnetiteFe2+Fe23+O4
Fe PyriteFeS2
Fe Rhomboclase(H5O2)Fe3+(SO4)2 · 2H2O
Fe SideriteFeCO3
Fe SzomolnokiteFeSO4 · H2O
Fe TetrahedriteCu6[Cu4(Fe,Zn)2]Sb4S13
Fe VoltaiteK2Fe52+Fe33+Al(SO4)12 · 18H2O
CuCopper
Cu AzuriteCu3(CO3)2(OH)2
Cu BorniteCu5FeS4
Cu BrochantiteCu4(SO4)(OH)6
Cu ChalcanthiteCuSO4 · 5H2O
Cu ChalcociteCu2S
Cu ChalcopyriteCuFeS2
Cu ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Cu ColusiteCu12VAs3S16
Cu CopperCu
Cu CovelliteCuS
Cu CubaniteCuFe2S3
Cu CupriteCu2O
Cu DigeniteCu9S5
Cu DioptaseCuSiO3 · H2O
Cu DjurleiteCu31S16
Cu EnargiteCu3AsS4
Cu FamatiniteCu3SbS4
Cu MalachiteCu2(CO3)(OH)2
Cu OliveniteCu2(AsO4)(OH)
Cu StromeyeriteAgCuS
Cu TennantiteCu6[Cu4(Fe,Zn)2]As4S13
Cu TenoriteCuO
Cu TetrahedriteCu6[Cu4(Fe,Zn)2]Sb4S13
Cu WitticheniteCu3BiS3
ZnZinc
Zn HemimorphiteZn4Si2O7(OH)2 · H2O
Zn HydrozinciteZn5(CO3)2(OH)6
Zn SauconiteNa0.3Zn3((Si,Al)4O10)(OH)2 · 4H2O
Zn SphaleriteZnS
Zn TetrahedriteCu6[Cu4(Fe,Zn)2]Sb4S13
AsArsenic
As ColusiteCu12VAs3S16
As EnargiteCu3AsS4
As OliveniteCu2(AsO4)(OH)
As TennantiteCu6[Cu4(Fe,Zn)2]As4S13
MoMolybdenum
Mo WulfenitePb(MoO4)
AgSilver
Ag SilverAg
Ag StromeyeriteAgCuS
SbAntimony
Sb FamatiniteCu3SbS4
Sb TetrahedriteCu6[Cu4(Fe,Zn)2]Sb4S13
BaBarium
Ba BaryteBaSO4
AuGold
Au GoldAu
PbLead
Pb CoronaditePb(Mn64+Mn23+)O16
Pb GalenaPbS
Pb VanadinitePb5(VO4)3Cl
Pb WulfenitePb(MoO4)
BiBismuth
Bi WitticheniteCu3BiS3

Regional Geology

This geological map and associated information on rock units at or nearby to the coordinates given for this locality is based on relatively small scale geological maps provided by various national Geological Surveys. This does not necessarily represent the complete geology at this locality but it gives a background for the region in which it is found.

Click on geological units on the map for more information. Click here to view full-screen map on Macrostrat.org

Quaternary - Miocene
0 - 23.03 Ma



ID: 3185380
Cenozoic sedimentary rocks

Age: Cenozoic (0 - 23.03 Ma)

Lithology: Sedimentary rocks

Reference: Chorlton, L.B. Generalized geology of the world: bedrock domains and major faults in GIS format: a small-scale world geology map with an extended geological attribute database. doi: 10.4095/223767. Geological Survey of Canada, Open File 5529. [154]

Olenekian - Ediacaran
247.2 - 635 Ma



ID: 2822829
Paleozoic sedimentary rocks

Age: Neoproterozoic to Triassic (247.2 - 635 Ma)

Description: Undivided Paleozoic limestone, dolostone, quartzite, shale, and related sedimentary rocks. (248-544 Ma)

Lithology: Major:{limestone,dolostone,quartzite}, Minor:{shale}

Reference: Horton, J.D., C.A. San Juan, and D.B. Stoeser. The State Geologic Map Compilation (SGMC) geodatabase of the conterminous United States. doi: 10.3133/ds1052. U.S. Geological Survey Data Series 1052. [133]

Data and map coding provided by Macrostrat.org, used under Creative Commons Attribution 4.0 License

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
Ransome, F.L. (1912) Copper Deposits near Superior, Arizona, USGS Bull. 540: 139, 156-158.
Ransome, F.L. (1914), Copper deposits near Superior, Arizona, USGS Bull. 540-D: 139-158.
Jones, Jr., E.L. & F.L. Ransome (1920), Deposits of manganese ore in Arizona, USGS Bull. 710-D: 159, 162-163.
Bateman, A.M. (1929), Some covellite-chalcocite relationships, Economic Geology: 24: 424-439.
Wilson, E.D. and Butler, G.M. (1930), Arizona Bureau of Mines Bull. 127, Manganese Ore Deposits in Arizona.
Elsing, M.J. and Heineman, E.S. (1936) USGS Bulletin 140: 99.
Harcourt, G.A. (1937), The distinction between enargite and famatinite (luzonite), American Mineralogist: 22: 517-525.
Short, M.N. and Wilson, E. (1938), Some Arizona Ore Deposits, Arizona Bureau of Mines Bull. 145: 90-97.
Fleischer, M. & W.E. Richmond (1943), The manganese oxide minerals: A preliminary report, Economic Geology: 38: 269-286;
Short, M.N., et al (1943), Geology and ore deposits of the Superior mining area, Arizona, Arizona Bureau of Mines Bull. 151.
Palache, C., Berman, H. & Frondel, C. (1944), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume I: Elements, Sulfides, Sulfosalts, Oxides. John Wiley and Sons, Inc., New York. 7th edition, revised and enlarged: 196.
Galbraith, F.W. (1947), Minerals of Arizona, Arizona Bureau of Mines Bull 153: 9, 15, 16, 17, 18, 19, 21, 23, 27, 28.
Wilson, E.D., et al (1950), Arizona zinc and lead deposits, part I, Arizona Bureau of Mines Bull. 156: 84-94.
Galbraith, F.W. & D.J. Brennan (1959), Minerals of Arizona: 31, 40, 46, 53, 72.
Hewett, D.F. & M. Fleischer (1960), Deposits of the manganese oxides, Economic Geology: 55: 1-55.
Farnham, L.L., Stewart, L.A., and Delong, C.W. (1961), Manganese deposits of eastern Arizona, US Bureau of Mines Information Circular 7990: 124, 126, 130-132.
Gustafson, L.B. (1961) Paragenesis and Hypogene Zoning at the Magma Mine, Superior, Arizona, Unpublished dissertation, Harvard University.
Sell, J.D. (1961) Bedding Replacement Deposit of the Magma Mine, Superior, Arizona, MS thesis, University of Arizona.
Hammer, D.F. and Webster, R.N. (1962) Some Geologic Features of the Superior Area, Pinal County, Arizona, New Mexico Geological Society, Thirteenth Field Conference Guidebook: 148-152.
USGS Mineral Investigations Field Studies Map MF-253 (1962).
Hewett, D.F., et al (1963), Deposits of the manganese oxides: supplement, Economic Geology: 58: 1-51.
Brett, R. & R.A. Yund (1964), Sulfur-rich bornites, American Mineralogist: 49: 1084-1098.
Mills, J.W. & H.T. Eyrich (1966), The rate of unconformities in the localization of epigenetic mineral deposits in the United States and Canada, Economic Geology: 61: 1232-1257.
Ridge, John D. (1967) (editor). Ore Deposits in the United States 1933-1967, A.I.M.E. Graton Sales, Volume 2.
Hammer, D.F. & D.W. Peterson (1968), Geology of the Magma mine area, AZ, in J.D. Ridge (editor), Ore deposits of the United States, 1933-1967, A.I.M.E.: 1282-1310.
Morimoto, N. & A. Gyobu (1971), The composition and stability of digenite, American Mineralogist: 56: 1889-1909.
Mineralogical Record (1989): 20(5): 387.
Pierce, L. & P.R. Buseck (1978), Superstructuring in the bornite-digenite series: A high-resolution electron microscopy study, American Mineralogist: 63: 1-15.
Barnes, R. & M. Hay (1983), Famous mineral localities: The Magma Mine, Mineralogical Record: 14: 72-82.
Mining Annual Review (1985): 329.
Niemuth, N.J. & K.A. Phillips (1992), Copper Oxide Resources, Arizona Department of Mines & Mineral Resources Open File Report 92-10: 14 (Table 1).
Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd. ed.: 129, 142, 152, 163, 166, 182, 186, 188, 191, 195, 204, 206, 213, 219, 229, 240, 256, 287, 341, 343, 353, 354, 361, 373, 377, 385, 388, 393, 416, 417, 422.
Arizona Department of Mineral Resources V file.
Arizona Department of Mineral Resources Directory of Active Mines in Arizona 1980: 14.
U.S. Bureau of Land Management Mining District Sheet #608.
U.S. Bureau of Land Management Mining Claims Lead file #60069.
USGS Superior Quadrangle map.
New Mexico Bureau of Mines Bull. 65: 14-15, 29.
MRDS database Dep. ID #10048316, MRDS ID #M89985; and Dep. ID #10069201, MRDS ID #W002674; and Dep. ID 10210793, MAS ID #0040210654; Dep. ID # 10137553, MRDS ID #M899885, MAS ID 0040210038.

Localities in this Region
Show map

USA
  • Arizona
    • Pinal Co.
      • Pinal Mts
        • Pioneer District
          • Superior
            • Magma Mine (Magma Superior Mine; Irene claim; Hub claim; Pomeroy; Superior Division; Silver Queen; Monarch claim; Magma Copper Mine; Broken Hill; Apex)

This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2018, except where stated. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: August 21, 2018 07:05:27 Page generated: August 10, 2018 06:55:06
Go to top of page