ALMOST THERE!. Help us with a final push needed to keep mindat.org running. Click here to help.
Catawiki are hosting a mindat.org benefit auction. All proceeds to mindat.org! BID NOW
Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat Articles
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsThe ElementsUsersBooks & MagazinesMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery

Dr. Geier Mine (Amalienhöhe Mine; Elisenhöhe Mine), Waldalgesheim, Mainz-Bingen, Rhineland-Palatinate, Germanyi
Regional Level Types
Dr. Geier Mine (Amalienhöhe Mine; Elisenhöhe Mine)Mine
Waldalgesheim- not defined -
Mainz-BingenDistrict
Rhineland-PalatinateState
GermanyCountry

This page kindly sponsored by Roger Lang
Key
Lock Map
Name(s) in local language(s):Grube Dr. Geier (Grube Amalienhöhe; Grube Elisenhöhe), Waldalgesheim, Bingen, Hunsrück, Rheinland-Pfalz, Deutschland
Latitude & Longitude (WGS84): 49° 57' 33'' North , 7° 50' 19'' East
Latitude & Longitude (decimal): 49.95917,7.83861
GeoHash:G#: u0vs4qgch
Locality type:Mine
Köppen climate type:Cfb : Temperate oceanic climate


Geology
The iron and manganese ores of the Dr. Geier mine are hosted by Middle Devonian dolostones within an isoclinal through at the southern border of the variscan Rheinisches Schiefergebirge. Genetically they are related to the paleo-karst of the carbonate rocks overlain by marine sands of Oligocene age. Their formation is bound to cavities, caverns, sinkholes and dolines which formed within massive dolomite zones and zones with strong tectonic impact like fractures, joint-sets and bedding planes of the through structure during an uplift-period in the Eocene and the Lower Oligocene.

Up to 50 % of the doline fillings are Tertiary sands and clays. The ores are of mixed iron-manganese type with a Fe: Mn ratio of approx. 2:1. They contain variable amounts of muscovite (10–50%), goethite (30–50%), amorphous Mn oxides (20–30%) and manganite and pyrolusite ("Hartmanganerz", 0–22%). Their formation can be explained by a mixture of descendant colloidal solutions of Fe and Mn hydroxides under oxidizing conditions of the karst hydrography. The Mn and Fe can be deducted from weathered neighboring devonian shales of the Schiefergebirge and the dolomites. The ore grades were 12 – 20 wt.% Mn and averaging 29 wt.% Fe.

History
The oldest reports on manganese mining in the area date from the 17th century. At least since 1808 the Concordia mine near Seibersbach - a few km west of Waldalgesheim - was in operation. In 1832 the Sahler brothers were granted a concession to mine, followed by the Elisenhöhe claim in 1839 and the Waldalgesheim claim in 1840. Contineous mining began in 1880 by the Wandesleben brothers in open cuts. From 1885 Dr. Heinrich Claudius Geier of Mainz started extensive exploration works and sank the first shaft. These activities led to 12 concessions (mining claims) on manganese and iron. In 1904 the Gewerkschaft Braunsteinwerke Dr. Geier was founded and in 1911 all mines and concessions of the Gebr. Wandesleben GmbH (Concordia and Elisenhöhe mines, Waldalgesheim claim) were incorporated. A 7.5 km cableway to the river Rhine was built in 1912 to facilitate the ore transport to the shipping station. 1917 marks the year of the highest Mn ore production (240,853 t). At the same time the construction of the new main shaft was started (Straubenschacht). The ore was used for ironworks and partly as a pigment ore for ceramics. In 1918 673 of 1000 shares of the Gewerkschaft Braunsteinwerke Dr. Geier were acquired by Mannesmannröhren-Werke AG, Düsseldorf, followed by the purchase of another 27 shares in 1926. In 1939 all mining operations were mandated to Mannesmannröhren-Werke AG.
From 1945 to 1950 operations were controlled by the French military government, then management was mandated back to Mannesmann AG. In 1952 the Gewerkschaft Braunsteinwerke Dr. Geier was incorporated into the Gewerkschaft Mannesmann, Düsseldorf. The remaining mines Amalienhöhe, Elisenhöhe and Heerberg were modernized and extended. In the mid of the 1950s the exhaustion of the ore reserves became evident and in 1954 mining of the huge dolomite reserves started. Since 1964 a part of the dolomite was processed to dolomite sinter in rotary furnaces. The products were transported railway-bound via the Rheinstollen gallery to the shipping facility north of Bingen. During these years the mine increasingly suffered from high production costs compared to open pit dolomite mines and finally was not able to compete on the market so in 1971 the mine was closed. In total about 6.4 million tonnes Fe-Mn ore and about 2.5 million tonnes of dolomite had been recovered.

The surface installations of the Straubenschacht site are worth to be specially mentioned. The ensemble is considered to be a most important monument of mining related architecture in Germany. The impressive neo-baroque style site was planned by Markwort & Seibert from Darmstadt. Unfortunately the buildings partly are in a very bad shape today and one can only hope that there will be strong efforts to conserve and restore this outstanding cultural heritage in the near future.

[comp. Roger Lang 2009]

Regions containing this locality

Rhenish Massif, Europe

Massif - 1,169 mineral species & varietal names listed

Hunsrück mountains, Germany

Mountain Range - 256 mineral species & varietal names listed

Select Mineral List Type

Standard Detailed Strunz Dana Chemical Elements

Mineral List


14 valid minerals.

Detailed Mineral List:

Aragonite
Formula: CaCO3
Reference: Berghäuser, M. (2009) Lapis, 34, #3, 13-19.
Calcite
Formula: CaCO3
Reference: Lapis 1979(10), 17
Chalcopyrite
Formula: CuFeS2
Reference: Berghäuser, M. (2009) Lapis, 34, #3, 13-19.
Copper
Formula: Cu
Reference: Berghäuser, M. (2009) Lapis, 34, #3, 13-19.
Dolomite
Formula: CaMg(CO3)2
Reference: Lapis 1979(10), 17
Epsomite
Formula: MgSO4 · 7H2O
Description: Recent formation from mine waters
Reference: XRD analysis, Roger Lang 2006
Gypsum
Formula: CaSO4 · 2H2O
Reference: Berghäuser, M. (2009) Lapis, 34, #3, 13-19.
'Limonite'
Formula: (Fe,O,OH,H2O)
Reference: Lapis 1979(10), 17
Malachite
Formula: Cu2(CO3)(OH)2
Reference: Berghäuser, M. (2009) Lapis, 34, #3, 13-19.
Manganite
Formula: Mn3+O(OH)
Reference: Collection of NHM, Vienna
Pyrite
Formula: FeS2
Reference: Berghäuser, M. (2009) Lapis, 34, #3, 13-19.
Pyrolusite
Formula: Mn4+O2
Reference: Lapis 1979(10), 17
Quartz
Formula: SiO2
Reference: Berghäuser, M. (2009) Lapis, 34, #3, 13-19.
Rhodochrosite
Formula: MnCO3
Reference: Lapis 1979(10), 17
Romanèchite
Formula: (Ba,H2O)2(Mn4+,Mn3+)5O10
Reference: Lapis 1979(10), 17

List of minerals arranged by Strunz 10th Edition classification

Group 1 - Elements
'Copper'1.AA.05Cu
Group 2 - Sulphides and Sulfosalts
'Chalcopyrite'2.CB.10aCuFeS2
'Pyrite'2.EB.05aFeS2
Group 4 - Oxides and Hydroxides
'Manganite'4.FD.15Mn3+O(OH)
'Pyrolusite'4.DB.05Mn4+O2
'Quartz'4.DA.05SiO2
'Romanèchite'4.DK.10(Ba,H2O)2(Mn4+,Mn3+)5O10
Group 5 - Nitrates and Carbonates
'Aragonite'5.AB.15CaCO3
'Calcite'5.AB.05CaCO3
'Dolomite'5.AB.10CaMg(CO3)2
'Malachite'5.BA.10Cu2(CO3)(OH)2
'Rhodochrosite'5.AB.05MnCO3
Group 7 - Sulphates, Chromates, Molybdates and Tungstates
'Epsomite'7.CB.40MgSO4 · 7H2O
'Gypsum'7.CD.40CaSO4 · 2H2O
Unclassified Minerals, Rocks, etc.
'Limonite'-(Fe,O,OH,H2O)

List of minerals arranged by Dana 8th Edition classification

Group 1 - NATIVE ELEMENTS AND ALLOYS
Metals, other than the Platinum Group
Copper1.1.1.3Cu
Group 2 - SULFIDES
AmBnXp, with (m+n):p = 1:1
Chalcopyrite2.9.1.1CuFeS2
AmBnXp, with (m+n):p = 1:2
Pyrite2.12.1.1FeS2
Group 4 - SIMPLE OXIDES
AX2
Pyrolusite4.4.1.4Mn4+O2
Group 6 - HYDROXIDES AND OXIDES CONTAINING HYDROXYL
XO(OH)
Manganite6.1.3.1Mn3+O(OH)
Group 7 - MULTIPLE OXIDES
AB8X16
Romanèchite7.9.2.1(Ba,H2O)2(Mn4+,Mn3+)5O10
Group 14 - ANHYDROUS NORMAL CARBONATES
A(XO3)
Calcite14.1.1.1CaCO3
Rhodochrosite14.1.1.4MnCO3
AB(XO3)2
Dolomite14.2.1.1CaMg(CO3)2
Group 16a - ANHYDROUS CARBONATES CONTAINING HYDROXYL OR HALOGEN
Malachite16a.3.1.1Cu2(CO3)(OH)2
Group 29 - HYDRATED ACID AND NORMAL SULFATES
AXO4·xH2O
Epsomite29.6.11.1MgSO4 · 7H2O
Gypsum29.6.3.1CaSO4 · 2H2O
Group 75 - TECTOSILICATES Si Tetrahedral Frameworks
Si Tetrahedral Frameworks - SiO2 with [4] coordinated Si
Quartz75.1.3.1SiO2
Unclassified Minerals, Rocks, etc.
Aragonite-CaCO3
'Limonite'-(Fe,O,OH,H2O)

List of minerals for each chemical element

HHydrogen
H EpsomiteMgSO4 · 7H2O
H GypsumCaSO4 · 2H2O
H Limonite(Fe,O,OH,H2O)
H MalachiteCu2(CO3)(OH)2
H ManganiteMn3+O(OH)
H Romanèchite(Ba,H2O)2(Mn4+,Mn3+)5O10
CCarbon
C AragoniteCaCO3
C CalciteCaCO3
C DolomiteCaMg(CO3)2
C MalachiteCu2(CO3)(OH)2
C RhodochrositeMnCO3
OOxygen
O AragoniteCaCO3
O CalciteCaCO3
O DolomiteCaMg(CO3)2
O EpsomiteMgSO4 · 7H2O
O GypsumCaSO4 · 2H2O
O Limonite(Fe,O,OH,H2O)
O MalachiteCu2(CO3)(OH)2
O ManganiteMn3+O(OH)
O PyrolusiteMn4+O2
O QuartzSiO2
O RhodochrositeMnCO3
O Romanèchite(Ba,H2O)2(Mn4+,Mn3+)5O10
MgMagnesium
Mg DolomiteCaMg(CO3)2
Mg EpsomiteMgSO4 · 7H2O
SiSilicon
Si QuartzSiO2
SSulfur
S ChalcopyriteCuFeS2
S EpsomiteMgSO4 · 7H2O
S GypsumCaSO4 · 2H2O
S PyriteFeS2
CaCalcium
Ca AragoniteCaCO3
Ca CalciteCaCO3
Ca DolomiteCaMg(CO3)2
Ca GypsumCaSO4 · 2H2O
MnManganese
Mn ManganiteMn3+O(OH)
Mn PyrolusiteMn4+O2
Mn RhodochrositeMnCO3
Mn Romanèchite(Ba,H2O)2(Mn4+,Mn3+)5O10
FeIron
Fe ChalcopyriteCuFeS2
Fe Limonite(Fe,O,OH,H2O)
Fe PyriteFeS2
CuCopper
Cu ChalcopyriteCuFeS2
Cu CopperCu
Cu MalachiteCu2(CO3)(OH)2
BaBarium
Ba Romanèchite(Ba,H2O)2(Mn4+,Mn3+)5O10

Regional Geology

This geological map and associated information on rock units at or nearby to the coordinates given for this locality is based on relatively small scale geological maps provided by various national Geological Surveys. This does not necessarily represent the complete geology at this locality but it gives a background for the region in which it is found.

Click on geological units on the map for more information. Click here to view full-screen map on Macrostrat.org

Oligocene
23.03 - 33.9 Ma



ID: 2617200

Age: Oligocene (23.03 - 33.9 Ma)

Lithology: Clay, silt, sand, gravel; lignite

Reference: Toloczyki, M., P. Trurnit, A. Voges, H. Wittekindt, A. Zitzmann. Geological Map of Germany 1:M. Bundesanstalt für Geowissenschaften und Rohstoffe. [94]

Devonian
358.9 - 419.2 Ma



ID: 3186341
Paleozoic sedimentary rocks

Age: Devonian (358.9 - 419.2 Ma)

Lithology: Sedimentary rocks

Reference: Chorlton, L.B. Generalized geology of the world: bedrock domains and major faults in GIS format: a small-scale world geology map with an extended geological attribute database. doi: 10.4095/223767. Geological Survey of Canada, Open File 5529. [154]

Early Devonian
393.3 - 419.2 Ma



ID: 3159802
Early Devonian quartzite

Age: Early Devonian (393.3 - 419.2 Ma)

Lithology: Major:{quartzite}, Minor{sandstone,shale/slate}

Reference: Asch, K. The 1:5M International Geological Map of Europe and Adjacent Areas: Development and Implementation of a GIS-enabled Concept. Geologisches Jahrbuch, SA 3. [147]

Data and map coding provided by Macrostrat.org, used under Creative Commons Attribution 4.0 License

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
Jüngst (1907) Das Manganeisenerz Vorkommen der Grube Elisenhöhe bei Bingerbrück. Glückauf: 43(32): 993-998. [http://delibra.bg.polsl.pl/Content/10630/P-480_Vol43_No32.pdf]
Vierschilling, A. (1910) Die Eisen- und Manganerzlagerstätten im Hunsrück und Soonwald. Zeitschrift für praktische Geologie: 18: 393-431.
Ermann, O. (1951) Die Eisen- und Manganerzlagerstätten des östlichen Hunsrücks (im Gebiete von Stromberg-Bingerbrück). Der Aufschluss: 2: 85-87.
Bottke, H. (1969) Die Eisenmanganerze der Grube Dr. Geier bei Bingen/Rhein als Verwitterungsbildungen des Mangans vom Typ Lindener Mark. Mineralium Deposita: 4: 355-367.
Rosenberger, W. (1971) Beschreibung rheinland-pfälzischer Bergamtsbezirke. Bad Marienberg: 3: 1971.
Leyerzapf, H. (1979) Erloschene Rhodochrosit-Vorkommen im Odenwald, Lahngebiet und Soonwald. Lapis: 4(10): 17.
Klemp, K. (1987) Grube Dr. Geier - Monument des deutschen Erzbergbaus. Biebertal, xx pp.
Berghäuser, M. (2009) Rhodochrosit und seine Begleitmineralien aus der Grube "Dr. Geier" im Hunsrück. Lapis: 34(3): 13-19.
Verein der Heimatfreunde Waldalgesheim e. V. (2009) Waldalgesheim und seine Erzgruben. Waldalesheimer kleine Schriften: Bd. 5: 328 pp.

External Links



This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2018, except where stated. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: December 12, 2018 14:06:47 Page generated: December 12, 2018 03:51:32
Go to top of page