IMPORTANT MESSAGE. We need your support now to keep mindat.org running. Click here to find out why.
Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for Educators
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsThe ElementsUsersBooks & MagazinesMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery

Sunnyside Mine group (American Tunnel Mine; American Tunnel; Gold King Mine; Washington Mine; Belle Creole; Gold Prince; Brenneman Mine; Mogul Mine), Bonita Peak, Gladstone, Eureka District, San Juan Co., Colorado, USA

This page is currently not sponsored. Click here to sponsor this page.
Key
Lock Map
Latitude & Longitude (WGS84): 37° 54' 11'' North , 107° 36' 41'' West
Latitude & Longitude (decimal): 37.90306,-107.61139
GeoHash:G#: 9werxhpc2
Köppen climate type:Dfc : Subarctic climate


A former Au-Pb-Mn-Ag-Zn-Cu mine located in sec. 14, T42N, R7W, NMM, 1.0 km (3,400 feet) E of Bonita Peak (coordinates of record) and about 2 miles just N of E of Gladstone, on patented (private) land (private lease/located claim).

The Sunnyside Mine worked veins associated with the Eureka graben, a volcanic collapse structure connecting the Silverton and Lake City calderas. The veins are multi-generational fissure fillings with ore shoots often localized by fault intersections. Burbank and Luedke (1969) present an extensive description of the geology of the area and of the vein system.

The Sunnyside Mine started in the late 1880's and closed 1930. Reopened 1937 and closed 1938. The original surface plant was on the shore of Lake Emma in a glacial cirque east of Bonita peak above 12000 feet. In the late 1890's an aerial tramway was constructed to bring the ore to the Sunnyside Mill at Eureka, 3 miles east of and 2000 feet below the mine.

American tunnel was originally part of the Gold King Mine at Gladstone. On USGS topographic maps it is still labeled as such. Begun in 1900 some 800 feet beneath level 7, the Gold King's main operating level, it was only driven in about 700 ft. In 1922-3 the American tunnel was extended to 6233 feet from the portal, to a point beneath the Gold King's main workings, but the mine closed before any other development work could be done.

After a long period of dormancy Standard Metals became the operating entity of the Sunnyside Mine and decided to access it from beneath through the American tunnel. Between 1959 and 1962 the tunnel was driven nearly another mile to a point 1800 feet beneath the old workings of the Sunnyside Mine, a final length of approximately 11000 feet,. The American tunnel provided deep drainage and gravity assisted ore handling solving 2 major problems that had greatly increased costs and led to the demise of the original Sunnyside mine nearly 25 years earlier.

On June 4th, 1978 (fortunately a Sunday) the bottom of Lake Emma collapsed into the upper mine workings sending a slurry of mud and debris through most of the workings. Production resumed after about 2 years of rehabilitation and the operation stumbled on through poor economic times until early in 1985 when Standard Metals sold the property. Production continued under the new operating entity, Sunnyside Gold Corp., a subsidiary of Echo Bay Mines, Ltd. Like many mines in this area and elsewhere the Sunnyside had a long history of changing ownership. Past owners include: R.J. McNutt; M.M. Engleman& L.C. Thompson; L.C. Thompson & Frank Thompson; Judge John H. Terry (1900-1910); 2 sons and daughter of Judge Terry (1910-1917); United States Smelting & Refining Co. (1917- ); Standard Uranium (which formed Standard Metals Corp.)(lessee)(1959-1985).

Except for a 2 year rehabilitation hiatus in the wake of the Lake Emma disaster, the Sunnyside mine produced ore through the American tunnel until 1991 when depressed gold and base metal prices turned more ore into rock than could be tolerated.

In recent years the main concern in the area is the acid drainage discharging from the American Tunnel and many other adits in the region. Bulkheads were installed in the American Tunnel to stem the flow but the loss of deep drainage in the area has caused adjustments in the water table over a larger area because of interconnected mine workings or the pervasive fracturing. Although the Gold King Mine was never connected to the American Tunnel by raises or other workings, after the American Tunnel was plugged water drainage from the level 7 adit increased considerably. Remediation efforts led to a large spill of acid water and sludge in 2015. A paper entitled “Technical Evaluation of the Gold King Mine Incident” was produced by the U.S. Department of the Interior, Bureau of Reclamation, Technical Service Center. It contains lots of information including maps of the American Tunnel and other mine workings in the area.

Many old reports exist which claim rhodonite is common at this location. Modern methods of identification including X-ray diffraction of both massive and crystallized specimens show they are pyroxmangite.

Resource-reserves data: Type In-situ; year: 1991; demonstrated: 264,000 metric tons ore, indicated: 264,000 metric tons ore; total resources: 264,000 metric tons ore.

Resource details: Au 5.680000 g/mt (1991).

NOTE: There are many incomplete references and some references with cryptic data. They have been clarified as best as possible at this point, pending further research. This is not a Mindat problem, but rather, a USGS MRDS presentation of the data.

Regions containing this locality

Rocky Mountains, North America

Mountain Range - 2,058 mineral species & varietal names listed

Select Mineral List Type

Standard Detailed Strunz Dana Chemical Elements

Mineral List


41 valid minerals.

Detailed Mineral List:

Acanthite
Formula: Ag2S
Reference: USGS (2005), Mineral Resources Data System (MRDS): U.S. Geological Survey, Reston, Virginia, loc. file ID #10167210.
Aikinite
Formula: PbCuBiS3
Reference: Rocks & Min.: 63: 366-384.; Minerals of Colorado (1997) E.B. Eckel
Alabandite
Formula: MnS
Reference: Rocks & Min.: 63: 366-384.
Alleghanyite
Formula: Mn2+5(SiO4)2(OH)2
Reference: Rocks & Min.: 63: 366-384.
Anhydrite
Formula: CaSO4
Reference: Rocks & Min.: 63: 366-384.
'Apatite'
Reference: Robert Stoufer collection
Baryte
Formula: BaSO4
Reference: Rocks & Min.: 63: 366-384.
Bornite
Formula: Cu5FeS4
Reference: Rocks & Min.: 63: 366-384.; Minerals of Colorado (1997) E.B. Eckel
Calaverite
Formula: AuTe2
Reference: Rocks & Min.: 63: 366-384.
Calcite
Formula: CaCO3
Reference: Rocks & Min.: 63: 366-384.; Ransome, Frederick Leslie (1901) A report on the economic geology of the Silverton quadrangle, Colorado. USGS Bull 182; USGS (2005), Mineral Resources Data System (MRDS): U.S. Geological Survey, Reston, Virginia, loc. file ID #10167210.
Chalcopyrite
Formula: CuFeS2
Reference: Rocks & Min.: 63: 366-384.; Ransome, Frederick Leslie (1901) A report on the economic geology of the Silverton quadrangle, Colorado. USGS Bull 182; USGS (2005), Mineral Resources Data System (MRDS): U.S. Geological Survey, Reston, Virginia, loc. file ID #10167210.
'Chlorite Group'
Reference: USGS (2005), Mineral Resources Data System (MRDS): U.S. Geological Survey, Reston, Virginia, loc. file ID #10167210.
Copper
Formula: Cu
Reference: Rocks & Min.: 63: 366-384.
'Electrum'
Formula: (Au, Ag)
Reference: Rocks & Min.: 63: 366-384.
Epidote
Formula: {Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Reference: USGS (2005), Mineral Resources Data System (MRDS): U.S. Geological Survey, Reston, Virginia, loc. file ID #10167210.
Fluorite
Formula: CaF2
Habit: sharp octahedrons
Colour: grass-green,gray-green,pale lavender,grayish-lavender
Reference: Rocks & Min.: 63: 366-384, 71:165-166; 2009 New Mexico Mineral Symposium abstracts; Ransome, Frederick Leslie (1901) A report on the economic geology of the Silverton quadrangle, Colorado. USGS Bull 182; Minerals of Colorado (1997) E.B. Eckel
Freibergite
Formula: Ag6[Cu4Fe2]Sb4S13-x
Reference: Rocks & Min.: 63: 366-384.
Friedelite
Formula: Mn2+8Si6O15(OH,Cl)10
Reference: Rocks & Min.: 63: 366-384.
Galena
Formula: PbS
Reference: Rocks & Min.: 63: 366-384.; Ransome, Frederick Leslie (1901) A report on the economic geology of the Silverton quadrangle, Colorado. USGS Bull 182; USGS (2005), Mineral Resources Data System (MRDS): U.S. Geological Survey, Reston, Virginia, loc. file ID #10167210.
Gersdorffite
Formula: NiAsS
Reference: Minerals of Colorado (1997) Eckel, E. B.
Gold
Formula: Au
Reference: the Book "Colorado Gold" by Allen Bird (ex manager of the mine); Rocks & Min.: 63: 366-384.; Ransome, Frederick Leslie (1901) A report on the economic geology of the Silverton quadrangle, Colorado. USGS Bull 182; Minerals of Colorado (1997) Eckel, E. B.
Gypsum
Formula: CaSO4 · 2H2O
Reference: Rocks & Min.: 63: 366-384.
Gypsum var: Selenite
Formula: CaSO4 · 2H2O
Reference: Rocks & Minerals 75:306-307
Helvine
Formula: Be3Mn2+4(SiO4)3S
Reference: Rocks & Min.: 63: 366-384.
Hematite
Formula: Fe2O3
Reference: Rocks & Min.: 63: 366-384.
Hübnerite
Formula: MnWO4
Habit: Crystals to 3cm
Reference: Rocks & Min.: 63: 366-384.; 2009 New Mexico Mineral Symposium abstracts
Kaolinite
Formula: Al2(Si2O5)(OH)4
Reference: USGS (2005), Mineral Resources Data System (MRDS): U.S. Geological Survey, Reston, Virginia, loc. file ID #10167210.
'K Feldspar'
Reference: Rocks & Min.: 63: 366-384.; USGS (2005), Mineral Resources Data System (MRDS): U.S. Geological Survey, Reston, Virginia, loc. file ID #10167210.
'K Feldspar var: Adularia'
Formula: KAlSi3O8
Reference: Rocks & Min.: 63: 366-384.; USGS (2005), Mineral Resources Data System (MRDS): U.S. Geological Survey, Reston, Virginia, loc. file ID #10167210.
Kutnohorite
Formula: CaMn2+(CO3)2
Reference: Rocks & Min.: 63: 366-384.
Linarite
Formula: PbCu(SO4)(OH)2
Reference: In the collection of Brent Thorne. Collected by Robert Stoufer. Acquired from Colorado Minerals. EDS and XRD analyzed.
Minohlite
Formula: (Cu,Zn)7(SO4)2(OH)10•8H2O
Reference: In the collection of Brent Thorne. Collected by Robert Stoufer. Acquired from Colorado Minerals. EDS and XRD analyzed.
Molybdenite
Formula: MoS2
Reference: Rocks & Min.: 63: 366-384.
Muscovite
Formula: KAl2(AlSi3O10)(OH)2
Reference: Rocks & Min.: 63: 366-384.
Muscovite var: Sericite
Formula: KAl2(AlSi3O10)(OH)2
Reference: Rocks & Min.: 63: 366-384.; USGS (2005), Mineral Resources Data System (MRDS): U.S. Geological Survey, Reston, Virginia, loc. file ID #10167210.
Nantokite
Formula: CuCl
Reference: PXRD by John Attard
Petzite
Formula: Ag3AuTe2
Reference: Rocks & Min.: 63: 366-384.
Pyrite
Formula: FeS2
Reference: Rocks & Min.: 63: 366-384.; Ransome, Frederick Leslie (1901) A report on the economic geology of the Silverton quadrangle, Colorado. USGS Bull 182; USGS (2005), Mineral Resources Data System (MRDS): U.S. Geological Survey, Reston, Virginia, loc. file ID #10167210.
Pyroxmangite
Formula: MnSiO3
Reference: Rocks & Min.: 63: 366-384.
Pyrrhotite
Formula: Fe7S8
Reference: Rocks & Min.: 63: 366-384.
Quartz
Formula: SiO2
Reference: Minerals of Colorado (1997) Eckel, E. B.; Rocks & Min.: 63: 366-384.; Ransome, Frederick Leslie (1901) A report on the economic geology of the Silverton quadrangle, Colorado. USGS Bull 182
Quartz var: Amethyst
Formula: SiO2
Reference: Rocks & Min.: 63: 366-384.
Quartz var: Milky Quartz
Formula: SiO2
Reference: Minerals of Colorado (1997) E.B. Eckel
Rhodochrosite
Formula: MnCO3
Description: fig. 6, 7, 8, 9 & 10
Reference: Minerals of Colorado (1997) Eckel, E. B.; Rocks & Min.: 63: 366-384; 71:165-166; 2009 New Mexico Mineral Symposium abstracts; Ransome, Frederick Leslie (1901) A report on the economic geology of the Silverton quadrangle, Colorado. USGS Bull 182
Rhodonite
Formula: Mn2+SiO3
Description: The Mineralogy of Colorado (1997) unequivocally states that all of the rhodonite from this location and tested by modern methods is pyroxmangite.
Reference: Minerals of Colorado (1997) Eckel, E. B.; Ransome, Frederick Leslie (1901) A report on the economic geology of the Silverton quadrangle, Colorado. USGS Bull 182; USGS (2005), Mineral Resources Data System (MRDS): U.S. Geological Survey, Reston, Virginia, loc. file ID #10167210.
Silver
Formula: Ag
Reference: the Book "Colorado Gold" by Allen Bird (ex manager of the mine)
Spessartine
Formula: Mn2+3Al2(SiO4)3
Reference: Rocks & Min.: 63: 366-384.
Sphalerite
Formula: ZnS
Reference: Rocks & Min.: 63: 366-384.; Ransome, Frederick Leslie (1901) A report on the economic geology of the Silverton quadrangle, Colorado. USGS Bull 182; USGS (2005), Mineral Resources Data System (MRDS): U.S. Geological Survey, Reston, Virginia, loc. file ID #10167210.
Tephroite
Formula: Mn2+2SiO4
Reference: Rocks & Min.: 63: 366-384.
Tetrahedrite
Formula: Cu6[Cu4(Fe,Zn)2]Sb4S13
Reference: Rocks & Min.: 63: 366-384.; Ransome, Frederick Leslie (1901) A report on the economic geology of the Silverton quadrangle, Colorado. USGS Bull 182; Minerals of Colorado (1997) E.B. Eckel

List of minerals arranged by Strunz 10th Edition classification

Group 1 - Elements
Copper1.AA.05Cu
Electrum1.AA.05(Au, Ag)
Gold1.AA.05Au
Silver1.AA.05Ag
Group 2 - Sulphides and Sulfosalts
'Acanthite'2.BA.35Ag2S
'Aikinite'2.HB.05aPbCuBiS3
'Alabandite'2.CD.10MnS
Bornite2.BA.15Cu5FeS4
Calaverite2.EA.10AuTe2
Chalcopyrite2.CB.10aCuFeS2
Freibergite2.GB.05Ag6[Cu4Fe2]Sb4S13-x
Galena2.CD.10PbS
Gersdorffite2.EB.25NiAsS
Molybdenite2.EA.30MoS2
Petzite2.BA.75Ag3AuTe2
Pyrite2.EB.05aFeS2
Pyrrhotite2.CC.10Fe7S8
Sphalerite2.CB.05aZnS
Tetrahedrite2.GB.05Cu6[Cu4(Fe,Zn)2]Sb4S13
Group 3 - Halides
Fluorite3.AB.25CaF2
Nantokite3.AA.05CuCl
Group 4 - Oxides and Hydroxides
Hematite4.CB.05Fe2O3
Hübnerite4.DB.30MnWO4
Quartz4.DA.05SiO2
var: Amethyst4.DA.05SiO2
var: Milky Quartz4.DA.05SiO2
Group 5 - Nitrates and Carbonates
Calcite5.AB.05CaCO3
Kutnohorite5.AB.10CaMn2+(CO3)2
Rhodochrosite5.AB.05MnCO3
Group 7 - Sulphates, Chromates, Molybdates and Tungstates
Anhydrite7.AD.30CaSO4
Baryte7.AD.35BaSO4
Gypsum7.CD.40CaSO4 · 2H2O
var: Selenite7.CD.40CaSO4 · 2H2O
Linarite7.BC.65PbCu(SO4)(OH)2
Group 9 - Silicates
'Alleghanyite'9.AF.45Mn2+5(SiO4)2(OH)2
Epidote9.BG.05a{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Friedelite9.EE.10Mn2+8Si6O15(OH,Cl)10
Helvine9.FB.10Be3Mn2+4(SiO4)3S
Kaolinite9.ED.05Al2(Si2O5)(OH)4
Muscovite9.EC.15KAl2(AlSi3O10)(OH)2
var: Sericite9.EC.15KAl2(AlSi3O10)(OH)2
Pyroxmangite9.DO.05MnSiO3
Rhodonite9.DK.05Mn2+SiO3
Spessartine9.AD.25Mn2+3Al2(SiO4)3
Tephroite9.AC.05Mn2+2SiO4
Unclassified Minerals, Rocks, etc.
Apatite-
Chlorite Group-
K Feldspar-
'var: Adularia'-KAlSi3O8
Minohlite-(Cu,Zn)7(SO4)2(OH)10•8H2O

List of minerals arranged by Dana 8th Edition classification

Group 1 - NATIVE ELEMENTS AND ALLOYS
Metals, other than the Platinum Group
Copper1.1.1.3Cu
Gold1.1.1.1Au
Silver1.1.1.2Ag
Group 2 - SULFIDES
AmBnXp, with (m+n):p = 2:1
Acanthite2.4.1.1Ag2S
Petzite2.4.3.3Ag3AuTe2
AmBnXp, with (m+n):p = 3:2
Bornite2.5.2.1Cu5FeS4
AmXp, with m:p = 1:1
Alabandite2.8.1.4MnS
Galena2.8.1.1PbS
Pyrrhotite2.8.10.1Fe7S8
Sphalerite2.8.2.1ZnS
AmBnXp, with (m+n):p = 1:1
Chalcopyrite2.9.1.1CuFeS2
AmBnXp, with (m+n):p = 1:2
Calaverite2.12.13.2AuTe2
Gersdorffite2.12.3.2NiAsS
Molybdenite2.12.10.1MoS2
Pyrite2.12.1.1FeS2
Group 3 - SULFOSALTS
3 <ø < 4
Freibergite3.3.6.3Ag6[Cu4Fe2]Sb4S13-x
Tetrahedrite3.3.6.1Cu6[Cu4(Fe,Zn)2]Sb4S13
ø = 3
Aikinite3.4.5.1PbCuBiS3
Group 4 - SIMPLE OXIDES
A2X3
Hematite4.3.1.2Fe2O3
Group 9 - NORMAL HALIDES
AX
Nantokite9.1.7.1CuCl
AX2
Fluorite9.2.1.1CaF2
Group 14 - ANHYDROUS NORMAL CARBONATES
A(XO3)
Calcite14.1.1.1CaCO3
Rhodochrosite14.1.1.4MnCO3
AB(XO3)2
Kutnohorite14.2.1.3CaMn2+(CO3)2
Group 28 - ANHYDROUS ACID AND NORMAL SULFATES
AXO4
Anhydrite28.3.2.1CaSO4
Baryte28.3.1.1BaSO4
Group 29 - HYDRATED ACID AND NORMAL SULFATES
AXO4·xH2O
Gypsum29.6.3.1CaSO4 · 2H2O
Group 30 - ANHYDROUS SULFATES CONTAINING HYDROXYL OR HALOGEN
(AB)2(XO4)Zq
Linarite30.2.3.1PbCu(SO4)(OH)2
Group 48 - ANHYDROUS MOLYBDATES AND TUNGSTATES
AXO4
Hübnerite48.1.1.1MnWO4
Group 51 - NESOSILICATES Insular SiO4 Groups Only
Insular SiO4 Groups Only with all cations in octahedral [6] coordination
Tephroite51.3.1.4Mn2+2SiO4
Insular SiO4 Groups Only with cations in [6] and >[6] coordination
Spessartine51.4.3a.3Mn2+3Al2(SiO4)3
Group 52 - NESOSILICATES Insular SiO4 Groups and O,OH,F,H2O
Insular SiO4 Groups and O, OH, F, and H2O with cations in [6] coordination only
Alleghanyite52.3.2b.1Mn2+5(SiO4)2(OH)2
Group 58 - SOROSILICATES Insular, Mixed, Single, and Larger Tetrahedral Groups
Insular, Mixed, Single, and Larger Tetrahedral Groups with cations in [6] and higher coordination; single and double groups (n = 1, 2)
Epidote58.2.1a.7{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Group 65 - INOSILICATES Single-Width,Unbranched Chains,(W=1)
Single-Width Unbranched Chains, W=1 with chains P=5
Rhodonite65.4.1.1Mn2+SiO3
Single-Width Unbranched Chains, W=1 with chains P=7
Pyroxmangite65.6.1.1MnSiO3
Group 71 - PHYLLOSILICATES Sheets of Six-Membered Rings
Sheets of 6-membered rings with 2:1 layers
Muscovite71.2.2a.1KAl2(AlSi3O10)(OH)2
Group 72 - PHYLLOSILICATES Two-Dimensional Infinite Sheets with Other Than Six-Membered Rings
Two-Dimensional Infinite Sheets with Other Than Six-Membered Rings with 4-, 6-, and 12-membered rings
Friedelite72.4.1b.1Mn2+8Si6O15(OH,Cl)10
Group 75 - TECTOSILICATES Si Tetrahedral Frameworks
Si Tetrahedral Frameworks - SiO2 with [4] coordinated Si
Quartz75.1.3.1SiO2
Group 76 - TECTOSILICATES Al-Si Framework
Al-Si Framework Feldspathoids and related species
Helvine76.2.4.1Be3Mn2+4(SiO4)3S
Unclassified Minerals, Rocks, etc.
'Apatite'-
'Chlorite Group'-
'Electrum'-(Au, Ag)
Gypsum
var: Selenite
-CaSO4 · 2H2O
'K Feldspar'-
'var: Adularia'-KAlSi3O8
Kaolinite-Al2(Si2O5)(OH)4
Minohlite-(Cu,Zn)7(SO4)2(OH)10•8H2O
Muscovite
var: Sericite
-KAl2(AlSi3O10)(OH)2
Quartz
var: Amethyst
-SiO2
var: Milky Quartz-SiO2

List of minerals for each chemical element

HHydrogen
H AlleghanyiteMn52+(SiO4)2(OH)2
H Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
H FriedeliteMn82+Si6O15(OH,Cl)10
H GypsumCaSO4 · 2H2O
H KaoliniteAl2(Si2O5)(OH)4
H LinaritePbCu(SO4)(OH)2
H Minohlite(Cu,Zn)7(SO4)2(OH)10•8H2O
H MuscoviteKAl2(AlSi3O10)(OH)2
H Gypsum (var: Selenite)CaSO4 · 2H2O
H Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
BeBeryllium
Be HelvineBe3Mn42+(SiO4)3S
CCarbon
C CalciteCaCO3
C KutnohoriteCaMn2+(CO3)2
C RhodochrositeMnCO3
OOxygen
O K Feldspar (var: Adularia)KAlSi3O8
O AlleghanyiteMn52+(SiO4)2(OH)2
O Quartz (var: Amethyst)SiO2
O AnhydriteCaSO4
O BaryteBaSO4
O CalciteCaCO3
O Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
O FriedeliteMn82+Si6O15(OH,Cl)10
O GypsumCaSO4 · 2H2O
O HelvineBe3Mn42+(SiO4)3S
O HematiteFe2O3
O HübneriteMnWO4
O KaoliniteAl2(Si2O5)(OH)4
O KutnohoriteCaMn2+(CO3)2
O LinaritePbCu(SO4)(OH)2
O Quartz (var: Milky Quartz)SiO2
O Minohlite(Cu,Zn)7(SO4)2(OH)10•8H2O
O MuscoviteKAl2(AlSi3O10)(OH)2
O PyroxmangiteMnSiO3
O QuartzSiO2
O RhodochrositeMnCO3
O RhodoniteMn2+SiO3
O Gypsum (var: Selenite)CaSO4 · 2H2O
O Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
O SpessartineMn32+Al2(SiO4)3
O TephroiteMn22+SiO4
FFluorine
F FluoriteCaF2
AlAluminium
Al K Feldspar (var: Adularia)KAlSi3O8
Al Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Al KaoliniteAl2(Si2O5)(OH)4
Al MuscoviteKAl2(AlSi3O10)(OH)2
Al Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
Al SpessartineMn32+Al2(SiO4)3
SiSilicon
Si K Feldspar (var: Adularia)KAlSi3O8
Si AlleghanyiteMn52+(SiO4)2(OH)2
Si Quartz (var: Amethyst)SiO2
Si Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Si FriedeliteMn82+Si6O15(OH,Cl)10
Si HelvineBe3Mn42+(SiO4)3S
Si KaoliniteAl2(Si2O5)(OH)4
Si Quartz (var: Milky Quartz)SiO2
Si MuscoviteKAl2(AlSi3O10)(OH)2
Si PyroxmangiteMnSiO3
Si QuartzSiO2
Si RhodoniteMn2+SiO3
Si Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
Si SpessartineMn32+Al2(SiO4)3
Si TephroiteMn22+SiO4
SSulfur
S AcanthiteAg2S
S AikinitePbCuBiS3
S AlabanditeMnS
S AnhydriteCaSO4
S BaryteBaSO4
S BorniteCu5FeS4
S ChalcopyriteCuFeS2
S FreibergiteAg6[Cu4Fe2]Sb4S13-x
S GalenaPbS
S GersdorffiteNiAsS
S GypsumCaSO4 · 2H2O
S HelvineBe3Mn42+(SiO4)3S
S LinaritePbCu(SO4)(OH)2
S Minohlite(Cu,Zn)7(SO4)2(OH)10•8H2O
S MolybdeniteMoS2
S PyriteFeS2
S PyrrhotiteFe7S8
S Gypsum (var: Selenite)CaSO4 · 2H2O
S SphaleriteZnS
S TetrahedriteCu6[Cu4(Fe,Zn)2]Sb4S13
ClChlorine
Cl FriedeliteMn82+Si6O15(OH,Cl)10
Cl NantokiteCuCl
KPotassium
K K Feldspar (var: Adularia)KAlSi3O8
K MuscoviteKAl2(AlSi3O10)(OH)2
K Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
CaCalcium
Ca AnhydriteCaSO4
Ca CalciteCaCO3
Ca Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Ca FluoriteCaF2
Ca GypsumCaSO4 · 2H2O
Ca KutnohoriteCaMn2+(CO3)2
Ca Gypsum (var: Selenite)CaSO4 · 2H2O
MnManganese
Mn AlabanditeMnS
Mn AlleghanyiteMn52+(SiO4)2(OH)2
Mn FriedeliteMn82+Si6O15(OH,Cl)10
Mn HelvineBe3Mn42+(SiO4)3S
Mn HübneriteMnWO4
Mn KutnohoriteCaMn2+(CO3)2
Mn PyroxmangiteMnSiO3
Mn RhodochrositeMnCO3
Mn RhodoniteMn2+SiO3
Mn SpessartineMn32+Al2(SiO4)3
Mn TephroiteMn22+SiO4
FeIron
Fe BorniteCu5FeS4
Fe ChalcopyriteCuFeS2
Fe Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Fe FreibergiteAg6[Cu4Fe2]Sb4S13-x
Fe HematiteFe2O3
Fe PyriteFeS2
Fe PyrrhotiteFe7S8
Fe TetrahedriteCu6[Cu4(Fe,Zn)2]Sb4S13
NiNickel
Ni GersdorffiteNiAsS
CuCopper
Cu AikinitePbCuBiS3
Cu BorniteCu5FeS4
Cu ChalcopyriteCuFeS2
Cu CopperCu
Cu FreibergiteAg6[Cu4Fe2]Sb4S13-x
Cu LinaritePbCu(SO4)(OH)2
Cu Minohlite(Cu,Zn)7(SO4)2(OH)10•8H2O
Cu NantokiteCuCl
Cu TetrahedriteCu6[Cu4(Fe,Zn)2]Sb4S13
ZnZinc
Zn Minohlite(Cu,Zn)7(SO4)2(OH)10•8H2O
Zn SphaleriteZnS
Zn TetrahedriteCu6[Cu4(Fe,Zn)2]Sb4S13
AsArsenic
As GersdorffiteNiAsS
MoMolybdenum
Mo MolybdeniteMoS2
AgSilver
Ag AcanthiteAg2S
Ag Electrum(Au, Ag)
Ag FreibergiteAg6[Cu4Fe2]Sb4S13-x
Ag PetziteAg3AuTe2
Ag SilverAg
SbAntimony
Sb FreibergiteAg6[Cu4Fe2]Sb4S13-x
Sb TetrahedriteCu6[Cu4(Fe,Zn)2]Sb4S13
TeTellurium
Te CalaveriteAuTe2
Te PetziteAg3AuTe2
BaBarium
Ba BaryteBaSO4
WTungsten
W HübneriteMnWO4
AuGold
Au CalaveriteAuTe2
Au Electrum(Au, Ag)
Au GoldAu
Au PetziteAg3AuTe2
PbLead
Pb AikinitePbCuBiS3
Pb GalenaPbS
Pb LinaritePbCu(SO4)(OH)2
BiBismuth
Bi AikinitePbCuBiS3

Regional Geology

This geological map and associated information on rock units at or nearby to the coordinates given for this locality is based on relatively small scale geological maps provided by various national Geological Surveys. This does not necessarily represent the complete geology at this locality but it gives a background for the region in which it is found.

Click on geological units on the map for more information. Click here to view full-screen map on Macrostrat.org

Miocene - Eocene
5.333 - 56 Ma



ID: 3190650
Cenozoic volcanic rocks

Age: Cenozoic (5.333 - 56 Ma)

Stratigraphic Name: San Juan Mountains

Comments: Southern Rocky Mountains

Lithology: Intermediate-felsic volcanic rocks

Reference: Chorlton, L.B. Generalized geology of the world: bedrock domains and major faults in GIS format: a small-scale world geology map with an extended geological attribute database. doi: 10.4095/223767. Geological Survey of Canada, Open File 5529. [154]

Oligocene
23.03 - 33.9 Ma



ID: 2813930
Intra-ash flow andesitic lavas

Age: Oligocene (23.03 - 33.9 Ma)

Comments: Original map source: Green, G.N., 1992, The Digital Geologic Map of Colorado in ARC/INFO Format: U.S. Geological Survey Open-File Report 92-0507, 9 p., scale 1:500,000.

Lithology: Major:{andesite}

Reference: Horton, J.D., C.A. San Juan, and D.B. Stoeser. The State Geologic Map Compilation (SGMC) geodatabase of the conterminous United States. doi: 10.3133/ds1052. U.S. Geological Survey Data Series 1052. [133]

Data and map coding provided by Macrostrat.org, used under Creative Commons Attribution 4.0 License

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
Cross, W., and Purrington, C.W. (1899), Telluride Folio, Colorado, USGS Geologic Atlas, Folio No. 57, 19 pp.
Ransome, F.L. (1901), A Report on the Economic Geology of the Silverton Quadrangle, Colorado, USGS Bulletin 182, 265 pp.
Ransome, Frederick Leslie (1901) A report on the economic geology of the Silverton quadrangle, Colorado. USGS Bulletin 182.
Cross, W., et al (1905), Silverton Folio, Colorado, USGS Geologic Atlas, Folio No. 120, 34 pp.
Irving, J.D. (1905), Ore Deposits of the Ouray District, Colorado,
Bastin, E.S. (1923), Silver Enrichment in the San Juan Mountains, Colorado, USGS Bulletin 735-D: 65-129.
Spur, J.E. (1925), The Campbird Compound Veindike, Economic Geology: vol ?: 115-152.
Burbank, W.S. (1930), Revision of Geologic Structure and Stratigraphy
Collins, G.E. (1931), Localization of Ore Bodies at Rico and Re___ Mountains, Colorado, as Conditioned by Geologic Structure History, Colorado Scientific Society Proceedings: 12(12): 407-424.
----- (1933), The Western San Juan Mountains, in Colorado: 1st. International Geol. Congress Guidebook 19: 34-63.
----- (1933), Vein Systems of the Arrastre Basin and Regional
________ (1933), Ore Deposits in the Central San Juan Mountains, Colorado, in Ridge J.D., editor, Ore Deposits of the United States, A.I.M.E., Graton-Sales Volumes, Chapter 33, Volume 1, 1880 pp.
Cross, W., and Larsen, E.S. (1935), A Brief Review of the Geology of the San Juan Region of Southwestern Colorado, USGS Bulletin, 189 pp.
Moehlman, R.S. (1936), Ore Deposition South of Ouray, Colorado, Geology: 31: 377-397, 488-504.
Burbank, Wilbur Swett (1940), Structural Control of Ore Deposition in the Uncompahgre District, Ouray County, Colorado, with Suggestions for Prospecting, USGS Bulletin 906E: 189-265.
----- (1941), Structural Control of Ore Deposition in the Sneffels and Telluride Districts of the San Juan Mountains, Colorado, Colorado Scientific Society Proceedings: 14(5).
Kelley, V.C. (1946), Geology, Ore Deposits and Mines of the M Point, Poughkeepsie, and Upper Uncompahgre Districts, Ouray, San Juan, and Hinsdale Counties, Colorado, Colorado Scientific Society Proceedings: 14(7): 287-466.
Kelly, V. C., and Silver C. (1946), Stages and Epochs of Mineralization in the San Juan Mountains, Colorado, as Shown at the Dunmore Mine, Ouray County, Colorado, Economic Geology: 41: 159.
Burbank, W.S. et al (1947), The San Juan Region, in Vand, J.W., editor, Mineral Resources of Colorado, State of Colorado Mineral Resources Board.
Varnes, D.J. (1947), Recent Developments on the Black Bear Vein, San Miguel County, Colorado, Colorado Scientific Society Proceedings: 15: 1.
Bejnar, W. (1949), Lithologic Control of Ore Deposits in the San Juan Mountains, Colorado: Compass: 26: 117-130.
----- (1950), Problems of Wallrock Alteration in Shallow Envirionments, in Van Tuyl and Kuhn, editors, Applied Geology, Colorado School of Mines Quarterly: 45 (1B): 287-3.
----- (1951), The Sunnyside, Ross Basin, and Bonita Fault Systems and Their Associated Ore Deposits, San Juan County, Colorado, Colorado Scientific Society Proceedings: 13(7): 285-304.
Larsen, Jr., Esper S., and Cross, W. (1956), Geology and Petrology of the San Juan Region, Southwestern Colorado, USGS Professional Paper 258.
Kottlowski, F.E., editor (1957), Guidebook to the Geology of the Southwestern San Juan Mountains, Colorado, New Mexico Geo. 8th. Field Conference Guidebook: 102-207, 217-221.
Burbank, Wilbur Swett (1960), Pre-ore Ptopylization, Silverton Caldera, Colorado, USGS Professional Paper 400-B, Short Papers in the Geological Sciences: B12.
Luedke, Robert G. and Burbank, Wilbur Swett (1960), Ring-fractured bodies in the Silverton caldera, Colorado, USGS Professional Paper 400-B, Short Papers in the Geological Sciences: B13.
-----, (1960), Silverton, Colorado, in Relation of Ore Deposit Doming in North American Cordillera, Geological Society of America Memorandum:
Burbank, W.S. and Luedke R.G. (1961), Origin and Evolution of Ore Forming Solutions, Silverton Caldera, San Juan Mountains, Colorado, USGS Professional Paper 424-C: C7-C11.
Agey, W. W., C. H. Schack & J. B. Clemmer (1962), Metallurgical Studies of Rhodonite Ores, Silverton District, Colorasdo, U.S. Bureau of Mines (1962), Report of Investigation RI 6055 (Part 1), 16 pp.
Luedke, R.G., and Burbank, W.S. (1962), Geology of the Ouray Quadrangle, Colorado, USGS Geologic Quadrangle 152, 1 inch to 5280 feet.
----- (1963), Tertiary Volcanic Stratigraphy in the Western San Juan Mountains, Colorado, USGS Professional Paper 475C: C39-C44.
------ (1964), Revised Tertiary Volcanic Sequence in the Central San Juan Mountains, Colorado, USGS Professional Paper 475-D: D54-D63.
----- (1966), Geologic Map of the Telluride Quadrangle, Southern Colorado, USGS Geologic Quadrangle map GQ 504, 1:24000.
Young, William E. (1966), Manganese Occurrences in the Eureka-Animas Forks Area of the San Juan Mountains, San Juan County, Colorado. U.S. Bureau of Mines Information Circular IC 8303, 52 pp.
-----(1968), Geology and Ore Deposits of the Western San Juan Mountains, Colorado, in Ridge, J.D., editor, Ore Deposits of the United States, 1933-1967, (Graton-Sales Volumes): Chapter 3, Volume 1, 1880 pp.
Baars, D.L.,and See, P.D. (1968), Pre-Pennsylvanian Stratigraphy Paleotectonics of the San Juan Mountains, Southwestern Colorado, Geological Society of America Bulletin: 79: 333-349.
________(1968), Volcanism and Cauldron Development in the Eastern San Juan Mountains, Colorado, Colorado School of Mines Quarterly: 63: 175-208.
Burbank, W.S. and Luedke R.G. (1969), Geology and Ore Deposits of Eureka and Adjoining Districts, San Juan Mountains, Colorado, USGS Professional Paper 535.
Lipman, P.W. et al (1970), Volcanic History of the San Juan Mountains, Colorado, as indicated by Potassium-Argon Dating, Geological Society of America Bulletin: 81: 2329-2352.
Bird, Allen G. (1976), New Gold-Silver Discoveries at the Sunnyside Mine, San Juan County, Colorado, Colorado Mining Association, 1975 Mining Yearbook: 83-84.
Economic Geology (1977): 72(7): 1285-1320.
Murphy, J. A. (1979), The San Juan Mountains of Colorado, Mineralogical Record: Nov-Dec 1979L: 349-361.
Echo Bay Mines (1986), Annual Report: 14.
Rocks & Minerals (1988): 63: 366-384.
Mining Record (1996), Agreement Reached on Mine Site Clean-Up: 107(8) (February 2, 1996): 12.
Rocks & Minerals (1996): 71: 165-166.
Eckels, E.B. (1997), Minerals of Colorado.
Rocks & Minerals (2000): 75: 306-307.
USGS (2005), Mineral Resources Data System (MRDS): U.S. Geological Survey, Reston, Virginia, loc. file ID #10167210 & 10265079.
New Mexico Mineral Symposium abstracts (2009).
Geologic Structure of the Silverton and Telluride Quadrangle, Colorado: Colorado Scientific Society Proceedings: 13(5): 135-214.
in the Ouray District of Colorado, and Its Bearing on Ore Deposition, Colorado Scientific Society Proceedings: 12(6): 151-232.
U.S. Bureau of Mines, Minerals Availability System (MAS) file ID #0081110002 & 0081110013.
Bird, Allen, "Colorado Gold" (by the ex-manager of the mine).
-----, Geology and Ore Deposits of the South Silverton Mining District, San Juan County, Colorado, USGS Professional Paper 378-A: A1-A_.
--------, Analysis of Plastic Deformation According to Von Mis Theory with Application to the South Silverton Area, San Juan County, Colorado, USGS Professional Paper 378-B, 49 pp.
26-36.
USGS Bulletin 260: 50-77.
USGS Geologic Atlas, Ouray Folio, Colorado, Folio No. 153, 20 pp.
USGS Professional Paper 400-B: B12-B13.


This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2018, except where stated. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: November 15, 2018 22:59:36 Page generated: November 11, 2018 14:27:31
Go to top of page