LIVE REPORT! The Sussex Mineral & Fossil Show 2018 - last updated 12 minutes ago. Click here to watch.
Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat Articles
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsThe ElementsUsersBooks & MagazinesMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery

Leadville, Leadville District, Lake Co., Colorado, USA

This page is currently not sponsored. Click here to sponsor this page.
Key
Lock Map
Latitude & Longitude (WGS84): 39° 13' 59'' North , 106° 13' 59'' West
Latitude & Longitude (decimal): 39.23333,-106.23333
GeoHash:G#: 9wurnw5nx
Köppen climate type:Dfc : Subarctic climate


The rocks around Leadville, Colorado host one of the largest lead-zinc-silver deposits in the world (Wallace, 1993). For over 130 years, through economic disruptions, labour issues, volatile metal markets, and the inclement weather of the high altitude, mines extracted ore from these rich deposits.

Leadville is located on the west flank of the Mosquito Range at an elevation of 3090 metres (10,150 feet). It is approximately 150 kilometres (96 miles) southwest of Denver (Maslyn, 1996). The city can be reached by US 24, but at one time three railways served the city as well (Blair, 1980). The terrain is mountainous with many areas forested with ponderosa pine and Douglas fir (Wallace, 1993).

The oldest rocks in the Leadville area are Proterozoic (1.7 Ga) granite that is overlain by Late Cambrian to Pennsylvanian marine sediments. The sediments include limestone, dolomite, sandstone, and quartzite that was uplifted and eroded in the Pennsylvanian resulting in some karst development in the carbonate rocks (Wallace, 1993; Maslyn, 1996). During the Laramide Orogeny, the area was again uplifted and several granodiorite to monzogranitic intrusions were emplaced (Bookstrom, 1990; Wallace, 1993). Another episode of intrusive activity affected the region around 43 to 39 Ma that resulted in ore formation. Intrusions were mostly sills, but also some dykes and stocks (Wireman et al., 2006). During the Tertiary, Rio Grande Rift extension caused the development of the Arkansas graben as well as regional doming that helped bring ores to the surface (Wallace, 1993). The ore deposits and host rocks are cut by numerous faults, both normal and reverse, with displacement of 10s to 100s of metres (Tweto, 1960; Tweto, 1968; Thompson and Arehart, 1990). During the Quaternary, the landscape was modified by glacial processes (Behre, 1953; Tweto, 1974).

There are three basic ore deposit types in Leadville—primary, secondary, and placer. Of these, the most straightforward are the placers, which were formed by erosion of bedrock deposits in the Quaternary. Characterising the primary deposits of the Leadville area is complex and confusing. Still today there is debate concerning the processes of formation. Some investigators (Callahan, 1964; DeVoto, 1983) have considered the deposits to be a variety of Mississippi Valley-type deposit. The mineral composition and temperature of formation, however, is different and thus most geologists consider them to be a separate type (Ohle, 1991). Thompson and Arehart (1990) subdivide the primary ore deposits into three types: magnetite-serpentinite near the Breece Hill Stock, the Sherman-type barite-silver carbonate hosted, and the Leadville-type silver-lead-zinc carbonate hosted. The magnetite-serpentinite deposits were formed within 200 metres of the stock during its emplacement and were locally enriched in gold and silver (Wallace, 1993). The Sherman-type deposits fill palaeokarst features in the Leadville Dolomite (Behre, 1953; Maslyn, 1996). The timing of mineralisation of these deposits is debated. Landis and Tschauder (1990) suggest a Pennsylvanian age, Symons and Lewchuk (2000) report a Permian age, while others support Late Cretaceous to early Tertiary timing (Johansing and Thompson, 1990). The largest ore deposits of the area are the Leadville-type replacement, or manto, ores. The ascent of mineralising fluids was impeded by impermeable rocks and the fluids were forced into the highly reactive carbonate sedimentary rocks (Wallace, 1993). The magmatic source of these fluids is not exposed, but thought to be somewhere beneath Breece Hill (Thompson and Arehart, 1990; Thompson and Beaty, 1990). Earlier investigators called these stratabound ore bodies developed at impermeable boundaries “contacts” and identified as many as eleven of them (Emmons, 1927; Ohle, 1991). The Leadville-type ore bodies have irregular dimensions, some as thick as 40 metres (125 feet), as long as 1000 metres (3300 feet), and as wide as 130 metres (500 feet) (Ohle, 1991). Pyrite, galena, and sphalerite are the most common sulphide minerals in the replacement deposits. Chalcopyrite, tennantite-tetrahedrite, magnetite, and other minor minerals are also present (Emmons et al., 1927; Thompson and Arehart, 1990). Silver is found in acanthite and argentiferous tetrahedrite. Gold is native (Tweto, 1968). Gangue minerals include manganosiderite and quartz (Wallace, 1993). Secondary ores were created through supergene enrichment when uplift and erosion related to the Rio Grande Rift lowered the water table and allowed the sulphide ores near the surface to be oxidised. In some areas, oxidation reached as deep as 300 metres (Tweto, 1968).

Mining in Leadville experienced several boom and bust cycles. The earliest known mineral exploration in the area dates to 1859, when prospectors were panning for gold in the region. The discovery of the district is attributed to Abe Lee, a member of a larger prospecting group, who found a rich pan of gold in April of 1860. According to legend, he stated, “I’ve just got California in this here pan!” The statement gave California Gulch its name. By 1861, the post office of Oro City was established in California Gulch. By 1865, the placer gold was mostly mined out (Blair 1980). In 1874, cerrucite outcrops, which proved to be argentiferous, were discovered and the next mining boom began (Blair, 1980; Wallace, 1993). By 1877, Oro City was no more and the post office was established at Leadville, which was incorporated as a town a year later. By 1879, about 20,000 people lived in and around Leadville. It was at this time that the city experienced its most remarkable days of mining. Some assays from the Robert E. Lee mine were as high as 10306 ounces/tonne silver (Blair, 1980).This boom lasted for several years until, like many western American mining districts, the repeal of the Sherman Silver Purchase Act and the following Panic of 1893 was a major blow to the economy (Blair, 1980; Wallace, 1993). Two years later, the Western Federation of Miners arrived and in 1896 called a strike. Unfortunately, the strike became violent, forcing the governor of Colorado to order the militia to the mining district to keep the peace. During this time, the mines were closed and allowed to flood. When the strike ended in 1897, many mines did not re-open due to the cost of dewatering them. In 1899, rich zinc ores were discovered, which brought new life to the district that lasted until the Great Depression (Ohle, 1991; Blair, 1980). Although the glory days were over, mining continued in the area until 1998, when the Black Cloud Mine, a lead-zinc producer, closed (Wireman et al., 2006).

Leadville boasts a history of colourful residents. In the early 1880s gunfighter Doc Holliday dealt faro in local saloons. The famous Guggenheim family became wealthy in the smelting industry. H.A.W. Tabor made his fortune in the Leadville mines and his fame at the centre of an infamous, bigamous love triangle that captivated the American public enough to become the topic of an opera. Molly Brown, who survived the sinking of the Titanic and also became the subject of film and musical, was the wife of John J. Brown, superintendent of the Ibex Mine (Blair, 1980).

Today mining has ceased in the Leadville District, but is still very visible. Over the course of the district’s history over 2800 patented mine claims were filed. The surrounding area is marked with over 1600 prospects, 1300 shafts, and 155 adits (Wireman et al., 2006). The city itself offers a fine example of western American Victorian architecture. Walking the streets of the city is a journey into the history of a legendary mining locality.

[N.N. Brandes, 2013]


Citations included in references below.

Regions containing this locality

Rocky Mountains, North America

Mountain Range - 2,059 mineral species & varietal names listed

Select Mineral List Type

Standard Detailed Strunz Dana Chemical Elements

Commodity List

This is a list of exploitable or exploited mineral commodities recorded from this region.


Mineral List

Mineral list contains entries from the region specified including sub-localities

86 valid minerals. 1 (FRL) - first recorded locality of unapproved mineral/variety/etc.

Detailed Mineral List:

Acanthite
Formula: Ag2S
Reference: Minerals of Colorado (1997) E.B. Eckel
Aikinite
Formula: PbCuBiS3
Reference: MinRec 16:171-201
'Alaskaite'
Altaite
Formula: PbTe
Reference: MinRec 16:171-201
Alunite
Formula: KAl3(SO4)2(OH)6
Reference: Minerals of Colorado (1997) Eckel, E. B.
Anglesite
Formula: PbSO4
Ankerite
Formula: Ca(Fe2+,Mg)(CO3)2
Aragonite
Formula: CaCO3
Reference: MinRec 16:171-201
Aragonite var: Zincian Aragonite
Formula: (Ca,Zn)CO3
Arsenopyrite
Formula: FeAsS
Reference: MinRec 16:171-201
Aurichalcite
Formula: (Zn,Cu)5(CO3)2(OH)6
Azurite
Formula: Cu3(CO3)2(OH)2
Baryte
Formula: BaSO4
Localities: Reported from at least 7 localities in this region.
Birnessite
Formula: (Na,Ca)0.5(Mn4+,Mn3+)2O4 · 1.5H2O
Bismuthinite
Formula: Bi2S3
Bismutite
Formula: (BiO)2CO3
Bromargyrite
Formula: AgBr
Reference: MinRec 16:171-201
Calaverite
Formula: AuTe2
Calcite
Formula: CaCO3
Caledonite
Formula: Pb5Cu2(SO4)3(CO3)(OH)6
Cerussite
Formula: PbCO3
Localities: Reported from at least 38 localities in this region.
Chalcanthite
Formula: CuSO4 · 5H2O
Reference: MinRec 16:171-201
Chalcocite
Formula: Cu2S
Reference: MinRec 16:171-201
Chalcophanite
Formula: (Zn,Fe,Mn)Mn3O7 · 3H2O
Reference: MinRec 16:171-201
Chalcopyrite
Formula: CuFeS2
Localities: Reported from at least 8 localities in this region.
Chlorargyrite
Formula: AgCl
Localities: Reported from at least 25 localities in this region.
Chlorargyrite var: Bromian Chlorargyrite
Formula: Ag(Cl,Br)
'Chlorite Group'
Reference: MinRec 16:171-201
Chrysocolla
Formula: Cu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Copper
Formula: Cu
Cryptomelane
Formula: K(Mn4+7Mn3+)O16
Cuprite
Formula: Cu2O
Descloizite
Formula: PbZn(VO4)(OH)
Reference: MinRec 16:171-201
Descloizite var: Dechenite
Formula: PbZn(VO4,AsO4)(OH)
Digenite
Formula: Cu9S5
Dolomite
Formula: CaMg(CO3)2
Localities: Reported from at least 10 localities in this region.
'Electrum'
Formula: (Au, Ag)
Epidote
Formula: {Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Reference: MinRec 16:171-201
Epsomite
Formula: MgSO4 · 7H2O
Galena
Formula: PbS
Localities: Reported from at least 42 localities in this region.
Galena var: Argentiferous Galena
Formula: PbS
Localities: Reported from at least 6 localities in this region.
Galenobismutite
Formula: PbBi2S4
Goethite
Formula: α-Fe3+O(OH)
Gold
Formula: Au
Localities: Reported from at least 9 localities in this region.
Goslarite
Formula: ZnSO4 · 7H2O
Graphite
Formula: C
Gypsum
Formula: CaSO4 · 2H2O
Hematite
Formula: Fe2O3
Localities: Reported from at least 9 localities in this region.
Hemimorphite
Formula: Zn4Si2O7(OH)2 · H2O
Localities: Reported from at least 13 localities in this region.
Hessite
Formula: Ag2Te
Reference: MinRec 16:171-201
Hübnerite
Formula: MnWO4
Reference: MinRec 16:171-201
'Hydrohetaerolite' (FRL)
Formula: ZnMn2O4 · H2O
Reference: "Minerals of Colorado, updated & revised", p. 272, by Eckel, Edwin B., 1997; Rocks & Minerals 81:5 402-409
Iodargyrite
Formula: AgI
Reference: MinRec 16:171-201
'commodity:Iron'
Formula: Fe
Jarosite
Formula: KFe3+ 3(SO4)2(OH)6
Reference: MinRec 16:171-201
Kaolinite
Formula: Al2(Si2O5)(OH)4
Reference: MinRec 16:171-201
Kobellite
Formula: Pb22Cu4(Bi,Sb)30S69
'Limonite'
Formula: (Fe,O,OH,H2O)
Litharge
Formula: PbO
Reference: MinRec 16:171-201
Magnetite
Formula: Fe2+Fe3+2O4
Localities: Reported from at least 6 localities in this region.
Malachite
Formula: Cu2(CO3)(OH)2
'commodity:Manganese'
Formula: Mn
Marcasite
Formula: FeS2
Matildite
Formula: AgBiS2
Reference: MinRec 16:171-201
Mimetite
Formula: Pb5(AsO4)3Cl
Reference: MinRec 16:171-201
Minium
Formula: Pb3O4
Localities: Reported from at least 6 localities in this region.
Muscovite
Formula: KAl2(AlSi3O10)(OH)2
Reference: Minerals of Colorado (1997) Eckel, E. B.
Muscovite var: Sericite
Formula: KAl2(AlSi3O10)(OH)2
Reference: Minerals of Colorado (1997) Eckel, E. B.
Natroalunite
Formula: NaAl3(SO4)2(OH)6
Reference: Minerals of Colorado (1997) Eckel, E. B.
Opal
Formula: SiO2 · nH2O
Orthoclase
Formula: K(AlSi3O8)
Paragonite
Formula: NaAl2(AlSi3O10)(OH)2
Reference: Minerals of Colorado (1997) Eckel, E. B.
Plumbojarosite
Formula: Pb0.5Fe3+3(SO4)2(OH)6
Proustite
Formula: Ag3AsS3
Reference: MinRec 16:171-201
'Psilomelane'
Reference: MinRec 16:171-201
Pyrargyrite
Formula: Ag3SbS3
Reference: MinRec 16:171-201
Pyrite
Formula: FeS2
Localities: Reported from at least 24 localities in this region.
Pyrolusite
Formula: Mn4+O2
Localities: Reported from at least 8 localities in this region.
Pyromorphite
Formula: Pb5(PO4)3Cl
Localities: Reported from at least 7 localities in this region.
Pyrophyllite
Formula: Al2Si4O10(OH)2
'Pyroxene Group'
Reference: MinRec 16:171-201
Pyrrhotite
Formula: Fe7S8
Quartz
Formula: SiO2
Localities: Reported from at least 21 localities in this region.
Quartz var: Chalcedony
Formula: SiO2
Rhodochrosite
Formula: MnCO3
Rhodonite
Formula: Mn2+SiO3
Reference: MinRec 16:171-201
Rosasite
Formula: (Cu,Zn)2(CO3)(OH)2
Reference: MinRec 16:171-201; Rocks & Min.: 65: 61.
Sauconite
Formula: Na0.3Zn3((Si,Al)4O10)(OH)2 · 4H2O
Scheelite
Formula: Ca(WO4)
Reference: MinRec 16:171-201
Selenium
Formula: Se
Reference: MinRec 16:171-201
Siderite
Formula: FeCO3
Reference: AmMin 19:304
Siderite var: Manganoan Siderite
Formula: (Fe,Mn)CO3
Reference: Evans B. Mayo and William J. O'Leary (1934) Oligonite, a manganosiderite from Leadville, Colorado. American Mineralogist p 304-308
Siderite var: Mg-rich Siderite
Formula: (Fe,Mg)CO3
Siderite var: Oligonite
Formula: (Fe,Mn)CO3
Reference: AmMin 19:304
Silver
Formula: Ag
Smithsonite
Formula: ZnCO3
Localities: Reported from at least 6 localities in this region.
Sphalerite
Formula: ZnS
Localities: Reported from at least 16 localities in this region.
Sphalerite var: Marmatite
Formula: (Zn,Fe)S
Tennantite
Formula: Cu6[Cu4(Fe,Zn)2]As4S13
Tetrahedrite
Formula: Cu6[Cu4(Fe,Zn)2]Sb4S13
Reference: MinRec 16:171-201
'Turgite'
Reference: http://mars.mines.edu/smplist/GeoMHema/smplist.htm
Turquoise
Formula: Cu(Al,Fe3+)6(PO4)4(OH)8 · 4H2O
Reference: Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 950; Mineralogical Record: 16: 171-201.
Vivianite
Formula: Fe2+3(PO4)2 · 8H2O
'Wad'
Localities: Reported from at least 19 localities in this region.
'Wad var: Wackenrodite'
'Wolframite'
Formula: (Fe2+)WO4 to (Mn2+)WO4
Localities: Reported from at least 6 localities in this region.
Wollastonite
Formula: CaSiO3
Reference: MinRec 16:171-201
Wulfenite
Formula: Pb(MoO4)
Wurtzite
Formula: (Zn,Fe)S
Reference: MinRec 16:171-201

List of minerals arranged by Strunz 10th Edition classification

Group 1 - Elements
Copper1.AA.05Cu
Electrum1.AA.05(Au, Ag)
Gold1.AA.05Au
Graphite1.CB.05aC
Selenium1.CC.10Se
Silver1.AA.05Ag
Group 2 - Sulphides and Sulfosalts
'Acanthite'2.BA.35Ag2S
'Aikinite'2.HB.05aPbCuBiS3
'Altaite'2.CD.10PbTe
Arsenopyrite2.EB.20FeAsS
Bismuthinite2.DB.05Bi2S3
Calaverite2.EA.10AuTe2
Chalcocite2.BA.05Cu2S
Chalcopyrite2.CB.10aCuFeS2
Digenite2.BA.10Cu9S5
Galena2.CD.10PbS
var: Argentiferous Galena2.CD.10PbS
Galenobismutite2.JC.25ePbBi2S4
Hessite2.BA.60Ag2Te
Kobellite2.HB.10aPb22Cu4(Bi,Sb)30S69
Marcasite2.EB.10aFeS2
Matildite2.JA.20AgBiS2
Proustite2.GA.05Ag3AsS3
Pyrargyrite2.GA.05Ag3SbS3
Pyrite2.EB.05aFeS2
Pyrrhotite2.CC.10Fe7S8
Sphalerite2.CB.05aZnS
var: Marmatite2.CB.05a(Zn,Fe)S
Tennantite2.GB.05Cu6[Cu4(Fe,Zn)2]As4S13
Tetrahedrite2.GB.05Cu6[Cu4(Fe,Zn)2]Sb4S13
'Wurtzite'2.CB.45(Zn,Fe)S
Group 3 - Halides
Bromargyrite3.AA.15AgBr
Chlorargyrite3.AA.15AgCl
var: Bromian Chlorargyrite3.AA.15Ag(Cl,Br)
Iodargyrite3.AA.10AgI
Group 4 - Oxides and Hydroxides
Birnessite4.FL.45(Na,Ca)0.5(Mn4+,Mn3+)2O4 · 1.5H2O
Chalcophanite4.FL.20(Zn,Fe,Mn)Mn3O7 · 3H2O
Cryptomelane4.DK.05aK(Mn4+7Mn3+)O16
Cuprite4.AA.10Cu2O
Goethite4.00.α-Fe3+O(OH)
Hematite4.CB.05Fe2O3
Hydrohetaerolite (TL)4.BB.10ZnMn2O4 · H2O
Hübnerite4.DB.30MnWO4
Litharge4.AC.20PbO
Magnetite4.BB.05Fe2+Fe3+2O4
Minium4.BD.05Pb3O4
Opal4.DA.10SiO2 · nH2O
Pyrolusite4.DB.05Mn4+O2
Quartz4.DA.05SiO2
var: Chalcedony4.DA.05SiO2
Group 5 - Nitrates and Carbonates
'Ankerite'5.AB.10Ca(Fe2+,Mg)(CO3)2
'Aragonite'5.AB.15CaCO3
var: Zincian Aragonite5.AB.15(Ca,Zn)CO3
Aurichalcite5.BA.15(Zn,Cu)5(CO3)2(OH)6
Azurite5.BA.05Cu3(CO3)2(OH)2
Bismutite5.BE.25(BiO)2CO3
Calcite5.AB.05CaCO3
Cerussite5.AB.15PbCO3
Dolomite5.AB.10CaMg(CO3)2
Malachite5.BA.10Cu2(CO3)(OH)2
Rhodochrosite5.AB.05MnCO3
Rosasite5.BA.10(Cu,Zn)2(CO3)(OH)2
Siderite5.AB.05FeCO3
var: Manganoan Siderite5.AB.05(Fe,Mn)CO3
var: Mg-rich Siderite5.AB.05(Fe,Mg)CO3
var: Oligonite5.AB.05(Fe,Mn)CO3
Smithsonite5.AB.05ZnCO3
Group 7 - Sulphates, Chromates, Molybdates and Tungstates
'Alunite'7.BC.10KAl3(SO4)2(OH)6
'Anglesite'7.AD.35PbSO4
Baryte7.AD.35BaSO4
Caledonite7.BC.50Pb5Cu2(SO4)3(CO3)(OH)6
Chalcanthite7.CB.20CuSO4 · 5H2O
Epsomite7.CB.40MgSO4 · 7H2O
Goslarite7.CB.40ZnSO4 · 7H2O
Gypsum7.CD.40CaSO4 · 2H2O
Jarosite7.BC.10KFe3+ 3(SO4)2(OH)6
Natroalunite7.BC.10NaAl3(SO4)2(OH)6
Plumbojarosite7.BC.10Pb0.5Fe3+3(SO4)2(OH)6
Scheelite7.GA.05Ca(WO4)
'Wulfenite'7.GA.05Pb(MoO4)
Group 8 - Phosphates, Arsenates and Vanadates
Descloizite8.BH.40PbZn(VO4)(OH)
var: Dechenite8.BH.40PbZn(VO4,AsO4)(OH)
Mimetite8.BN.05Pb5(AsO4)3Cl
Pyromorphite8.BN.05Pb5(PO4)3Cl
Turquoise8.DD.15Cu(Al,Fe3+)6(PO4)4(OH)8 · 4H2O
Vivianite8.CE.40Fe2+3(PO4)2 · 8H2O
Group 9 - Silicates
Chrysocolla9.ED.20Cu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Epidote9.BG.05a{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Hemimorphite9.BD.10Zn4Si2O7(OH)2 · H2O
Kaolinite9.ED.05Al2(Si2O5)(OH)4
Muscovite9.EC.15KAl2(AlSi3O10)(OH)2
var: Sericite9.EC.15KAl2(AlSi3O10)(OH)2
Orthoclase9.FA.30K(AlSi3O8)
Paragonite9.EC.15NaAl2(AlSi3O10)(OH)2
Pyrophyllite9.EC.10Al2Si4O10(OH)2
Rhodonite9.DK.05Mn2+SiO3
Sauconite9.EC.45Na0.3Zn3((Si,Al)4O10)(OH)2 · 4H2O
'Wollastonite'9.DG.05CaSiO3
Unclassified Minerals, Rocks, etc.
'Alaskaite'-
Chlorite Group-
Limonite-(Fe,O,OH,H2O)
Psilomelane-
Pyroxene Group-
Turgite-
'Wad'-
'var: Wackenrodite'-
'Wolframite'-(Fe2+)WO4 to (Mn2+)WO4

List of minerals arranged by Dana 8th Edition classification

Group 1 - NATIVE ELEMENTS AND ALLOYS
Metals, other than the Platinum Group
Copper1.1.1.3Cu
Gold1.1.1.1Au
Silver1.1.1.2Ag
Semi-metals and non-metals
Graphite1.3.6.2C
Selenium1.3.4.1Se
Group 2 - SULFIDES
AmBnXp, with (m+n):p = 2:1
Acanthite2.4.1.1Ag2S
Chalcocite2.4.7.1Cu2S
Digenite2.4.7.3Cu9S5
Hessite2.4.2.1Ag2Te
AmXp, with m:p = 1:1
Altaite2.8.1.3PbTe
Galena2.8.1.1PbS
Pyrrhotite2.8.10.1Fe7S8
Sphalerite2.8.2.1ZnS
Wurtzite2.8.7.1(Zn,Fe)S
AmBnXp, with (m+n):p = 1:1
Chalcopyrite2.9.1.1CuFeS2
AmBnXp, with (m+n):p = 2:3
Bismuthinite2.11.2.3Bi2S3
AmBnXp, with (m+n):p = 1:2
Arsenopyrite2.12.4.1FeAsS
Calaverite2.12.13.2AuTe2
Marcasite2.12.2.1FeS2
Pyrite2.12.1.1FeS2
Group 3 - SULFOSALTS
3 <ø < 4
Tennantite3.3.6.2Cu6[Cu4(Fe,Zn)2]As4S13
Tetrahedrite3.3.6.1Cu6[Cu4(Fe,Zn)2]Sb4S13
ø = 3
Aikinite3.4.5.1PbCuBiS3
Proustite3.4.1.1Ag3AsS3
Pyrargyrite3.4.1.2Ag3SbS3
2 < ø < 2.49
Kobellite3.6.19.1Pb22Cu4(Bi,Sb)30S69
ø = 2
Galenobismutite3.7.9.1PbBi2S4
Matildite3.7.1.1AgBiS2
Group 4 - SIMPLE OXIDES
A2X
Cuprite4.1.1.1Cu2O
AX
Litharge4.2.4.1PbO
A2X3
Hematite4.3.1.2Fe2O3
AX2
Pyrolusite4.4.1.4Mn4+O2
Group 6 - HYDROXIDES AND OXIDES CONTAINING HYDROXYL
XO(OH)
Goethite6.1.1.2α-Fe3+O(OH)
Group 7 - MULTIPLE OXIDES
AB2X4
'Hydrohetaerolite' (FRL)7.2.7.3ZnMn2O4 · H2O
Magnetite7.2.2.3Fe2+Fe3+2O4
Minium7.2.8.1Pb3O4
(AB)2X3
Birnessite7.5.3.1(Na,Ca)0.5(Mn4+,Mn3+)2O4 · 1.5H2O
AB3X7
Chalcophanite7.8.2.1(Zn,Fe,Mn)Mn3O7 · 3H2O
AB8X16
Cryptomelane7.9.1.2K(Mn4+7Mn3+)O16
Group 9 - NORMAL HALIDES
AX
Bromargyrite9.1.4.2AgBr
Chlorargyrite9.1.4.1AgCl
Iodargyrite9.1.5.1AgI
Group 14 - ANHYDROUS NORMAL CARBONATES
A(XO3)
Calcite14.1.1.1CaCO3
Cerussite14.1.3.4PbCO3
Rhodochrosite14.1.1.4MnCO3
Siderite14.1.1.3FeCO3
Smithsonite14.1.1.6ZnCO3
AB(XO3)2
Ankerite14.2.1.2Ca(Fe2+,Mg)(CO3)2
Dolomite14.2.1.1CaMg(CO3)2
Group 16a - ANHYDROUS CARBONATES CONTAINING HYDROXYL OR HALOGEN
Azurite16a.2.1.1Cu3(CO3)2(OH)2
Bismutite16a.3.5.1(BiO)2CO3
Malachite16a.3.1.1Cu2(CO3)(OH)2
Rosasite16a.3.1.2(Cu,Zn)2(CO3)(OH)2
Aurichalcite16a.4.2.1(Zn,Cu)5(CO3)2(OH)6
Group 28 - ANHYDROUS ACID AND NORMAL SULFATES
AXO4
Anglesite28.3.1.3PbSO4
Baryte28.3.1.1BaSO4
Group 29 - HYDRATED ACID AND NORMAL SULFATES
AXO4·xH2O
Chalcanthite29.6.7.1CuSO4 · 5H2O
Epsomite29.6.11.1MgSO4 · 7H2O
Goslarite29.6.11.2ZnSO4 · 7H2O
Gypsum29.6.3.1CaSO4 · 2H2O
Group 30 - ANHYDROUS SULFATES CONTAINING HYDROXYL OR HALOGEN
(AB)2(XO4)Zq
Alunite30.2.4.1KAl3(SO4)2(OH)6
Jarosite30.2.5.1KFe3+ 3(SO4)2(OH)6
Plumbojarosite30.2.5.6Pb0.5Fe3+3(SO4)2(OH)6
Group 32 - COMPOUND SULFATES
Anhydrous Compound Sulfates containing Hydroxyl or Halogen
Caledonite32.3.2.1Pb5Cu2(SO4)3(CO3)(OH)6
Group 40 - HYDRATED NORMAL PHOSPHATES,ARSENATES AND VANADATES
A3(XO4)2·xH2O
Vivianite40.3.6.1Fe2+3(PO4)2 · 8H2O
Group 41 - ANHYDROUS PHOSPHATES, ETC.CONTAINING HYDROXYL OR HALOGEN
(AB)2(XO4)Zq
Descloizite41.5.2.1PbZn(VO4)(OH)
A5(XO4)3Zq
Mimetite41.8.4.2Pb5(AsO4)3Cl
Pyromorphite41.8.4.1Pb5(PO4)3Cl
Group 42 - HYDRATED PHOSPHATES, ETC.CONTAINING HYDROXYL OR HALOGEN
(AB)7(XO4)4Zq·xH2O
Turquoise42.9.3.1Cu(Al,Fe3+)6(PO4)4(OH)8 · 4H2O
Group 48 - ANHYDROUS MOLYBDATES AND TUNGSTATES
AXO4
Hübnerite48.1.1.1MnWO4
Scheelite48.1.2.1Ca(WO4)
Wulfenite48.1.3.1Pb(MoO4)
Group 56 - SOROSILICATES Si2O7 Groups, With Additional O, OH, F and H2O
Si2O7 Groups and O, OH, F, and H2O with cations in [4] coordination
Hemimorphite56.1.2.1Zn4Si2O7(OH)2 · H2O
Group 58 - SOROSILICATES Insular, Mixed, Single, and Larger Tetrahedral Groups
Insular, Mixed, Single, and Larger Tetrahedral Groups with cations in [6] and higher coordination; single and double groups (n = 1, 2)
Epidote58.2.1a.7{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Group 65 - INOSILICATES Single-Width,Unbranched Chains,(W=1)
Single-Width Unbranched Chains, W=1 with chains P=3
Wollastonite65.2.1.1cCaSiO3
Single-Width Unbranched Chains, W=1 with chains P=5
Rhodonite65.4.1.1Mn2+SiO3
Group 71 - PHYLLOSILICATES Sheets of Six-Membered Rings
Sheets of 6-membered rings with 2:1 layers
Muscovite71.2.2a.1KAl2(AlSi3O10)(OH)2
Paragonite71.2.2a.2NaAl2(AlSi3O10)(OH)2
Pyrophyllite71.2.1.1Al2Si4O10(OH)2
Sheets of 6-membered rings with 2:1 clays
Sauconite71.3.1b.3Na0.3Zn3((Si,Al)4O10)(OH)2 · 4H2O
Group 74 - PHYLLOSILICATES Modulated Layers
Modulated Layers with joined strips
Chrysocolla74.3.2.1Cu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Group 75 - TECTOSILICATES Si Tetrahedral Frameworks
Si Tetrahedral Frameworks - SiO2 with [4] coordinated Si
Quartz75.1.3.1SiO2
Si Tetrahedral Frameworks - SiO2 with H2O and organics
Opal75.2.1.1SiO2 · nH2O
Group 76 - TECTOSILICATES Al-Si Framework
Al-Si Framework with Al-Si frameworks
Orthoclase76.1.1.1K(AlSi3O8)
Unclassified Minerals, Rocks, etc.
'Alaskaite'-
Aragonite-CaCO3
var: Zincian Aragonite-(Ca,Zn)CO3
Chlorargyrite
var: Bromian Chlorargyrite
-Ag(Cl,Br)
'Chlorite Group'-
Descloizite
var: Dechenite
-PbZn(VO4,AsO4)(OH)
'Electrum'-(Au, Ag)
Galena
var: Argentiferous Galena
-PbS
Kaolinite-Al2(Si2O5)(OH)4
'Limonite'-(Fe,O,OH,H2O)
Muscovite
var: Sericite
-KAl2(AlSi3O10)(OH)2
Natroalunite-NaAl3(SO4)2(OH)6
'Psilomelane'-
'Pyroxene Group'-
Quartz
var: Chalcedony
-SiO2
Siderite
var: Manganoan Siderite
-(Fe,Mn)CO3
var: Mg-rich Siderite-(Fe,Mg)CO3
var: Oligonite-(Fe,Mn)CO3
Sphalerite
var: Marmatite
-(Zn,Fe)S
'Turgite'-
'Wad'-
'var: Wackenrodite'-
'Wolframite'-(Fe2+)WO4 to (Mn2+)WO4

List of minerals for each chemical element

HHydrogen
H AluniteKAl3(SO4)2(OH)6
H Aurichalcite(Zn,Cu)5(CO3)2(OH)6
H AzuriteCu3(CO3)2(OH)2
H Birnessite(Na,Ca)0.5(Mn4+,Mn3+)2O4 · 1.5H2O
H CaledonitePb5Cu2(SO4)3(CO3)(OH)6
H ChalcanthiteCuSO4 · 5H2O
H Chalcophanite(Zn,Fe,Mn)Mn3O7 · 3H2O
H ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
H Descloizite (var: Dechenite)PbZn(VO4,AsO4)(OH)
H DescloizitePbZn(VO4)(OH)
H Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
H EpsomiteMgSO4 · 7H2O
H Goethiteα-Fe3+O(OH)
H GoslariteZnSO4 · 7H2O
H GypsumCaSO4 · 2H2O
H HemimorphiteZn4Si2O7(OH)2 · H2O
H HydrohetaeroliteZnMn2O4 · H2O
H JarositeKFe3+ 3(SO4)2(OH)6
H KaoliniteAl2(Si2O5)(OH)4
H Limonite(Fe,O,OH,H2O)
H MalachiteCu2(CO3)(OH)2
H MuscoviteKAl2(AlSi3O10)(OH)2
H NatroaluniteNaAl3(SO4)2(OH)6
H OpalSiO2 · nH2O
H ParagoniteNaAl2(AlSi3O10)(OH)2
H PlumbojarositePb0.5Fe33+(SO4)2(OH)6
H PyrophylliteAl2Si4O10(OH)2
H Rosasite(Cu,Zn)2(CO3)(OH)2
H SauconiteNa0.3Zn3((Si,Al)4O10)(OH)2 · 4H2O
H Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
H TurquoiseCu(Al,Fe3+)6(PO4)4(OH)8 · 4H2O
H VivianiteFe32+(PO4)2 · 8H2O
CCarbon
C AnkeriteCa(Fe2+,Mg)(CO3)2
C AragoniteCaCO3
C Aurichalcite(Zn,Cu)5(CO3)2(OH)6
C AzuriteCu3(CO3)2(OH)2
C Bismutite(BiO)2CO3
C CalciteCaCO3
C CaledonitePb5Cu2(SO4)3(CO3)(OH)6
C CerussitePbCO3
C DolomiteCaMg(CO3)2
C GraphiteC
C MalachiteCu2(CO3)(OH)2
C Siderite (var: Manganoan Siderite)(Fe,Mn)CO3
C Siderite (var: Mg-rich Siderite)(Fe,Mg)CO3
C Siderite (var: Oligonite)(Fe,Mn)CO3
C RhodochrositeMnCO3
C Rosasite(Cu,Zn)2(CO3)(OH)2
C SideriteFeCO3
C SmithsoniteZnCO3
C Aragonite (var: Zincian Aragonite)(Ca,Zn)CO3
OOxygen
O AluniteKAl3(SO4)2(OH)6
O AnglesitePbSO4
O AnkeriteCa(Fe2+,Mg)(CO3)2
O AragoniteCaCO3
O Aurichalcite(Zn,Cu)5(CO3)2(OH)6
O AzuriteCu3(CO3)2(OH)2
O BaryteBaSO4
O Birnessite(Na,Ca)0.5(Mn4+,Mn3+)2O4 · 1.5H2O
O Bismutite(BiO)2CO3
O CalciteCaCO3
O CaledonitePb5Cu2(SO4)3(CO3)(OH)6
O CerussitePbCO3
O ChalcanthiteCuSO4 · 5H2O
O Quartz (var: Chalcedony)SiO2
O Chalcophanite(Zn,Fe,Mn)Mn3O7 · 3H2O
O ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
O CryptomelaneK(Mn74+Mn3+)O16
O CupriteCu2O
O Descloizite (var: Dechenite)PbZn(VO4,AsO4)(OH)
O DescloizitePbZn(VO4)(OH)
O DolomiteCaMg(CO3)2
O Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
O EpsomiteMgSO4 · 7H2O
O Goethiteα-Fe3+O(OH)
O GoslariteZnSO4 · 7H2O
O GypsumCaSO4 · 2H2O
O HematiteFe2O3
O HemimorphiteZn4Si2O7(OH)2 · H2O
O HübneriteMnWO4
O HydrohetaeroliteZnMn2O4 · H2O
O JarositeKFe3+ 3(SO4)2(OH)6
O KaoliniteAl2(Si2O5)(OH)4
O Limonite(Fe,O,OH,H2O)
O LithargePbO
O MagnetiteFe2+Fe23+O4
O MalachiteCu2(CO3)(OH)2
O Siderite (var: Manganoan Siderite)(Fe,Mn)CO3
O Siderite (var: Mg-rich Siderite)(Fe,Mg)CO3
O MimetitePb5(AsO4)3Cl
O MiniumPb3O4
O MuscoviteKAl2(AlSi3O10)(OH)2
O NatroaluniteNaAl3(SO4)2(OH)6
O Siderite (var: Oligonite)(Fe,Mn)CO3
O OpalSiO2 · nH2O
O OrthoclaseK(AlSi3O8)
O ParagoniteNaAl2(AlSi3O10)(OH)2
O PlumbojarositePb0.5Fe33+(SO4)2(OH)6
O PyrolusiteMn4+O2
O PyromorphitePb5(PO4)3Cl
O PyrophylliteAl2Si4O10(OH)2
O QuartzSiO2
O RhodochrositeMnCO3
O RhodoniteMn2+SiO3
O Rosasite(Cu,Zn)2(CO3)(OH)2
O SauconiteNa0.3Zn3((Si,Al)4O10)(OH)2 · 4H2O
O ScheeliteCa(WO4)
O Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
O SideriteFeCO3
O SmithsoniteZnCO3
O TurquoiseCu(Al,Fe3+)6(PO4)4(OH)8 · 4H2O
O VivianiteFe32+(PO4)2 · 8H2O
O Wolframite(Fe2+)WO4 to (Mn2+)WO4
O WollastoniteCaSiO3
O WulfenitePb(MoO4)
O Aragonite (var: Zincian Aragonite)(Ca,Zn)CO3
NaSodium
Na Birnessite(Na,Ca)0.5(Mn4+,Mn3+)2O4 · 1.5H2O
Na NatroaluniteNaAl3(SO4)2(OH)6
Na ParagoniteNaAl2(AlSi3O10)(OH)2
Na SauconiteNa0.3Zn3((Si,Al)4O10)(OH)2 · 4H2O
MgMagnesium
Mg AnkeriteCa(Fe2+,Mg)(CO3)2
Mg DolomiteCaMg(CO3)2
Mg EpsomiteMgSO4 · 7H2O
Mg Siderite (var: Mg-rich Siderite)(Fe,Mg)CO3
AlAluminium
Al AluniteKAl3(SO4)2(OH)6
Al ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Al Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Al KaoliniteAl2(Si2O5)(OH)4
Al MuscoviteKAl2(AlSi3O10)(OH)2
Al NatroaluniteNaAl3(SO4)2(OH)6
Al OrthoclaseK(AlSi3O8)
Al ParagoniteNaAl2(AlSi3O10)(OH)2
Al PyrophylliteAl2Si4O10(OH)2
Al SauconiteNa0.3Zn3((Si,Al)4O10)(OH)2 · 4H2O
Al Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
Al TurquoiseCu(Al,Fe3+)6(PO4)4(OH)8 · 4H2O
SiSilicon
Si Quartz (var: Chalcedony)SiO2
Si ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Si Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Si HemimorphiteZn4Si2O7(OH)2 · H2O
Si KaoliniteAl2(Si2O5)(OH)4
Si MuscoviteKAl2(AlSi3O10)(OH)2
Si OpalSiO2 · nH2O
Si OrthoclaseK(AlSi3O8)
Si ParagoniteNaAl2(AlSi3O10)(OH)2
Si PyrophylliteAl2Si4O10(OH)2
Si QuartzSiO2
Si RhodoniteMn2+SiO3
Si SauconiteNa0.3Zn3((Si,Al)4O10)(OH)2 · 4H2O
Si Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
Si WollastoniteCaSiO3
PPhosphorus
P PyromorphitePb5(PO4)3Cl
P TurquoiseCu(Al,Fe3+)6(PO4)4(OH)8 · 4H2O
P VivianiteFe32+(PO4)2 · 8H2O
SSulfur
S AcanthiteAg2S
S AikinitePbCuBiS3
S AluniteKAl3(SO4)2(OH)6
S AnglesitePbSO4
S Galena (var: Argentiferous Galena)PbS
S ArsenopyriteFeAsS
S BaryteBaSO4
S BismuthiniteBi2S3
S CaledonitePb5Cu2(SO4)3(CO3)(OH)6
S ChalcanthiteCuSO4 · 5H2O
S ChalcociteCu2S
S ChalcopyriteCuFeS2
S DigeniteCu9S5
S EpsomiteMgSO4 · 7H2O
S GalenaPbS
S GalenobismutitePbBi2S4
S GoslariteZnSO4 · 7H2O
S GypsumCaSO4 · 2H2O
S JarositeKFe3+ 3(SO4)2(OH)6
S KobellitePb22Cu4(Bi,Sb)30S69
S MarcasiteFeS2
S Sphalerite (var: Marmatite)(Zn,Fe)S
S MatilditeAgBiS2
S NatroaluniteNaAl3(SO4)2(OH)6
S PlumbojarositePb0.5Fe33+(SO4)2(OH)6
S ProustiteAg3AsS3
S PyrargyriteAg3SbS3
S PyriteFeS2
S PyrrhotiteFe7S8
S SphaleriteZnS
S TennantiteCu6[Cu4(Fe,Zn)2]As4S13
S TetrahedriteCu6[Cu4(Fe,Zn)2]Sb4S13
S Wurtzite(Zn,Fe)S
ClChlorine
Cl Chlorargyrite (var: Bromian Chlorargyrite)Ag(Cl,Br)
Cl ChlorargyriteAgCl
Cl MimetitePb5(AsO4)3Cl
Cl PyromorphitePb5(PO4)3Cl
KPotassium
K AluniteKAl3(SO4)2(OH)6
K CryptomelaneK(Mn74+Mn3+)O16
K JarositeKFe3+ 3(SO4)2(OH)6
K MuscoviteKAl2(AlSi3O10)(OH)2
K OrthoclaseK(AlSi3O8)
K Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
CaCalcium
Ca AnkeriteCa(Fe2+,Mg)(CO3)2
Ca AragoniteCaCO3
Ca Birnessite(Na,Ca)0.5(Mn4+,Mn3+)2O4 · 1.5H2O
Ca CalciteCaCO3
Ca DolomiteCaMg(CO3)2
Ca Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Ca GypsumCaSO4 · 2H2O
Ca ScheeliteCa(WO4)
Ca WollastoniteCaSiO3
Ca Aragonite (var: Zincian Aragonite)(Ca,Zn)CO3
VVanadium
V Descloizite (var: Dechenite)PbZn(VO4,AsO4)(OH)
V DescloizitePbZn(VO4)(OH)
MnManganese
Mn Birnessite(Na,Ca)0.5(Mn4+,Mn3+)2O4 · 1.5H2O
Mn Chalcophanite(Zn,Fe,Mn)Mn3O7 · 3H2O
Mn CryptomelaneK(Mn74+Mn3+)O16
Mn HübneriteMnWO4
Mn HydrohetaeroliteZnMn2O4 · H2O
Mn Siderite (var: Manganoan Siderite)(Fe,Mn)CO3
Mn Siderite (var: Oligonite)(Fe,Mn)CO3
Mn PyrolusiteMn4+O2
Mn RhodochrositeMnCO3
Mn RhodoniteMn2+SiO3
Mn Wolframite(Fe2+)WO4 to (Mn2+)WO4
FeIron
Fe AnkeriteCa(Fe2+,Mg)(CO3)2
Fe ArsenopyriteFeAsS
Fe Chalcophanite(Zn,Fe,Mn)Mn3O7 · 3H2O
Fe ChalcopyriteCuFeS2
Fe Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Fe Goethiteα-Fe3+O(OH)
Fe HematiteFe2O3
Fe JarositeKFe3+ 3(SO4)2(OH)6
Fe KobellitePb22Cu4(Bi,Sb)30S69
Fe Limonite(Fe,O,OH,H2O)
Fe MagnetiteFe2+Fe23+O4
Fe Siderite (var: Manganoan Siderite)(Fe,Mn)CO3
Fe MarcasiteFeS2
Fe Sphalerite (var: Marmatite)(Zn,Fe)S
Fe Siderite (var: Mg-rich Siderite)(Fe,Mg)CO3
Fe Siderite (var: Oligonite)(Fe,Mn)CO3
Fe PlumbojarositePb0.5Fe33+(SO4)2(OH)6
Fe PyriteFeS2
Fe PyrrhotiteFe7S8
Fe SideriteFeCO3
Fe TetrahedriteCu6[Cu4(Fe,Zn)2]Sb4S13
Fe TurquoiseCu(Al,Fe3+)6(PO4)4(OH)8 · 4H2O
Fe VivianiteFe32+(PO4)2 · 8H2O
Fe Wolframite(Fe2+)WO4 to (Mn2+)WO4
CuCopper
Cu AikinitePbCuBiS3
Cu Aurichalcite(Zn,Cu)5(CO3)2(OH)6
Cu AzuriteCu3(CO3)2(OH)2
Cu CaledonitePb5Cu2(SO4)3(CO3)(OH)6
Cu ChalcanthiteCuSO4 · 5H2O
Cu ChalcociteCu2S
Cu ChalcopyriteCuFeS2
Cu ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Cu CopperCu
Cu CupriteCu2O
Cu DigeniteCu9S5
Cu KobellitePb22Cu4(Bi,Sb)30S69
Cu MalachiteCu2(CO3)(OH)2
Cu Rosasite(Cu,Zn)2(CO3)(OH)2
Cu TennantiteCu6[Cu4(Fe,Zn)2]As4S13
Cu TetrahedriteCu6[Cu4(Fe,Zn)2]Sb4S13
Cu TurquoiseCu(Al,Fe3+)6(PO4)4(OH)8 · 4H2O
ZnZinc
Zn Aurichalcite(Zn,Cu)5(CO3)2(OH)6
Zn Chalcophanite(Zn,Fe,Mn)Mn3O7 · 3H2O
Zn Descloizite (var: Dechenite)PbZn(VO4,AsO4)(OH)
Zn DescloizitePbZn(VO4)(OH)
Zn GoslariteZnSO4 · 7H2O
Zn HemimorphiteZn4Si2O7(OH)2 · H2O
Zn HydrohetaeroliteZnMn2O4 · H2O
Zn Sphalerite (var: Marmatite)(Zn,Fe)S
Zn Rosasite(Cu,Zn)2(CO3)(OH)2
Zn SauconiteNa0.3Zn3((Si,Al)4O10)(OH)2 · 4H2O
Zn SmithsoniteZnCO3
Zn SphaleriteZnS
Zn TetrahedriteCu6[Cu4(Fe,Zn)2]Sb4S13
Zn Wurtzite(Zn,Fe)S
Zn Aragonite (var: Zincian Aragonite)(Ca,Zn)CO3
AsArsenic
As ArsenopyriteFeAsS
As Descloizite (var: Dechenite)PbZn(VO4,AsO4)(OH)
As MimetitePb5(AsO4)3Cl
As ProustiteAg3AsS3
As TennantiteCu6[Cu4(Fe,Zn)2]As4S13
SeSelenium
Se SeleniumSe
BrBromine
Br BromargyriteAgBr
Br Chlorargyrite (var: Bromian Chlorargyrite)Ag(Cl,Br)
MoMolybdenum
Mo WulfenitePb(MoO4)
AgSilver
Ag AcanthiteAg2S
Ag BromargyriteAgBr
Ag Chlorargyrite (var: Bromian Chlorargyrite)Ag(Cl,Br)
Ag ChlorargyriteAgCl
Ag Electrum(Au, Ag)
Ag HessiteAg2Te
Ag IodargyriteAgI
Ag MatilditeAgBiS2
Ag ProustiteAg3AsS3
Ag PyrargyriteAg3SbS3
Ag SilverAg
SbAntimony
Sb KobellitePb22Cu4(Bi,Sb)30S69
Sb PyrargyriteAg3SbS3
Sb TetrahedriteCu6[Cu4(Fe,Zn)2]Sb4S13
TeTellurium
Te AltaitePbTe
Te CalaveriteAuTe2
Te HessiteAg2Te
IIodine
I IodargyriteAgI
BaBarium
Ba BaryteBaSO4
WTungsten
W HübneriteMnWO4
W ScheeliteCa(WO4)
W Wolframite(Fe2+)WO4 to (Mn2+)WO4
AuGold
Au CalaveriteAuTe2
Au Electrum(Au, Ag)
Au GoldAu
PbLead
Pb AikinitePbCuBiS3
Pb AltaitePbTe
Pb AnglesitePbSO4
Pb Galena (var: Argentiferous Galena)PbS
Pb CaledonitePb5Cu2(SO4)3(CO3)(OH)6
Pb CerussitePbCO3
Pb Descloizite (var: Dechenite)PbZn(VO4,AsO4)(OH)
Pb DescloizitePbZn(VO4)(OH)
Pb GalenaPbS
Pb GalenobismutitePbBi2S4
Pb KobellitePb22Cu4(Bi,Sb)30S69
Pb LithargePbO
Pb MimetitePb5(AsO4)3Cl
Pb MiniumPb3O4
Pb PlumbojarositePb0.5Fe33+(SO4)2(OH)6
Pb PyromorphitePb5(PO4)3Cl
Pb WulfenitePb(MoO4)
BiBismuth
Bi AikinitePbCuBiS3
Bi BismuthiniteBi2S3
Bi Bismutite(BiO)2CO3
Bi GalenobismutitePbBi2S4
Bi KobellitePb22Cu4(Bi,Sb)30S69
Bi MatilditeAgBiS2

Regional Geology

This geological map and associated information on rock units at or nearby to the coordinates given for this locality is based on relatively small scale geological maps provided by various national Geological Surveys. This does not necessarily represent the complete geology at this locality but it gives a background for the region in which it is found.

Click on geological units on the map for more information. Click here to view full-screen map on Macrostrat.org

Eocene
33.9 - 56 Ma



ID: 3301151
Gray Porphyry Group, Johnson Gulch Porphyry

Age: Eocene (33.9 - 56 Ma)

Stratigraphic Name: Johnson Gulch Porphyry

Description: Medium-gray, porphyritic monzogranite or granodiorite typically with a fine-grained or very fine-grained groundmass. Contains about 30 percent small, euhedral plagioclase phenocrysts, 5 percent subhedral quartz phenocrysts as long as about 5 mm, 5 percent biotite as long as 1 mm, and a few percent hornblende needles as long as 5 mm; contains only a few orthoclase phenocrysts as long as 2.5 cm (Behre, 1953). Accessory minerals are apatite, zircon, and rutile. Considered the darkest-gray and youngest of the gray porphyries (Behre, 1953). Forms dikes, sills, and small stocks and is probably the igneous rock most closely associated with ore deposition (Behre, 1953). The Johnson Gulch Porphyry underlies most of Breece Hill, several kilometers east of Leadville, which contains many of the major ore deposits of the Leadville mining district. The Johnson Gulch Porphyry has a zircon fission-track age of 43.1±4.3 Ma (Thompson and Arehart, 1990) and a recent U-Pb zircon age of 39.5±0.6 Ma (Kellogg and others, 2017)

Reference: Kellogg, K.S., R.R. Shroba, C.A. Ruleman, R.G. Bohannon, W.C. McIntosh, W.R. Premo, M.A. Cosca, R.J. Moscati, T.R. Brandt. Geologic map of the upper Arkansas River valley region, north-central Colorado. doi: 10.3133/sim3382. U.S. Geological Survey Scientific Investigations Map 3382. [186]

Permian - Devonian
251.902 - 419.2 Ma



ID: 3187583
Paleozoic sedimentary rocks

Age: Phanerozoic (251.902 - 419.2 Ma)

Lithology: Sedimentary rocks

Reference: Chorlton, L.B. Generalized geology of the world: bedrock domains and major faults in GIS format: a small-scale world geology map with an extended geological attribute database. doi: 10.4095/223767. Geological Survey of Canada, Open File 5529. [154]

Pennsylvanian
298.9 - 323.2 Ma



ID: 2742619
Minturn Fm in west-central and south-central and other units

Age: Pennsylvanian (298.9 - 323.2 Ma)

Stratigraphic Name: Minturn Formation

Description: Arkosic sandstone, conglomerate, shale, and limestone. Includes Madera Fm and Sharpsdale Fm of Chronic (1958) in Sangre de Cristo Range and Gothic Fm of Langenheim (1952) in Elk Mountains. Other units of Middle Pennsylvanian age.

Comments: Original map source: Green, G.N., 1992, The Digital Geologic Map of Colorado in ARC/INFO Format: U.S. Geological Survey Open-File Report 92-0507, 9 p., scale 1:500,000.

Lithology: Major:{arkose,conglomerate,shale}, Minor:{limestone}

Reference: Horton, J.D., C.A. San Juan, and D.B. Stoeser. The State Geologic Map Compilation (SGMC) geodatabase of the conterminous United States. doi: 10.3133/ds1052. U.S. Geological Survey Data Series 1052. [133]

Data and map coding provided by Macrostrat.org, used under Creative Commons Attribution 4.0 License

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
Emmons, S.F., Irving, J.D., and Loughlin, G.F., (1927), Geology and ore deposits of the Leadville mining district, Colorado: U.S. Geological Survey Professional Paper 148, 368p.
Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 950.
Behre, C. H., Jr., (1953), Geology and ore deposits of the west slope of the Mosquito Range: U.S. Geological Survey Professional Paper 970, 176p.
Tweto, O., (1960), Pre-ore ago of faults at Leadville, Colorado: U.S. Geological Survey Professional Paper 400-B, p. 10-11.
Callahan, W.H., (1964), Paleophysiographic premises for prospecting for stratabound base metal mineral deposits in carbonate rocks: Ankara, CENTO Symposium on mining, geology, and base metals, p. 230-235.
Tweto, O., (1968), Leadville district, Colorado, in Ridge, J.D., ed., Ore Deposits of the United States, 1933-1967 (Graton-Sales Volume): New York, American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc., p. 681-705.
Tweto, O., (1974), Geologic map and sections of the Holy Cross quadrangle, Eagle, Lake, and Summit Counties, Colorado: U.S. Geological Survey Miscellaneous Investigations Series Map I-830, scale 1:24000.
Blair, E., (1980), Leadville: Colorado’s magic city: Boulder, Colorado, Fred Pruett Books, 247p.
DeVoto, R.A., (1983), Central Colorado karst-hosted lead-zinc-silver deposits (Leadville, Gilman, Aspen, and others), a late Paleozoic Mississippi valley-type district, in Kisvarsany, G., Grant, S.K., Pratt, W.P., Koenig, J.W., eds., Proceedings, International Conference on Mississippi valley-type lead-zinc deposits: Rolla, Missouri, p. 459-485.
Mineralogical Record (1985): 16: 171-201.
Bookstrom, A.A., (1990), Tectonic setting, igneous rocks, and ore deposits of the northeastern segment of the Colorado mineral belt, in Beaty, D.W., Landis, G.P., and Thompson, T.B., eds., Carbonate-hosted sulfide deposits of the central Colorado mineral belt: Economic Geology Monograph No. 7, p. 45-65.
Johansing, R.J. and Thompson, T.B., (1990), Geology and origin of Sherman-type deposits, central Colorado, in Beaty, D.W., Landis, G.P., and Thompson, T.B., eds., Carbonate-hosted sulfide deposits of the central Colorado mineral belt: Economic Geology Monograph No. 7, p. 367-394.
Landis, G.P. and Tschauder, R.J., (1990), Late Mississippian karst caves and Ba-Ag-Pb-Zn mineralization in central Colorado, Part II. Fluid inclusion, stable isotope, and rock geochemistry data and a model for ore deposition, in Beaty, D.W., Landis, G.P., and Thompson, T.B., eds., Carbonate-hosted sulfide deposits of the central Colorado mineral belt: Economic Geology Monograph No. 7, p. 339-366.
Rocks & Minerals (1990): 65: 61.
Thompson, T.B. and Beaty, D.W., (1990), Geology and ore deposits in the Leadville district, Colorado: Part II. Oxygen, hydrogen, carbon, sulfur, and lead isotopic data and the development of a genetic model, in Beaty, D.W., Landis, G.P., and Thompson, T.B., eds., Carbonate-hosted sulfide deposits of the central Colorado mineral belt: Economic Geology Monograph No. 7, p. 156-179.
Thompson, T.B., and Arehart, G.B., (1990), Geology and the origin of ore deposits in the Leadville district, Colorado: Part I. Geologic studies of orebodies and wall rocks, in Beaty, D.W., Landis, G.P., and Thompson, T.B., eds., Carbonate-hosted sulfide deposits of the central Colorado mineral belt: Economic Geology Monograph No. 7, p. 130-155.
Ohle, E.L., (1991), Lead and zinc deposits, in Gluskoter, H.J., Rice, D.D., and Taylor, R.B., eds., Economic Geology, U.S.: Boulder, Colorado, Geological Society of America, The Geology of North America, v. P-2, p. 43-62.
Wallace, A.R., (1993), Geologic setting of the Leadville mining district, Lake County, Colorado: U.S. Geological Survey Open-file Report 93-343, 20p.
Maslyn, M., (1996), Mineralized Late-Mississippian paleokarst features and paleogeography in the Leadville, Colorado area, in The Caves and Karst of Colorado: National Speleological Society 1996 Convention Guidebook, p. 136-143.
Symons, D.T.A. and Lewchuk, M.T., (2000), Age of Sherman-type Zn-Pb-Ag deposits, Mosquito Range, Colorado: Economic Geology, v. 95, p. 1489-1504.
Wireman, M., Gertson, J., and Williams, M., (2006), Hydrogeologic characterization of groundwaters, mine pools, and the Leadville mine drainage tunnel, Leadville, Colorado in Barnhisel, R.I., ed., 7th International Conference on Acid Rock Drainage:Lexington, Kentucky, American Society of Mining and Reclamation, p. 2439-2469.

External Links


Localities in this Region
Show map


This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2018, except where stated. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: November 17, 2018 17:30:59 Page generated: November 16, 2018 15:09:14
Go to top of page