URGENT MESSAGE: Time is running out. Click here to find out why.
Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for Educators
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
StatisticsThe ElementsUsersBooks & MagazinesMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery

Chandlers Mill Quarry, Newport, Sullivan Co., New Hampshire, USA

This page is currently not sponsored. Click here to sponsor this page.
Key
Lock Map
Latitude & Longitude (WGS84): 43° 21' 28'' North , 72° 15' 8'' West
Latitude & Longitude (decimal): 43.35778,-72.25222
GeoHash:G#: drswev593
Locality type:Quarry
Köppen climate type:Dfb : Warm-summer humid continental climate


A mica quarry in granite pegmatite. The George Smith Quarry and Chandlers Mill Quarry were nearly adjacent operations across a small country road from each other. Species list also contains minerals from the host rocks.

Locality is now in the middle of a number of closely spaced residential houses.

There are at least five variations of the name of this location in the mineralogical literature: Chandler Mill, Chandlers Mill, Chandler's Mill, Chandler Mills, and Chandler's Mills. The use of an apostrophe is discouraged in geographic names by many organizations including those of cartographers, geologists, and geographers. Etymologically Chandler Mill is probably the most correct as Ira Chandler owned only one mill. Chandlers Mill is one of the more common variants and without an apostrophe parallels the road name the locality is adjacent to: Chandlers Mill Road. However, on that road, there is a settlement named "Chandlers Mills".

Note: Both the first (1956) and second (1960) editions of Philip Morrill's New Hampshire Mines and Mineral Locations incorrectly place both the George Frank Smith Quarry and the Chandlers Mill Quarry on the wrong sides of the road. Because of the widespread distribution of these field guides, mineral location labels can not be considered undeniably indicating one or the other of these locations. The George Frank Smith Quarry has produced some interesting mineral species, particularly phosphates, but the Chandlers Mill Quarry has by far produced the greater variety of species. (The same references incorrectly give the initials for the nearby George Frank Smith as "G. E. Smith Quarry.)

The following is a synopsis of locality history by Fred E. Davis.

Chandlers Mill history in a nutshell
Newport, Sullivan County, New Hampshire is like many towns – it is surrounded by small villages. To the west of Newport are Kelleyville and Chandlers Mill (L. Cote, Newport Historical Society, pers. comm., 2013). In the mid-1800s, Lewis W. Randall and Carroll W. Peabody built a sawmill called “Randall’s mill” along the banks of the Sugar River about 3.5 miles (5.6 km) west of Newport. Between 1867 and 1870, Ira F. Chandler (1842 - 1918) purchased the mill and operated it for many years; the mill was then called “Chandler’s Mill “ (Wheeler 1879).

I contacted several agencies in Newport concerning the proper spelling of the village since it appears on different maps with a variety of spellings. These include Chandlers Mill, Chandler Mills, Chandler’s Mill, and Chandlers Mills. Cameron et al. (1954) refer to a railroad stop in the mid-1940s called “Chandler Station.” Since the village is an unincorporated populated place, it doesn’t show up on lists of official town names. Consequently, the spelling of the village name is what you choose it to be. Since the name is based on Ira F. Chandler’s sawmill and he had only one, it seems reasonable to call it, as others have, “Chandlers Mill.” This form will be used here when not quoting from other documents.

Ira F. Chandler, a widower with three young children, is found on the June 1870 Federal census of Newport, Sullivan County, New Hampshire. Four months later, he married his second wife Nellie Wright. Two houses away from Ira Chandler on the 1870 census was the residence of Benjamin Marshall with his wife and children. His 18 year old son Allen P. was working as a laborer on their 80-acre farm. This farm is the location of an old, abandoned pegmatite mine that was worked prior to 1936 when it was studied by Carleton A. Chapman (1941, 1942, 1943). It is not known when the pegmatite mine was first worked or by whom, but it was described as “abandoned” by Chapman (1941).

In 1886, Frank P. Smith and his wife Vinnie acquired a small tract of land near the Sugar River from Jane B. Cram, whose husband had died the year before. Frank and Vinnie Smith’s son, George Frank Smith, was born there 24 April 1887; both he and his name are integral to the history of the mines.

Benjamin Marshall died in June 1893. Three years later in 1896, his son Allen sold the 80-acre farm to Frank P. Smith. On the 1900 Federal census, Frank Smith and his family were living on this farm. The 1920 census shows Frank Smith, wife Vinnie, son George F. (working on the family farm) and daughter Florence with her child Franklin C. Parmenter on what was then called Kelleyville Road (now Chandlers Mill Road). Frank P. Smith died the day after Christmas in 1921. In 1922, Frank’s widow Vinnie transferred all of the land to her children including George F. Smith.

In 1924, George F. Smith married Agnes E. Brown. On the 1930 census, George, wife Agnes, two children and George’s mother Vinnie were living on the farm. The 1934 Newport town directory lists George and Agnes living in “Chandler’s Mill.” The 1940 census shows George & family living on the “old back Claremont & Kelleyville Rd through Chandler Mills.”

In 1938, George F. Smith acquired his sister Florence’s share of the 80-acre farm. In 1943, George and Agnes took a lease on the adjacent property between the road and the Sugar River. This same tract of land was then leased to a business partnership consisting of George and Agnes Smith, John G. Sargeant and his son Lawrence E. Sargeant (Sargeant Mining Company operated a mica mine nearby in southeastern Claremont) and William A. Hoy (who worked in a Newport shoe shop with his wife Flora E.); the partnership was doing business as the “Smith Mica Company” of Newport, New Hampshire. As detailed below, the small quarry on this tract of land near the Sugar River was opened by G. F. Smith and worked by Smith Mica Company.

Mine names and mining histories
Mindat showed* only one mine for this Newport locality and previously referred* to it as “George Frank Smith mine (Chandler Mills quarry),” implying that Chandler Mills quarry is a synonym for George Frank Smith mine and is clearly in error. This may be an error carried over from the ambiguity in Morrill (1963), the triphylite description in Meyers and Stewart (1977), or the Newport mines entry in Smith (2005). In spite of the single* Mindat locality, there are in fact two mines about 125 m apart that are not “adjacent” or even "nearly adjacent" as stated on Mindat. The two distinct mines are clearly shown on Plate 2 of Olson (1950), Plate 41 of Cameron et al. (1954), annotated topo maps maintained by the Boston Mineral Club (K. Czaja, pers. comm., 2013), field trip maps for the Boston Mineral Club (BMC 1958, 1963), and a map in Meyers and Stewart (1977). There is also an obvious issue with the misspelled name “G. E. Smith” used on Mindat** and elsewhere.
*recently changed by separating the two mines
**corrected on Mindat

Chandlers Mill mine
The first and oldest mine is up the hill about 160 m south of the Sugar River and is identified as the “Chandler Mills mine” on maps in Olson (1950), Cameron et al. (1954), BMC (1958, 1963), and Meyers and Stewart (1977). The Boston Mineral Club’s annotated topo map also shows “Chandler Mills” and penciled in “up the hill” (K. Czaja, pers. comm., 2013). It is also mentioned in Table 1 (page 8) of Page and Larrabee (1962). The first published account of the locality, Chapman (1941:377), simply refers to it as a "small abandoned pegmatite" that he studied and mapped from 1937 to 1940 (several years prior to the opening of the G. F. Smith mine) (Chapman 1941, 1942; Cameron et al. 1954). Note that it was called Chandlers Mill mine [corrected by moving the “s”] at the time that it was actively being worked, and was visited by E. N. Cameron, J. J. Page et al. in the 1940s as described in Cameron et al. (1954).

Cameron et al. (1954) state that the Chandlers Mill mine was leased by New Hampshire Mica and Mining Co. (Keene, NH) in 1942; it was reopened and worked by them from May 1943 to December 1944.

Both the description of hurlbutite in Mrose (1952) and triphylite crystals in Chapman (1943) use the same latitude/longitude coordinates that correspond to the Chandlers Mill mine but instead use the name “Smith mine.” It is indeed unfortunate that some used the alternate “Smith mine” because of the terrible confusion that results due of the similarity to G. F. Smith mine. In the description for the type locality of hurlbutite, Mrose (1952) states that the name “Smith mine” refers to the land owners George and Agnes Smith. In a description of hurlbutite, Meyers and Stewart (1977) correctly state that the mineral was found at the “Chandler Mills mine” and add the terribly confusing alternate name“Smith” mine in parentheses. It’s certainly true that George and Agnes Smith owned the land, but there was already another nearby mine using the name Smith that had been opened 9 years prior to the publication of Mrose (1952).

G. F. Smith mine
The second and newer mine is about 35 m south of the Sugar River and just east of the Smith residence. It is identified as the “G. F. Smith mine” on maps in Olson (1950), Cameron et al. (1954) , Meyers and Stewart (1977), and in other references like Page and Larrabee (1962). BMC (1958), the first map in BMC (1963) and the Boston Mineral Club’s annotated topo map simply call it the “Smith mine” (an obvious source of confusion since previously mentioned references also use “Smith mine” when referring to Chandlers Mill mine). In fact, the BMC topo map indicates “Smith mine” and penciled in “at the river” (K. Czaja, pers. comm., 2013). Note that it was called G. F. Smith mine at the time that it was actively being worked, and was visited by E. N. Cameron, J. J. Page et al. in the 1940s as described in Cameron et al. (1954).

Cameron et al. (1954) state that George F. Smith personally opened this mine in 1943. Then Smith and his associates (aka Smith Mica Company) worked the mine up to November 1944. After that, it was leased by Newport Mica Co. from December 1944 through February 1945.

BMC (1963) reports the G. F. Smith mine as “barren,” obviously from a mineral collector’s perspective. When Mindat provides separate locality entries for both Chandlers Mill and G. F. Smith mines, I will be posting some interesting minerals (some the first reported occurrences) collected on my recent visit to the G. F. Smith mine dumps.

The name of the G. F. Smith mine has been misspelled many times. As documented above, the owner’s full name is George Frank Smith. The incorrect term “G. E. Smith” is found in the text of Olson (1950), Morrill (1960), the second map in BMC (1963), the text of Smith (2005), and still at some locations on Mindat (not all "G. E." occurrences were fixed). “G. E. Smith mine” is also found on labels for some Harvard specimens with the added complication that they were not from the G. F. Smith mine at all, but rather the Chandlers Mill mine. Cameron et al. (1954:289) use “G. G. Smith” once, clearly a typo since “G. F. Smith” is used correctly in the remainder of instances in their text.

Morrill (1960) deserves a special note. Based on reported minerals and directions to the mines, it appears that Morrill (1960) has completely reversed the mine names. He attributes the long list of reported minerals associated with Chandlers Mill mine to G. F. Smith mine, and locates Chandlers Mill mine east of the Smith residence (where G. F. Smith mine is located). The coordinates Morrill uses are also wrong as detailed in Morong (2011).

Recommendations
1) The village name should be called “Chandlers Mill, Newport, Sullivan County, New Hampshire.” Since it is unincorporated and may change without notice, Chandlers Mill should not be used in locality references without also specifying the nearest incorporated town, Newport.

2) The mine nearest to the Sugar River worked by George F. Smith should be called the “G. F. Smith mine” as it was called in the 1940s when it was actively being mined, and as shown on maps by Olson (1950), Cameron et al. (1954), and Meyers and Stewart (1977). The full reference should be: G. F. Smith mine, Chandlers Mill, Newport, Sullivan County, New Hampshire. The use of only “Smith mine” should be avoided due to confusion with Chapman (1943), Mrose (1952) and other early references.

3) The mine further south up the hill should be called “Chandlers Mill mine” as it was called in the 1940s when it was actively being mined, and as shown [corrected from “Chandler Mills”] on maps by Olson (1950), Cameron et al. (1954), BMC (1958, 1963), the BMC topo map and Meyers and Stewart (1977). The full reference should be: Chandlers Mill mine, Newport, Sullivan County, New Hampshire. An explanatory note should point out the outdated and confusing “Smith mine” used in Chapman (1943) and Mrose (1952) when referring to Chandlers Mill mine.

4) Based on this research and recent field trip surveys, it is recommended that Newport, New Hampshire specimens of crystallized triphylite, hurlbutite, brazilianite, and secondary phosphate species (e.g., augelite, beryllonite, goyazite, wardite) have their locality labeled as: Chandlers Mill mine, Newport, Sullivan County, New Hampshire.

Acknowledgements
I am extremely grateful for the extraordinary assistance and extensive research by Tom Mortimer. I would also like to thank Kevin Czaja for his help in Boston.

References
[BMC] Boston Mineral Club, pub. 1958. New England Locations Bulletin 1. Boston.

———, pub. 1963. Boston Mineral Club Field Trip Guide for 1963. Boston.

Cameron, E. N., D. M. Larrabee, A. H. McNair, J. J. Page, G. W. Stewart, and V. E. Shainin. 1954. Pegmatite investigations 1942-45 New England. U. S. Geological Survey Professional Paper 255. Washington, DC: United States Government Printing Office.

Chapman, C. A. 1941. The tectonic significance of some pegmatites in New Hampshire. Journal of Geology 49(4):370-381.

———. 1942. Intrusive domes of the Claremont-Newport area, New Hampshire. GSA Bulletin 53(6):889-915.

———. 1943. Large magnesia-rich triphylite crystals in pegmatite. American Mineralogist 28(2):90-58.

Meyers, T. R. and G. W. Stewart. 1977. The Geology of New Hampshire: Part 3, Minerals and Mines. State of New Hampshire Department of Resources and Economic Development.

Morong, D. 2011. Morrill Coordinates and Errors. Available from: [www.mindatnh.org]. [cited 10 August 2013]

Morrill, P. 1960. New Hampshire mines and mineral localities, 2nd edition. Hanover: Montshire Museum.

———. 1963. Mineral Guide to New England. Winthrop: Winthrop Mineral Shop.

Mrose, M. E. 1952. Hurlbutite, a new mineral. American Mineralogist 37(11):931-940.

New Hampshire Birth Records, Early to 1900 [internet database and images]. Available from [www.familysearch.org]. [cited 27July 2013].
1887 April 24. George Frank Smith. Newport.

New Hampshire Death Records, 1654-1947 [internet database and images]. Available from [www.familysearch.org]. [cited 27July 2013].
1885 March 23. George F. Cram. Newport.
1893 June 18. Benjamin Marshall. Newport.
1903 October 9. Jane B. Cram. Newport.
1912 January 28. Allen P. Marshall. Newport.
1921 December 26. Franklin P. Smith. Newport.

New Hampshire Marriage Records, 1637-1947 [internet database and images]. Available from [www.familysearch.org]. [cited 10 August 2013]
1865 September 20. Ira F. Chandler, Ester M. Chase. Goshen.
1924 October 7. George F. Smith, Agnes E. Brown. Newport.
1941 February 22. Lawrence E. Sargeant, Cecilia I. Berube. Newport.

Olson, J. C. 1950. Feldspar and associated pegmatite minerals in New Hampshire. In: Part 14: Mineral Resource Survey. Concord: New Hampshire State Planning and Development Commission and U. S. Geological Survey. (Reprinted 1961)

Page, J. J. and D. M. Larrabee. 1962. Beryl resources of New Hampshire. US Geological Survey Professional Paper 353. Washington DC: United States Government Printing Office.

Smith, A. 2005. New Hampshire Mineral Locality Index. In: Rocks and Minerals Magazine 80(4):242-261.

Sullivan County Registry of Deeds. 14 Main Street, Newport, New Hampshire.
1886. Book 125, page 470.
1896. Book 141, page 29.
1922. Book 211, page 164.
1938. Book 257, page 506.
1941. Book 275, page 182.
1943. Book 289, page 180.

US City Directories 1821-1989 [database and images on-line]. Provo, UT, USA: Ancestry.com Operations Inc., 2004. Available at [www.ancestry.com]. [cited 27July 2013]
1927. Lothrop’s Newport Directory. George (Agnes) Smith.
1931. Lothrop’s Newport Directory. George (Agnes) Smith.
1934. Newport Directory. George (Agnes) Smith.
1936. Newport Directory. George (Agnes) Smith.
1938. Newport Directory. George (Agnes) Smith.
1949. Newport Directory. George (Agnes) Smith.
1956. Manning’s Newport Directory. George F. (Agnes) Smith.

US Federal Bureau of the Census [database and images on-line]. Provo, UT, USA: Ancestry.com Operations Inc., 2004. Available at [www.ancestry.com]. [cited 20 August 2013]
1870. Ira F. Chandler: Newport, Sullivan County, New Hampshire.
1870. Jane B. Cram: Newport, Sullivan County, New Hampshire.
1870. Allen P. Marshall: Newport, Sullivan County, New Hampshire.
1880. Ira F. Chandler: Newport, Sullivan County, New Hampshire.
1880. Allen P. Marshall: Newport, Sullivan County, New Hampshire.
1900. Ira F. Chandler: Claremont, Sullivan County, New Hampshire.
1900. Allen P. Marshall: Newport, Sullivan County, New Hampshire.
1900. Frank P. Smith: Newport, Sullivan County, New Hampshire.
1900. George F. Smith: Newport, Sullivan County, New Hampshire.
1920. Frank P. Smith: Newport, Sullivan County, New Hampshire.
1920. George F. Smith: Newport, Sullivan County, New Hampshire.
1930. John G. Sargeant: Newport, Sullivan County, New Hampshire.
1930. George F. Smith: Newport, Sullivan County, New Hampshire.
1940. William A. Hoy: Newport, Sullivan County, New Hampshire.
1940. George F. Smith: Newport, Sullivan County, New Hampshire.

Wheeler, E. 1879. The history of Newport, New Hampshire, from 1766 to 1878. Concord: Republican Press Association.

Alternative Label Names

This is a list of additional names that have been recorded for mineral labels associated with this locality in the minID database. This may include previous versions of the locality name hierarchy from mindat.org, data entry errors, and it may also include unconfirmed sublocality names or other names that can only be matched to this level.

G.E.Smith Quarry, Newport, New Hampshire, USA
Newport, New Hampshire, USA

Select Mineral List Type

Standard Detailed Strunz Dana Chemical Elements

Mineral List


43 valid minerals. 1 (TL) - type locality of valid minerals. 6 erroneous literature entries.

Detailed Mineral List:

Albite
Formula: Na(AlSi3O8)
Reference: American Mineralogist: 37: 931-940.; Rocks & Minerals (2005) 80:242-261 New Hampshire Mineral Locality Index; USGS Prof Paper 255; American Mineralogist (1953): 38: 728-729.
Albite var: Cleavelandite
Formula: Na(AlSi3O8)
Reference: Rocks & Minerals (2005) 80:242-261 New Hampshire Mineral Locality Index; USGS Prof Paper 255
'Allanite Group' ?
Formula: {A12+REE3+}{M3+2M32+}(Si2O7)(SiO4)O(OH)
Description: No specimens known.
Reference: Van King; Rocks & Minerals (2005) 80:242-261 New Hampshire Mineral Locality Index
Alluaudite ?
Formula: (Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
Description: This mineral may be a specifically new species in the qinghiite series.
Reference: Anthony, Bideaux, Bladh, Nichols: "Handbook of Mineralogy", Vol. 4, 2000; Rocks & Minerals (2005) 80:242-261 New Hampshire Mineral Locality Index
Amblygonite
Formula: LiAl(PO4)F
Description: The cited papers while written by a student and future famous mineralogist did not contain data regarding members of this series. Extremely unlikely. The locality does produce valid montebrasite.
Reference: American Mineralogist: 37: 931-940.; Rocks & Minerals (2005) 80:242-261 New Hampshire Mineral Locality Index; American Mineralogist (1953): 38: 728-729.
Arrojadite-(KFe)
Formula: {KNa}{Fe2+◻}{Ca}{Na2◻}{Fe2+13}{Al}(PO4)11(HPO4)(OH)2
Reference: Anthony, Bideaux, Bladh, Nichols: Handbook of Mineralogy, Vol. IV; Rocks & Minerals (2005) 80:242-261 New Hampshire Mineral Locality Index
Arsenopyrite
Formula: FeAsS
Reference: Rocks & Minerals (2005) 80:242-261 New Hampshire Mineral Locality Index
Augelite
Formula: Al2(PO4)(OH)3
Reference: Handbook of Mineralogy - Anthony, Bideaux, Bladh, Nichols; Rocks & Minerals (2005) 80:242-261 New Hampshire Mineral Locality Index; American Mineralogist (1953): 38: 728-729.
Beryl
Formula: Be3Al2(Si6O18)
Reference: Rocks & Minerals (2005) 80:242-261 New Hampshire Mineral Locality Index; USGS Prof Paper 255
Beryl var: Aquamarine ?
Formula: Be3Al2Si6O18
Reference: No reference listed
Beryl var: Heliodor ?
Formula: Be3Al2(Si6O18)
Reference: USGS Prof Paper 255
Beryllonite
Formula: NaBePO4
Reference: American Mineralogist: 37: 931-940.; Rocks & Minerals (2005) 80:242-261 New Hampshire Mineral Locality Index; American Mineralogist (1953): 38: 728-729.
'Biotite' ?
Reference: No reference listed
Brazilianite
Formula: NaAl3(PO4)2(OH)4
Reference: Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 843.; American Mineralogist: 37: 931-940.; Rocks & Minerals (2005) 80:242-261 New Hampshire Mineral Locality Index; American Mineralogist (1953): 38: 728-729.
Calcite
Formula: CaCO3
Reference: Rocks & Minerals (2005) 80:242-261 New Hampshire Mineral Locality Index
Chalcopyrite
Formula: CuFeS2
Reference: Rocks & Minerals (2005) 80:242-261 New Hampshire Mineral Locality Index; USGS Prof Paper 255
Childrenite
Formula: Fe2+Al(PO4)(OH)2 · H2O
Reference: Rocks & Minerals (2005) 80:242-261 New Hampshire Mineral Locality Index
Crandallite
Formula: CaAl3(PO4)(PO3OH)(OH)6
Reference: Rocks & Minerals (2005) 80:242-261 New Hampshire Mineral Locality Index
Dickinsonite-(KMnNa)
Formula: {KNa}{Mn2+◻}{Ca}{Na3}{Mn2+13}{Al}(PO4)12(OH)2
Description: All chemical analyses known show that this mineral is actually arrojadite. The name dickinsonite was first used before arrojadite was well-defined.
Reference: Rocks & Minerals (2005) 80:242-261 New Hampshire Mineral Locality Index
Eosphorite
Formula: Mn2+Al(PO4)(OH)2 · H2O
Reference: Morrill, P., 1960, New Hampshire Mines and Minerals.; Rocks & Minerals (2005) 80:242-261 New Hampshire Mineral Locality Index
Ferrowyllieite
Formula: (Na,Ca,Mn)(Fe,Mn)(Fe,Fe,Mg)Al(PO4)3
Description: Calculation of this mineral's formula places it as ferrous iron-rich qingheiite. It is not ferrowyllieite.
Reference: Moore and Ito (1979) Min Mag 43:227
Fluorapatite
Formula: Ca5(PO4)3F
Reference: American Mineralogist: 37: 931-940.; Rocks & Minerals (2005) 80:242-261 New Hampshire Mineral Locality Index; American Mineralogist (1953): 38: 728-729.
Fluorapatite var: Carbonate-rich Fluorapatite
Formula: Ca5(PO4,CO3)3(F,O)
Reference: Meyers & Stewart,1956. Geology of NH, part III.; Rocks & Minerals (2005) 80:242-261 New Hampshire Mineral Locality Index
Fluorite
Formula: CaF2
Reference: No reference listed
Graftonite
Formula: Fe2+Fe2+2(PO4)2
Reference: Rocks & Minerals (2005) 80:242-261 New Hampshire Mineral Locality Index
Heterosite
Formula: (Fe3+,Mn3+)PO4
Description: Parent triphylite from this locality has Mn/Mn + Fe = 0.09 (Moore, 2000; Chapman, 1943). The reason for this remarkable ratio is the large MgO content (7.38 weight percent).
Reference: Moore, P. B., 2000, Analyses of Primary Phosphates from Pegmatites in Maine and Other Localities, in V. T. King (editor), Mineralogy of Maine. Mining History, Gems, and Geology, Maine Geological Survey, Augusta, Maine, p. 333-336.
Hurlbutite (TL)
Formula: CaBe2(PO4)2
Habit: well crystallized
Colour: pale yellowish, greenish
Reference: American Mineralogist: 37: 931-940.; Rocks & Minerals (2005) 80:242-261 New Hampshire Mineral Locality Index; American Mineralogist (1953): 38: 728-729.
Hydroxylapatite
Formula: Ca5(PO4)3(OH)
Reference: Van King
Laueite ?
Formula: Mn2+Fe3+2(PO4)2(OH)2 · 8H2O
Description: Given the composition of the triphylite Fe>Mg>>Mn, this mineral is more than likely ushkovite.
Reference: Rocks & Minerals (2005) 80:242-261 New Hampshire Mineral Locality Index
Lazulite
Formula: (Mg,Fe2+)Al2(PO4)2(OH)2
Reference: Rocks & Minerals (2005) 80:242-261 New Hampshire Mineral Locality Index; American Mineralogist (1953): 38: 728-729.
Magnetite
Formula: Fe2+Fe3+2O4
Reference: USGS Prof Paper 255
Microcline
Formula: K(AlSi3O8)
Reference: Van King specimen
Montebrasite
Formula: LiAl(PO4)(OH)
Reference: No reference listed
Moraesite
Formula: Be2(PO4)(OH) · 4H2O
Reference: Rocks & Minerals (2005) 80:242-261 New Hampshire Mineral Locality Index
Muscovite
Formula: KAl2(AlSi3O10)(OH)2
Reference: American Mineralogist: 37: 931-940.; Rocks & Minerals (2005) 80:242-261 New Hampshire Mineral Locality Index; USGS Prof Paper 255; American Mineralogist (1953): 38: 728-729.
Purpurite
Formula: (Mn3+,Fe3+)PO4
Description: The parent triphylite at this locality is Mn/Mn + Fe = 0.09 (Moore, 2000).
Reference: Moore, P. B., 2000, Analyses of Primary Phosphates from Pegmatites in Maine and Other Localities, in V. T. King (editor), Mineralogy of Maine. Mining History, Gems, and Geology, Maine Geological Survey, Augusta, Maine, p. 333-336.
Pyrite
Formula: FeS2
Reference: Rocks & Minerals (2005) 80:242-261 New Hampshire Mineral Locality Index
Pyrrhotite
Formula: Fe7S8
Reference: USGS Prof Paper 255
Qingheiite-(Fe2+)
Formula: Na2Fe2+MgAl(PO4)3
Description: Chemical analysis in Moore and Ito (1979) Min Mag 43:227. Qingheiite-Fe2+ is associated with arrojadite-(KFe).
Reference: Moore and Ito, 1971, Mineralogical Magazine 43:227
Quartz
Formula: SiO2
Reference: American Mineralogist: 37: 931-940.; Rocks & Minerals (2005) 80:242-261 New Hampshire Mineral Locality Index; USGS Prof Paper 255; American Mineralogist (1953): 38: 728-729.
Quartz var: Rose Quartz
Formula: SiO2
Reference: Rocks & Minerals (2005) 80:242-261 New Hampshire Mineral Locality Index
Quartz var: Smoky Quartz
Formula: SiO2
Reference: American Mineralogist: 37: 931-940.; Rocks & Minerals (2005) 80:242-261 New Hampshire Mineral Locality Index
Rockbridgeite
Formula: Fe2+Fe3+4(PO4)3(OH)5
Reference: Rocks & Minerals (2005) 80:242-261 New Hampshire Mineral Locality Index
Roscherite ?
Formula: Ca2Mn2+5Be4(PO4)6(OH)4 · 6H2O
Description: Primary triphylite has extremely low Mn ratio: Fe>Mg>>Mn. No chemical analysis known of "roscherite" from this locality and specimens are more likely to be greifensteinite or less likely, zanazziite.
Reference: Rocks & Minerals (2005) 80:242-261 New Hampshire Mineral Locality Index
Sarcopside
Formula: (Fe2+,Mn2+,Mg)3(PO4)2
Reference: Rocks & Minerals (2005) 80:242-261 New Hampshire Mineral Locality Index
Schorl
Formula: Na(Fe2+3)Al6(Si6O18)(BO3)3(OH)3(OH)
Reference: American Mineralogist: 37: 931-940.; Rocks & Minerals (2005) 80:242-261 New Hampshire Mineral Locality Index; USGS Prof Paper 255
Scorzalite
Formula: Fe2+Al2(PO4)2(OH)2
Reference: Handbook of Mineralogy - Anthony, Bideaux, Bladh, Nichols; Rocks & Minerals (2005) 80:242-261 New Hampshire Mineral Locality Index
Siderite
Formula: FeCO3
Reference: American Mineralogist: 37: 931-940.; Rocks & Minerals (2005) 80:242-261 New Hampshire Mineral Locality Index
Sillimanite
Formula: Al2(SiO4)O
Reference: USGS Prof Paper 255
Staurolite
Formula: Fe2+2Al9Si4O23(OH)
Reference: USGS Prof Paper 255
Strunzite
Formula: Mn2+Fe3+2(PO4)2(OH)2 · 6H2O
Reference: Rocks & Minerals (2005) 80:242-261 New Hampshire Mineral Locality Index
Triphylite
Formula: LiFe2+PO4
Description: Triphylite from this locality has Mn/Mn + Fe = 0.09 (Chapman, 1943; Moore, 2000), but these crystals have an extraordinary amount of MgO (7.38 weight percent).
Reference: Chapman, C. A., 1943, Large Magnesia-rich Triphylite Crystals in pegmatite, American Mineralogist, v. 28, p. 90-98. American Mineralogist: 37: 931-940.; Rocks & Minerals (2005) 80:242-261 New Hampshire Mineral Locality Index; USGS Prof Paper 255; American Mineralogist (1953): 38: 728-729. Moore, P. B., 2000, Analyses of Primary Phosphates from Pegmatites in Maine and Other Localities, in V. T. King (editor), Mineralogy of Maine. Mining History, Gems, and Geology, Maine Geological Survey, Augusta, Maine, p. 333-336.
Uraninite
Formula: UO2
Reference: Fred E. Davis Collection: ID by XRF, strong radioactivity, color, luster, crystal form, fracture, mineral associations
Ushkovite ?
Formula: MgFe3+2(PO4)2(OH)2 · 8H2O
Description: Qualitative chemical analysis by Curt Segeler showed that "laueite" from this locality was Mg-rich and Mn-poor.
Reference: Van King specimen
Vivianite
Formula: Fe2+3(PO4)2 · 8H2O
Reference: Rocks & Minerals (2005) 80:242-261 New Hampshire Mineral Locality Index
Wardite
Formula: NaAl3(PO4)2(OH)4 · 2H2O
Reference: Rocks & Minerals (2005) 80:242-261 New Hampshire Mineral Locality Index
'Whiteite'
Description: The whiteite from this locality is beige to tan and should be chemically analyzed to verify its relationship to the group.
Zircon
Formula: Zr(SiO4)
Reference: Rocks & Minerals (2005) 80:242-261 New Hampshire Mineral Locality Index

List of minerals arranged by Strunz 10th Edition classification

Group 2 - Sulphides and Sulfosalts
Arsenopyrite2.EB.20FeAsS
Chalcopyrite2.CB.10aCuFeS2
Pyrite2.EB.05aFeS2
Pyrrhotite2.CC.10Fe7S8
Group 3 - Halides
Fluorite3.AB.25CaF2
Group 4 - Oxides and Hydroxides
Magnetite4.BB.05Fe2+Fe3+2O4
Quartz4.DA.05SiO2
var: Rose Quartz4.DA.05SiO2
var: Smoky Quartz4.DA.05SiO2
Uraninite4.DL.05UO2
Group 5 - Nitrates and Carbonates
Calcite5.AB.05CaCO3
Siderite5.AB.05FeCO3
Group 8 - Phosphates, Arsenates and Vanadates
'Alluaudite' ?8.AC.10(Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
'Amblygonite' ?8.BB.05LiAl(PO4)F
Arrojadite-(KFe)8.BF.05{KNa}{Fe2+◻}{Ca}{Na2◻}{Fe2+13}{Al}(PO4)11(HPO4)(OH)2
Augelite8.BE.05Al2(PO4)(OH)3
Beryllonite8.AA.10NaBePO4
Brazilianite8.BK.05NaAl3(PO4)2(OH)4
Childrenite ?8.DD.20Fe2+Al(PO4)(OH)2 · H2O
Crandallite8.BL.10CaAl3(PO4)(PO3OH)(OH)6
Dickinsonite-(KMnNa) ?8.BF.05{KNa}{Mn2+◻}{Ca}{Na3}{Mn2+13}{Al}(PO4)12(OH)2
Eosphorite8.DD.20Mn2+Al(PO4)(OH)2 · H2O
Ferrowyllieite ?8.AC.15(Na,Ca,Mn)(Fe,Mn)(Fe,Fe,Mg)Al(PO4)3
Fluorapatite8.BN.05Ca5(PO4)3F
var: Carbonate-rich Fluorapatite8.BN.05Ca5(PO4,CO3)3(F,O)
Graftonite8.AB.20Fe2+Fe2+2(PO4)2
Heterosite8.AB.10(Fe3+,Mn3+)PO4
Hurlbutite (TL)8.AA.15CaBe2(PO4)2
Hydroxylapatite8.BN.05Ca5(PO4)3(OH)
Laueite ?8.DC.30Mn2+Fe3+2(PO4)2(OH)2 · 8H2O
Lazulite ?8.BB.40(Mg,Fe2+)Al2(PO4)2(OH)2
Montebrasite8.BB.05LiAl(PO4)(OH)
Moraesite8.DA.05Be2(PO4)(OH) · 4H2O
Purpurite ?8.AB.10(Mn3+,Fe3+)PO4
Qingheiite-(Fe2+)8.AC.15Na2Fe2+MgAl(PO4)3
Rockbridgeite8.BC.10Fe2+Fe3+4(PO4)3(OH)5
Roscherite ?8.DA.10Ca2Mn2+5Be4(PO4)6(OH)4 · 6H2O
Sarcopside8.AB.15(Fe2+,Mn2+,Mg)3(PO4)2
Scorzalite8.BB.40Fe2+Al2(PO4)2(OH)2
Strunzite8.DC.25Mn2+Fe3+2(PO4)2(OH)2 · 6H2O
Triphylite8.AB.10LiFe2+PO4
Ushkovite ?8.DC.30MgFe3+2(PO4)2(OH)2 · 8H2O
Vivianite8.CE.40Fe2+3(PO4)2 · 8H2O
Wardite8.DL.10NaAl3(PO4)2(OH)4 · 2H2O
Group 9 - Silicates
'Albite'9.FA.35Na(AlSi3O8)
var: Cleavelandite9.FA.35Na(AlSi3O8)
Beryl9.CJ.05Be3Al2(Si6O18)
var: Aquamarine ?9.CJ.05Be3Al2Si6O18
var: Heliodor ?9.CJ.05Be3Al2(Si6O18)
Microcline9.FA.30K(AlSi3O8)
Muscovite9.EC.15KAl2(AlSi3O10)(OH)2
Schorl9.CK.05Na(Fe2+3)Al6(Si6O18)(BO3)3(OH)3(OH)
Sillimanite9.AF.05Al2(SiO4)O
Staurolite9.AF.30Fe2+2Al9Si4O23(OH)
Zircon9.AD.30Zr(SiO4)
Unclassified Minerals, Rocks, etc.
'Allanite Group' ?-{A12+REE3+}{M3+2M32+}(Si2O7)(SiO4)O(OH)
Biotite ?-
Whiteite-

List of minerals arranged by Dana 8th Edition classification

Group 2 - SULFIDES
AmXp, with m:p = 1:1
Pyrrhotite2.8.10.1Fe7S8
AmBnXp, with (m+n):p = 1:1
Chalcopyrite2.9.1.1CuFeS2
AmBnXp, with (m+n):p = 1:2
Arsenopyrite2.12.4.1FeAsS
Pyrite2.12.1.1FeS2
Group 5 - OXIDES CONTAINING URANIUM OR THORIUM
AXO2·xH2O
Uraninite5.1.1.1UO2
Group 7 - MULTIPLE OXIDES
AB2X4
Magnetite7.2.2.3Fe2+Fe3+2O4
Group 9 - NORMAL HALIDES
AX2
Fluorite9.2.1.1CaF2
Group 14 - ANHYDROUS NORMAL CARBONATES
A(XO3)
Calcite14.1.1.1CaCO3
Siderite14.1.1.3FeCO3
Group 38 - ANHYDROUS NORMAL PHOSPHATES, ARSENATES, AND VANADATES
ABXO4
Beryllonite38.1.5.1NaBePO4
Triphylite38.1.1.1LiFe2+PO4
(AB)5(XO4)3
Alluaudite ?38.2.3.6(Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
Ferrowyllieite ?38.2.4.1(Na,Ca,Mn)(Fe,Mn)(Fe,Fe,Mg)Al(PO4)3
Qingheiite-(Fe2+)38.2.8.8Na2Fe2+MgAl(PO4)3
(AB)3(XO4)2
Graftonite38.3.3.1Fe2+Fe2+2(PO4)2
Hurlbutite (TL)38.3.6.1CaBe2(PO4)2
Sarcopside38.3.1.1(Fe2+,Mn2+,Mg)3(PO4)2
AXO4
Heterosite38.4.1.1(Fe3+,Mn3+)PO4
Purpurite ?38.4.1.2(Mn3+,Fe3+)PO4
Group 40 - HYDRATED NORMAL PHOSPHATES,ARSENATES AND VANADATES
A3(XO4)2·xH2O
Vivianite40.3.6.1Fe2+3(PO4)2 · 8H2O
Group 41 - ANHYDROUS PHOSPHATES, ETC.CONTAINING HYDROXYL OR HALOGEN
(AB)2(XO4)Zq
Amblygonite ?41.5.8.1LiAl(PO4)F
Brazilianite41.5.7.1NaAl3(PO4)2(OH)4
Montebrasite41.5.8.2LiAl(PO4)(OH)
A2(XO4)Zq
Augelite41.6.8.1Al2(PO4)(OH)3
(AB)7(XO4)4Zq
Arrojadite-(KFe)41.7.2.1{KNa}{Fe2+◻}{Ca}{Na2◻}{Fe2+13}{Al}(PO4)11(HPO4)(OH)2
Dickinsonite-(KMnNa) ?41.7.2.2{KNa}{Mn2+◻}{Ca}{Na3}{Mn2+13}{Al}(PO4)12(OH)2
A5(XO4)3Zq
Fluorapatite41.8.1.1Ca5(PO4)3F
var: Carbonate-rich Fluorapatite41.8.1.4Ca5(PO4,CO3)3(F,O)
Hydroxylapatite41.8.1.3Ca5(PO4)3(OH)
(AB)5(XO4)3Zq
Rockbridgeite41.9.2.1Fe2+Fe3+4(PO4)3(OH)5
(AB)3(XO4)2Zq
Lazulite ?41.10.1.1(Mg,Fe2+)Al2(PO4)2(OH)2
Scorzalite41.10.1.2Fe2+Al2(PO4)2(OH)2
Group 42 - HYDRATED PHOSPHATES, ETC.CONTAINING HYDROXYL OR HALOGEN
A2(XO4)Zq·xH2O
Moraesite42.6.1.1Be2(PO4)(OH) · 4H2O
(AB)2(XO4)Zq·xH2O
Childrenite ?42.7.1.1Fe2+Al(PO4)(OH)2 · H2O
Crandallite42.7.3.1CaAl3(PO4)(PO3OH)(OH)6
Eosphorite42.7.1.2Mn2+Al(PO4)(OH)2 · H2O
Roscherite ?42.7.7.1Ca2Mn2+5Be4(PO4)6(OH)4 · 6H2O
Wardite42.7.8.2NaAl3(PO4)2(OH)4 · 2H2O
(AB)3(XO4)2Zq·xH2O
Laueite ?42.11.10.1Mn2+Fe3+2(PO4)2(OH)2 · 8H2O
Strunzite42.11.9.1Mn2+Fe3+2(PO4)2(OH)2 · 6H2O
Ushkovite ?42.11.10.4MgFe3+2(PO4)2(OH)2 · 8H2O
Group 51 - NESOSILICATES Insular SiO4 Groups Only
Insular SiO4 Groups Only with cations in >[6] coordination
Zircon51.5.2.1Zr(SiO4)
Group 52 - NESOSILICATES Insular SiO4 Groups and O,OH,F,H2O
Insular SiO4 Groups and O, OH, F, and H2O with cations in [4] and >[4] coordination
Sillimanite52.2.2a.1Al2(SiO4)O
Staurolite52.2.3.1Fe2+2Al9Si4O23(OH)
Group 61 - CYCLOSILICATES Six-Membered Rings
Six-Membered Rings with [Si6O18] rings; possible (OH) and Al substitution
Beryl61.1.1.1Be3Al2(Si6O18)
Six-Membered Rings with borate groups
Schorl61.3.1.10Na(Fe2+3)Al6(Si6O18)(BO3)3(OH)3(OH)
Group 71 - PHYLLOSILICATES Sheets of Six-Membered Rings
Sheets of 6-membered rings with 2:1 layers
Muscovite71.2.2a.1KAl2(AlSi3O10)(OH)2
Group 75 - TECTOSILICATES Si Tetrahedral Frameworks
Si Tetrahedral Frameworks - SiO2 with [4] coordinated Si
Quartz75.1.3.1SiO2
Group 76 - TECTOSILICATES Al-Si Framework
Al-Si Framework with Al-Si frameworks
Albite76.1.3.1Na(AlSi3O8)
Microcline76.1.1.5K(AlSi3O8)
Unclassified Minerals, Rocks, etc.
Albite
var: Cleavelandite
-Na(AlSi3O8)
'Allanite Group' ?-{A12+REE3+}{M3+2M32+}(Si2O7)(SiO4)O(OH)
Beryl
var: Aquamarine ?
-Be3Al2Si6O18
var: Heliodor ?-Be3Al2(Si6O18)
'Biotite' ?-
Quartz
var: Rose Quartz
-SiO2
var: Smoky Quartz-SiO2
'Whiteite'-

List of minerals for each chemical element

HHydrogen
H Allanite Group{A12+REE3+}{M23+M32+}(Si2O7)(SiO4)O(OH)
H Arrojadite-(KFe){KNa}{Fe2+◻}{Ca}{Na2◻}{Fe132+}{Al}(PO4)11(HPO4)(OH)2
H AugeliteAl2(PO4)(OH)3
H BrazilianiteNaAl3(PO4)2(OH)4
H ChildreniteFe2+Al(PO4)(OH)2 · H2O
H CrandalliteCaAl3(PO4)(PO3OH)(OH)6
H Dickinsonite-(KMnNa){KNa}{Mn2+◻}{Ca}{Na3}{Mn132+}{Al}(PO4)12(OH)2
H EosphoriteMn2+Al(PO4)(OH)2 · H2O
H HydroxylapatiteCa5(PO4)3(OH)
H LaueiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
H Lazulite(Mg,Fe2+)Al2(PO4)2(OH)2
H MontebrasiteLiAl(PO4)(OH)
H MoraesiteBe2(PO4)(OH) · 4H2O
H MuscoviteKAl2(AlSi3O10)(OH)2
H RockbridgeiteFe2+Fe43+(PO4)3(OH)5
H RoscheriteCa2Mn52+Be4(PO4)6(OH)4 · 6H2O
H SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
H ScorzaliteFe2+Al2(PO4)2(OH)2
H StauroliteFe22+Al9Si4O23(OH)
H StrunziteMn2+Fe23+(PO4)2(OH)2 · 6H2O
H UshkoviteMgFe23+(PO4)2(OH)2 · 8H2O
H VivianiteFe32+(PO4)2 · 8H2O
H WarditeNaAl3(PO4)2(OH)4 · 2H2O
LiLithium
Li AmblygoniteLiAl(PO4)F
Li MontebrasiteLiAl(PO4)(OH)
Li TriphyliteLiFe2+PO4
BeBeryllium
Be Beryl (var: Aquamarine)Be3Al2Si6O18
Be BerylBe3Al2(Si6O18)
Be BerylloniteNaBePO4
Be Beryl (var: Heliodor)Be3Al2(Si6O18)
Be HurlbutiteCaBe2(PO4)2
Be MoraesiteBe2(PO4)(OH) · 4H2O
Be RoscheriteCa2Mn52+Be4(PO4)6(OH)4 · 6H2O
BBoron
B SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
CCarbon
C CalciteCaCO3
C Fluorapatite (var: Carbonate-rich Fluorapatite)Ca5(PO4,CO3)3(F,O)
C SideriteFeCO3
OOxygen
O AlbiteNa(AlSi3O8)
O Allanite Group{A12+REE3+}{M23+M32+}(Si2O7)(SiO4)O(OH)
O Alluaudite(Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
O AmblygoniteLiAl(PO4)F
O Beryl (var: Aquamarine)Be3Al2Si6O18
O Arrojadite-(KFe){KNa}{Fe2+◻}{Ca}{Na2◻}{Fe132+}{Al}(PO4)11(HPO4)(OH)2
O AugeliteAl2(PO4)(OH)3
O BerylBe3Al2(Si6O18)
O BerylloniteNaBePO4
O BrazilianiteNaAl3(PO4)2(OH)4
O CalciteCaCO3
O Fluorapatite (var: Carbonate-rich Fluorapatite)Ca5(PO4,CO3)3(F,O)
O ChildreniteFe2+Al(PO4)(OH)2 · H2O
O Albite (var: Cleavelandite)Na(AlSi3O8)
O CrandalliteCaAl3(PO4)(PO3OH)(OH)6
O Dickinsonite-(KMnNa){KNa}{Mn2+◻}{Ca}{Na3}{Mn132+}{Al}(PO4)12(OH)2
O EosphoriteMn2+Al(PO4)(OH)2 · H2O
O Ferrowyllieite(Na,Ca,Mn)(Fe,Mn)(Fe,Fe,Mg)Al(PO4)3
O FluorapatiteCa5(PO4)3F
O GraftoniteFe2+Fe22+(PO4)2
O Beryl (var: Heliodor)Be3Al2(Si6O18)
O Heterosite(Fe3+,Mn3+)PO4
O HurlbutiteCaBe2(PO4)2
O HydroxylapatiteCa5(PO4)3(OH)
O LaueiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
O Lazulite(Mg,Fe2+)Al2(PO4)2(OH)2
O MagnetiteFe2+Fe23+O4
O MicroclineK(AlSi3O8)
O MontebrasiteLiAl(PO4)(OH)
O MoraesiteBe2(PO4)(OH) · 4H2O
O MuscoviteKAl2(AlSi3O10)(OH)2
O Purpurite(Mn3+,Fe3+)PO4
O Qingheiite-(Fe2+)Na2Fe2+MgAl(PO4)3
O QuartzSiO2
O RockbridgeiteFe2+Fe43+(PO4)3(OH)5
O RoscheriteCa2Mn52+Be4(PO4)6(OH)4 · 6H2O
O Quartz (var: Rose Quartz)SiO2
O Sarcopside(Fe2+,Mn2+,Mg)3(PO4)2
O SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
O ScorzaliteFe2+Al2(PO4)2(OH)2
O SideriteFeCO3
O SillimaniteAl2(SiO4)O
O Quartz (var: Smoky Quartz)SiO2
O StauroliteFe22+Al9Si4O23(OH)
O StrunziteMn2+Fe23+(PO4)2(OH)2 · 6H2O
O TriphyliteLiFe2+PO4
O UraniniteUO2
O UshkoviteMgFe23+(PO4)2(OH)2 · 8H2O
O VivianiteFe32+(PO4)2 · 8H2O
O WarditeNaAl3(PO4)2(OH)4 · 2H2O
O ZirconZr(SiO4)
FFluorine
F AmblygoniteLiAl(PO4)F
F Fluorapatite (var: Carbonate-rich Fluorapatite)Ca5(PO4,CO3)3(F,O)
F FluorapatiteCa5(PO4)3F
F FluoriteCaF2
NaSodium
Na AlbiteNa(AlSi3O8)
Na Alluaudite(Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
Na Arrojadite-(KFe){KNa}{Fe2+◻}{Ca}{Na2◻}{Fe132+}{Al}(PO4)11(HPO4)(OH)2
Na BerylloniteNaBePO4
Na BrazilianiteNaAl3(PO4)2(OH)4
Na Albite (var: Cleavelandite)Na(AlSi3O8)
Na Dickinsonite-(KMnNa){KNa}{Mn2+◻}{Ca}{Na3}{Mn132+}{Al}(PO4)12(OH)2
Na Ferrowyllieite(Na,Ca,Mn)(Fe,Mn)(Fe,Fe,Mg)Al(PO4)3
Na Qingheiite-(Fe2+)Na2Fe2+MgAl(PO4)3
Na SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
Na WarditeNaAl3(PO4)2(OH)4 · 2H2O
MgMagnesium
Mg Alluaudite(Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
Mg Ferrowyllieite(Na,Ca,Mn)(Fe,Mn)(Fe,Fe,Mg)Al(PO4)3
Mg Lazulite(Mg,Fe2+)Al2(PO4)2(OH)2
Mg Qingheiite-(Fe2+)Na2Fe2+MgAl(PO4)3
Mg UshkoviteMgFe23+(PO4)2(OH)2 · 8H2O
AlAluminium
Al AlbiteNa(AlSi3O8)
Al AmblygoniteLiAl(PO4)F
Al Beryl (var: Aquamarine)Be3Al2Si6O18
Al Arrojadite-(KFe){KNa}{Fe2+◻}{Ca}{Na2◻}{Fe132+}{Al}(PO4)11(HPO4)(OH)2
Al AugeliteAl2(PO4)(OH)3
Al BerylBe3Al2(Si6O18)
Al BrazilianiteNaAl3(PO4)2(OH)4
Al ChildreniteFe2+Al(PO4)(OH)2 · H2O
Al Albite (var: Cleavelandite)Na(AlSi3O8)
Al CrandalliteCaAl3(PO4)(PO3OH)(OH)6
Al Dickinsonite-(KMnNa){KNa}{Mn2+◻}{Ca}{Na3}{Mn132+}{Al}(PO4)12(OH)2
Al EosphoriteMn2+Al(PO4)(OH)2 · H2O
Al Ferrowyllieite(Na,Ca,Mn)(Fe,Mn)(Fe,Fe,Mg)Al(PO4)3
Al Beryl (var: Heliodor)Be3Al2(Si6O18)
Al Lazulite(Mg,Fe2+)Al2(PO4)2(OH)2
Al MicroclineK(AlSi3O8)
Al MontebrasiteLiAl(PO4)(OH)
Al MuscoviteKAl2(AlSi3O10)(OH)2
Al Qingheiite-(Fe2+)Na2Fe2+MgAl(PO4)3
Al SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
Al ScorzaliteFe2+Al2(PO4)2(OH)2
Al SillimaniteAl2(SiO4)O
Al StauroliteFe22+Al9Si4O23(OH)
Al WarditeNaAl3(PO4)2(OH)4 · 2H2O
SiSilicon
Si AlbiteNa(AlSi3O8)
Si Allanite Group{A12+REE3+}{M23+M32+}(Si2O7)(SiO4)O(OH)
Si Beryl (var: Aquamarine)Be3Al2Si6O18
Si BerylBe3Al2(Si6O18)
Si Albite (var: Cleavelandite)Na(AlSi3O8)
Si Beryl (var: Heliodor)Be3Al2(Si6O18)
Si MicroclineK(AlSi3O8)
Si MuscoviteKAl2(AlSi3O10)(OH)2
Si QuartzSiO2
Si Quartz (var: Rose Quartz)SiO2
Si SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
Si SillimaniteAl2(SiO4)O
Si Quartz (var: Smoky Quartz)SiO2
Si StauroliteFe22+Al9Si4O23(OH)
Si ZirconZr(SiO4)
PPhosphorus
P Alluaudite(Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
P AmblygoniteLiAl(PO4)F
P Arrojadite-(KFe){KNa}{Fe2+◻}{Ca}{Na2◻}{Fe132+}{Al}(PO4)11(HPO4)(OH)2
P AugeliteAl2(PO4)(OH)3
P BerylloniteNaBePO4
P BrazilianiteNaAl3(PO4)2(OH)4
P Fluorapatite (var: Carbonate-rich Fluorapatite)Ca5(PO4,CO3)3(F,O)
P ChildreniteFe2+Al(PO4)(OH)2 · H2O
P CrandalliteCaAl3(PO4)(PO3OH)(OH)6
P Dickinsonite-(KMnNa){KNa}{Mn2+◻}{Ca}{Na3}{Mn132+}{Al}(PO4)12(OH)2
P EosphoriteMn2+Al(PO4)(OH)2 · H2O
P Ferrowyllieite(Na,Ca,Mn)(Fe,Mn)(Fe,Fe,Mg)Al(PO4)3
P FluorapatiteCa5(PO4)3F
P GraftoniteFe2+Fe22+(PO4)2
P Heterosite(Fe3+,Mn3+)PO4
P HurlbutiteCaBe2(PO4)2
P HydroxylapatiteCa5(PO4)3(OH)
P LaueiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
P Lazulite(Mg,Fe2+)Al2(PO4)2(OH)2
P MontebrasiteLiAl(PO4)(OH)
P MoraesiteBe2(PO4)(OH) · 4H2O
P Purpurite(Mn3+,Fe3+)PO4
P Qingheiite-(Fe2+)Na2Fe2+MgAl(PO4)3
P RockbridgeiteFe2+Fe43+(PO4)3(OH)5
P RoscheriteCa2Mn52+Be4(PO4)6(OH)4 · 6H2O
P Sarcopside(Fe2+,Mn2+,Mg)3(PO4)2
P ScorzaliteFe2+Al2(PO4)2(OH)2
P StrunziteMn2+Fe23+(PO4)2(OH)2 · 6H2O
P TriphyliteLiFe2+PO4
P UshkoviteMgFe23+(PO4)2(OH)2 · 8H2O
P VivianiteFe32+(PO4)2 · 8H2O
P WarditeNaAl3(PO4)2(OH)4 · 2H2O
SSulfur
S ArsenopyriteFeAsS
S ChalcopyriteCuFeS2
S PyriteFeS2
S PyrrhotiteFe7S8
KPotassium
K Arrojadite-(KFe){KNa}{Fe2+◻}{Ca}{Na2◻}{Fe132+}{Al}(PO4)11(HPO4)(OH)2
K Dickinsonite-(KMnNa){KNa}{Mn2+◻}{Ca}{Na3}{Mn132+}{Al}(PO4)12(OH)2
K MicroclineK(AlSi3O8)
K MuscoviteKAl2(AlSi3O10)(OH)2
CaCalcium
Ca Alluaudite(Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
Ca Arrojadite-(KFe){KNa}{Fe2+◻}{Ca}{Na2◻}{Fe132+}{Al}(PO4)11(HPO4)(OH)2
Ca CalciteCaCO3
Ca Fluorapatite (var: Carbonate-rich Fluorapatite)Ca5(PO4,CO3)3(F,O)
Ca CrandalliteCaAl3(PO4)(PO3OH)(OH)6
Ca Dickinsonite-(KMnNa){KNa}{Mn2+◻}{Ca}{Na3}{Mn132+}{Al}(PO4)12(OH)2
Ca Ferrowyllieite(Na,Ca,Mn)(Fe,Mn)(Fe,Fe,Mg)Al(PO4)3
Ca FluorapatiteCa5(PO4)3F
Ca FluoriteCaF2
Ca HurlbutiteCaBe2(PO4)2
Ca HydroxylapatiteCa5(PO4)3(OH)
Ca RoscheriteCa2Mn52+Be4(PO4)6(OH)4 · 6H2O
MnManganese
Mn Alluaudite(Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
Mn Dickinsonite-(KMnNa){KNa}{Mn2+◻}{Ca}{Na3}{Mn132+}{Al}(PO4)12(OH)2
Mn EosphoriteMn2+Al(PO4)(OH)2 · H2O
Mn Ferrowyllieite(Na,Ca,Mn)(Fe,Mn)(Fe,Fe,Mg)Al(PO4)3
Mn Heterosite(Fe3+,Mn3+)PO4
Mn LaueiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
Mn Purpurite(Mn3+,Fe3+)PO4
Mn RoscheriteCa2Mn52+Be4(PO4)6(OH)4 · 6H2O
Mn StrunziteMn2+Fe23+(PO4)2(OH)2 · 6H2O
FeIron
Fe Alluaudite(Na,Ca)Mn2+(Fe3+,Mn2+,Fe2+,Mg)2(PO4)3
Fe Arrojadite-(KFe){KNa}{Fe2+◻}{Ca}{Na2◻}{Fe132+}{Al}(PO4)11(HPO4)(OH)2
Fe ArsenopyriteFeAsS
Fe ChalcopyriteCuFeS2
Fe ChildreniteFe2+Al(PO4)(OH)2 · H2O
Fe Ferrowyllieite(Na,Ca,Mn)(Fe,Mn)(Fe,Fe,Mg)Al(PO4)3
Fe GraftoniteFe2+Fe22+(PO4)2
Fe Heterosite(Fe3+,Mn3+)PO4
Fe LaueiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
Fe MagnetiteFe2+Fe23+O4
Fe Purpurite(Mn3+,Fe3+)PO4
Fe PyriteFeS2
Fe PyrrhotiteFe7S8
Fe Qingheiite-(Fe2+)Na2Fe2+MgAl(PO4)3
Fe RockbridgeiteFe2+Fe43+(PO4)3(OH)5
Fe Sarcopside(Fe2+,Mn2+,Mg)3(PO4)2
Fe SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
Fe ScorzaliteFe2+Al2(PO4)2(OH)2
Fe SideriteFeCO3
Fe StauroliteFe22+Al9Si4O23(OH)
Fe StrunziteMn2+Fe23+(PO4)2(OH)2 · 6H2O
Fe TriphyliteLiFe2+PO4
Fe UshkoviteMgFe23+(PO4)2(OH)2 · 8H2O
Fe VivianiteFe32+(PO4)2 · 8H2O
CuCopper
Cu ChalcopyriteCuFeS2
AsArsenic
As ArsenopyriteFeAsS
ZrZirconium
Zr ZirconZr(SiO4)
UUranium
U UraniniteUO2

Regional Geology

This geological map and associated information on rock units at or nearby to the coordinates given for this locality is based on relatively small scale geological maps provided by various national Geological Surveys. This does not necessarily represent the complete geology at this locality but it gives a background for the region in which it is found.

Click on geological units on the map for more information. Click here to view full-screen map on Macrostrat.org

Devonian - Silurian
358.9 - 443.8 Ma



ID: 3184704
Paleozoic intrusive rocks

Age: Paleozoic (358.9 - 443.8 Ma)

Lithology: Intrusive igneous rocks

Reference: Chorlton, L.B. Generalized geology of the world: bedrock domains and major faults in GIS format: a small-scale world geology map with an extended geological attribute database. doi: 10.4095/223767. Geological Survey of Canada, Open File 5529. [154]

Pragian
407.6 - 410.8 Ma



ID: 2883345
Littleton Formation, undivided

Age: Early Devonian (407.6 - 410.8 Ma)

Stratigraphic Name: Littleton Formation

Description: Gray metapelite and metawacke and subordinate metavolcanic rocks; generally, but not everywhere, conformable with underlying Fitch or Madrid Formations. Fossiliferous in western New Hampshire.

Comments: Part of the Central Maine Composite Terrane (Central Maine Trough) - Variably metamorphosed sedimentary and volcanic rocks of greenschist to granulite facies, locally migmatized. Area includes structural belts between the Monroe fault on the west and the Campbell Hill fault on the east; that is, the Bronson Hill anticlinorium, Piedmont allochthon, Kearsarge-central Maine synclinorium, central New Hampshire anticlinorium, and Rochester-Lebanon (Maine) antiformal synclinorium.

Lithology: Major:{metagraywacke}, Minor:{metavolcanic}

Reference: Horton, J.D., C.A. San Juan, and D.B. Stoeser. The State Geologic Map Compilation (SGMC) geodatabase of the conterminous United States. doi: 10.3133/ds1052. U.S. Geological Survey Data Series 1052. [133]

Data and map coding provided by Macrostrat.org, used under Creative Commons Attribution 4.0 License

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
Mrose, Mary E., 1952, CaBe2(PO4)2, Hurlbutite, a New Mineral, American Mineralogist: 37: 931-940.
Cameron, E. N. et. al. (1954) Pegmatite Investigations 1942-45, New England (USGS Prof. Paper 255)
O'Donoghue, Michael. (2006): Gems: their sources, descriptions and identification, 6th ed.


This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2018, except where stated. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: August 19, 2018 08:21:22 Page generated: August 18, 2018 23:55:41
Go to top of page