ALMOST THERE!. Help us with a final push needed to keep mindat.org running. Click here to help.
Catawiki are hosting a mindat.org benefit auction. All proceeds to mindat.org! BID NOW
Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat Articles
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsThe ElementsUsersBooks & MagazinesMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery

Palermo No. 1 Mine (Palermo No. 1 pegmatite; Hartford Mine; GE Mine), Groton, Grafton Co., New Hampshire, USAi
Regional Level Types
Palermo No. 1 Mine (Palermo No. 1 pegmatite; Hartford Mine; GE Mine)Mine
Groton- not defined -
Grafton Co.County
New HampshireState
USACountry

This page kindly sponsored by Mark Kucera
Key
Lock Map
Latitude & Longitude (WGS84): 43° 45' 4'' North , 71° 53' 22'' West
Latitude & Longitude (decimal): 43.75130,-71.88956
GeoHash:G#: drubuhetg
Locality type:Mine
Köppen climate type:Dfb : Warm-summer humid continental climate


Located near the village of North Groton, on the southeast flank of Bald Mountain. Mined for mica beginning in 1863, though not on a serious level until the Hartford Mining company worked it from 1878 to 1888. Later it was a source of beryl, feldspar, and quartz, too. The mine first became known as the Palermo Mine in 1888 when it was purchased by the Palermo Mining Company of Schenectady, New York. When General Electric owned and operated it from 1898 to 1945 it was known as the GE Mine, which produced muscovite, microcline and beryl. The name reverted to Palermo Mine when the Ashley Mining Corp. leased it from GE from 1945 to 1958 and since then that name has remained. It was owned by the Mountain Mining Company until 1973 and leased to N.E. Materials (Rex Howard, who mined the quartz core) and later Peter Samuelson. Since 1973 it has been owned by the Palermo Mining Co. Ltd and operated almost solely for mineral specimens, including many rare phosphate species (Whitmore and Lawrence, 2004).

Fuller (1898) reported on a pocket at the mine which was said to be ten feet in diameter. A quartz crystal, three feet in diameter, was taken from the roof of the pocket, according to the mine superintendent at the time.

85 m long, 42m wide concordant in a mica - quartz - sillimannite schist.

Alternative Label Names

This is a list of additional names that have been recorded for mineral labels associated with this locality in the minID database. This may include previous versions of the locality name hierarchy from mindat.org, data entry errors, and it may also include unconfirmed sublocality names or other names that can only be matched to this level.

Palermo
Palermo 1 Mine, North Groton, New Hampshire, USA
Palermo No. 1 Mine (Palermo #1 pegmatite), Groton, Grafton Co., New Hampshire, USA
Palermo # 1 mine, No. Groton, New Hampshire, USA
Palermo 1 Mine, No. Groton, New Hampshire, USA

Select Mineral List Type

Standard Detailed Strunz Dana Chemical Elements

Commodity List

This is a list of exploitable or exploited mineral commodities recorded at this locality.


Mineral List


155 valid minerals. 14 (TL) - type locality of valid minerals. 1 (FRL) - first recorded locality of unapproved mineral/variety/etc. 7 erroneous literature entries.

Rock Types Recorded

Note: this is a very new system on mindat.org and data is currently VERY limited. Please bear with us while we work towards adding this information!

Select Rock List Type

Alphabetical List Tree Diagram

Detailed Mineral List:

Albite
Formula: Na(AlSi3O8)
Reference: Rocks & Minerals: 16: 208-211.; USGS Prof Paper 255; USGS Prof Paper 353
Albite var: Cleavelandite
Formula: Na(AlSi3O8)
Reference: USGS Prof Paper 255
Albite var: Oligoclase
Formula: (Na,Ca)[Al(Si,Al)Si2O8]
Reference: Rocks & Min. (Sept/Oct 1981)
'Albite-Anorthite Series'
Reference: Korzeb, Stanley L., Foord, Eugene E., and Lichte, Frederick E. (1997) The chemical evolution and paragenesis of uranium minerals from the Ruggles and Palermo granitic pegmatites, New Hampshire. Canadian Mineralogist, 35, 135-144.
'Alluaudite-Ferroalluaudite Series'
Reference: Mineralogical Record (1973) 4:103-130
Almandine
Formula: Fe2+3Al2(SiO4)3
Reference: No reference listed
Amblygonite
Formula: LiAl(PO4)F
Reference: USGS Prof Paper 255; USGS Prof Paper 353
Anapaite
Formula: Ca2Fe2+(PO4)2 · 4H2O
Reference: No reference listed
Anatase
Formula: TiO2
'Apatite'
Reference: USGS Prof Paper 255; USGS Prof Paper 353; American Mineralogist (1953): 38: 728-729.
Arrojadite-(KFe)
Formula: {KNa}{Fe2+⃞}{Ca}{Na2⃞}{Fe2+13}{Al}(PO4)11(HPO4)(OH)2
Reference: Mineralogical Record (1973) 4:103-130
Arsenopyrite
Formula: FeAsS
Reference: Rocks & Minerals (Sept/Oct 1981).
Augelite
Formula: Al2(PO4)(OH)3
Reference: Handbook of Mineralogy - Anthony, Bideaux, Bladh, Nichols; Mineralogical Record (1973) 4:103-130; American Mineralogist (1953): 38: 728-729.; NIZAMOFF, James W., SIMMONS, William B., and FALSTER, Alexander U. (2004) PHOSPHATE MINERALOGY AND PARAGENESIS OF THE PALERMO #2 PEGMATITE, NORTH GROTON, NEW HAMPSHIRE Geological Society of America Abstracts with Programs, Vol. 36, No. 5, p. 115
Autunite
Formula: Ca(UO2)2(PO4)2 · 11H2O
Fluorescence: bright green (SW)
Reference: Rocks & Minerals: 16: 208-211.; USGS Prof Paper 255; USGS Prof Paper 353; Korzeb, Stanley L., Foord, Eugene E., and Lichte, Frederick E. (1997) The chemical evolution and paragenesis of uranium minerals from the Ruggles and Palermo granitic pegmatites, New Hampshire. Canadian Mineralogist, 35, 135-144.
Azurite
Formula: Cu3(CO3)2(OH)2
Reference: Whitmore & Lawrence, 2004. The Pegmatite Mines Known As Palermo, p.95.
Barbosalite
Formula: Fe2+Fe3+2(PO4)2(OH)2
Reference: Gaines, Richard V., Catherine, H., Skinner, W., Foord, E.E., Mason, B., and Rosenzweig, A. (1997), Dana’s New Mineralogy: The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana: eighth edition. John Wiley and Sons, Inc., 1819pp.: 875.; Mineralogical Record (1973) 4:103-130
Beraunite
Formula: Fe2+Fe3+5(PO4)4(OH)5 · 6H2O
Reference: Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 960.; Mineralogical Record (1973) 4:103-130; NIZAMOFF, James W., SIMMONS, William B., and FALSTER, Alexander U. (2004) PHOSPHATE MINERALOGY AND PARAGENESIS OF THE PALERMO #2 PEGMATITE, NORTH GROTON, NEW HAMPSHIRE Geological Society of America Abstracts with Programs, Vol. 36, No. 5, p. 115
Bermanite
Formula: Mn2+Mn3+2(PO4)2(OH)2 · 4H2O
Reference: Anthony, Bideaux, Bladh, Nichols: Handbook of Mineralogy, Vol. IV; Mineralogical Record (1973) 4:103-130
Bertrandite
Formula: Be4(Si2O7)(OH)2
Beryl
Formula: Be3Al2(Si6O18)
Habit: Crystals to 6.5 feet long by 3.5 feet in diameter.
Reference: Rocks & Minerals: 16: 208-211.; USGS Prof Paper 255; USGS Prof Paper 353; Korzeb, Stanley L., Foord, Eugene E., and Lichte, Frederick E. (1997) The chemical evolution and paragenesis of uranium minerals from the Ruggles and Palermo granitic pegmatites, New Hampshire. Canadian Mineralogist, 35, 135-144.
Beryl var: Aquamarine
Formula: Be3Al2Si6O18
Reference: USGS Prof Paper 255
Beryl var: Heliodor
Formula: Be3Al2(Si6O18)
Reference: USGS Prof Paper 255
Beryllonite
Formula: NaBePO4
Reference: No reference listed
'Biotite'
Reference: USGS Prof Paper 255; Korzeb, Stanley L., Foord, Eugene E., and Lichte, Frederick E. (1997) The chemical evolution and paragenesis of uranium minerals from the Ruggles and Palermo granitic pegmatites, New Hampshire. Canadian Mineralogist, 35, 135-144.
Birnessite
Formula: (Na,Ca)0.5(Mn4+,Mn3+)2O4 · 1.5H2O
Reference: Rocks & Minerals (Sept/Oct 1981).
Bismuth
Formula: Bi
Reference: Nashua Mineralogical Society Display Catalogue 1995.
Bismuthinite
Formula: Bi2S3
Reference: Whitmore & Lawrence, 2004. The Pegmatite Mines Known As Palermo, p.95.
Bjarebyite (TL)
Formula: (Ba,Sr)(Mn2+,Fe2+,Mg)2Al2(PO4)3(OH)3
Type Locality:
Description: Originally described by Mary Mrose and provisionally named "ashleyite", after Mr. Ashley, the mine owner at the time. Later found to be identical to bjarebyite.
Reference: Mineralogical Record (1973) 4: 103-130.; Moore, P.B., Lund, D.H., and Keester, K.L. (1973) Bjarebyite, (Ba,Sr)(Mn,Fe,Mg)2Al2(OH)3(PO4)3, a new species. Mineralogical Record: 4: 282-285.; von Knorring, O. and Fransolet, A.-M. (1975) An occurrence of bjarebyite in the Buranga pegmatite, Rwanda. Schweizerische Mineralogische und Petrographische Mitteilungen: 55: 9-18.; Daltry, V.D.C. and von Knorring, O. (1998) Type-mineralogy of Rwanda with particular reference to the Buranga pegmatite. Geologica Belgica: 1: 9-15.
Bornite
Formula: Cu5FeS4
Reference: Rocks & Minerals (Sept/Oct 1981).
Brazilianite
Formula: NaAl3(PO4)2(OH)4
Reference: American Mineralogist (1948): 33: 135-141; Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 842-843.; Mineralogical Record (1973) 4:103-130; USGS Prof Paper 353; American Mineralogist (1953): 38: 728-729.
Brushite
Formula: Ca(HPO4) · 2H2O
Reference: Whitmore & Lawrence, 2004. The Pegmatite Mines Known As Palermo, p.95.
Cacoxenite
Formula: Fe3+24AlO6(PO4)17(OH)12 · 75H2O
Reference: Mineralogical Record (1973) 4:103-130
Cerussite
Formula: PbCO3
Reference: Whitmore & Lawrence, 2004. The Pegmatite Mines Known As Palermo, p.95.; Anthony R. Kampf, Stuart J. Mills, W.B. Simmons, James W. Nizamoff, and R.W. Whitmore (2012) Falsterite, A New Zinc-Bearing Secondary Phosphate From The Palermo #1 Mine, North Groton, New Hampshire. 39th Rochester Symposium abstracts.; Kampf, A. R., Falster, A. U., Simmons, W. B., & Whitmore, R. W. (2013). Nizamoffite, Mn2+ Zn2 (PO4) 2 (H2O) 4, the Mn analogue of hopeite from the Palermo No. 1 pegmatite, North Groton, New Hampshire. American Mineralogist, 98(10), 1893-1898.
Chalcopyrite
Formula: CuFeS2
Reference: Rocks & Minerals (Sept/Oct 1981).; USGS Prof Paper 255; Anthony R. Kampf, Stuart J. Mills, W.B. Simmons, James W. Nizamoff, and R.W. Whitmore (2012) Falsterite, A New Zinc-Bearing Secondary Phosphate From The Palermo #1 Mine, North Groton, New Hampshire. 39th Rochester Symposium abstracts.; Kampf, A. R., Falster, A. U., Simmons, W. B., & Whitmore, R. W. (2013). Nizamoffite, Mn2+ Zn2 (PO4) 2 (H2O) 4, the Mn analogue of hopeite from the Palermo No. 1 pegmatite, North Groton, New Hampshire. American Mineralogist, 98(10), 1893-1898.
Childrenite
Formula: Fe2+Al(PO4)(OH)2 · H2O
Reference: Am. Min. 50 (1965), 713-717; Mineralogical Record (1973) 4:103-130; NIZAMOFF, James W., SIMMONS, William B., and FALSTER, Alexander U. (2004) PHOSPHATE MINERALOGY AND PARAGENESIS OF THE PALERMO #2 PEGMATITE, NORTH GROTON, NEW HAMPSHIRE Geological Society of America Abstracts with Programs, Vol. 36, No. 5, p. 115 ; Kampf, A. R., Falster, A. U., Simmons, W. B., & Whitmore, R. W. (2013). Nizamoffite, Mn2+ Zn2 (PO4) 2 (H2O) 4, the Mn analogue of hopeite from the Palermo No. 1 pegmatite, North Groton, New Hampshire. American Mineralogist, 98(10), 1893-1898.
Chlorapatite
Formula: Ca5(PO4)3Cl
Reference: NIZAMOFF, James W., SIMMONS, William B., and FALSTER, Alexander U. (2004) PHOSPHATE MINERALOGY AND PARAGENESIS OF THE PALERMO #2 PEGMATITE, NORTH GROTON, NEW HAMPSHIRE Geological Society of America Abstracts with Programs, Vol. 36, No. 5, p. 115
'Chlorite Group'
Reference: Rocks & Minerals (2005): 80: 256.
Clarkeite ?
Formula: (Na,Ca,Pb)(UO2)O(OH) · 0-1H2O
Description: Foord et al. (1997) and Korzeb et al. (1997) made a determined effort to verify clarkeite from this locality and all specimens submitted to them did not contain clarkeite but were mixtures dominated by schoepite(Eugene Foord, personal communication, 1996). Previously, Frondel (1956) studied minerals from a wide variety of localities including many specimens from the Palermo #1 Pegmatite and he did not find clarkeite. Frondel(156) stated of clarkeite and its misidentifications: "Clarkeite is best identified by its X-ray powder pattern. It is indistinguishable (emphasis added) from the dark-brown types of oxidized uraninite..."
Reference: Not found at this locality: Frondel (1956); Foord et al. (1997), Korzeb et al (1997).
Collinsite
Formula: Ca2Mg(PO4)2 · 2H2O
Reference: NIZAMOFF, James W., SIMMONS, William B., and FALSTER, Alexander U. (2004) PHOSPHATE MINERALOGY AND PARAGENESIS OF THE PALERMO #2 PEGMATITE, NORTH GROTON, NEW HAMPSHIRE Geological Society of America Abstracts with Programs, Vol. 36, No. 5, p. 115
Columbite-(Fe)
Formula: Fe2+Nb2O6
Reference: No reference listed
Compreignacite
Formula: K2(UO2)6O4(OH)6 · 7H2O
Reference: Nashua Min. Soc. Disp. Cat., 1995; Korzeb, Stanley L., Foord, Eugene E., and Lichte, Frederick E. (1997) The chemical evolution and paragenesis of uranium minerals from the Ruggles and Palermo granitic pegmatites, New Hampshire. Canadian Mineralogist, 35, 135-144.
Covellite
Formula: CuS
Reference: Rocks & Min. 80:256 (2005)
Crandallite
Formula: CaAl3(PO4)(PO3OH)(OH)6
Reference: Rocks & Min. (July-Aug. 2002); Mineralogical Record (1973) 4:103-130; NIZAMOFF, James W., SIMMONS, William B., and FALSTER, Alexander U. (2004) PHOSPHATE MINERALOGY AND PARAGENESIS OF THE PALERMO #2 PEGMATITE, NORTH GROTON, NEW HAMPSHIRE Geological Society of America Abstracts with Programs, Vol. 36, No. 5, p. 115 ; Kampf, A. R., Falster, A. U., Simmons, W. B., & Whitmore, R. W. (2013). Nizamoffite, Mn2+ Zn2 (PO4) 2 (H2O) 4, the Mn analogue of hopeite from the Palermo No. 1 pegmatite, North Groton, New Hampshire. American Mineralogist, 98(10), 1893-1898.
Cuprite
Formula: Cu2O
Cuprite var: Chalcotrichite
Formula: Cu2O
Diadochite
Formula: Fe3+2(PO4)(SO4)(OH) · 5H2O
Reference: Am. Min. 50 (1965), 713-717
Dickinsonite-(KMnNa)
Formula: {KNa}{Mn2+⃞}{Ca}{Na3}{Mn2+13}{Al}(PO4)12(OH)2
Description: All of the reports 1965 and before are in error. It is astonishing that even though there were no chemical analyses until the 1970s that someone actually ascribed them to a particular chemical species. The complete chemical analyses indicate arrojadite-KFe.
Reference: The following references are in error. Dickinsonite has not been properly identified in these references. Morrill, 1960. NH Mines and Minerals Localities, 2nd ed.; Am. Min. 50 (1965), 713-717
Djurleite
Formula: Cu31S16
Reference: Nashua Min Soc. Disp. Cat. 1995
Dufrénite
Formula: Ca0.5Fe2+Fe3+5(PO4)4(OH)6 · 2H2O
Reference: Rocks & Min.: 16:208-211.; Mineralogical Record (1973) 4:103-130; USGS Prof Paper 255; USGS Prof Paper 353
Elbaite ?
Formula: Na(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
Reference: Morrill, P., 1960, New Hampshire mines and mineral localities: Dartmouth College Museum, 2nd edition, 46 p. ["tourmaline (black, green)"]
Eleonorite
Formula: Fe3+6(PO4)4O(OH)4 · 6H2O
Reference: Robert Whitmore collection
Eosphorite
Formula: Mn2+Al(PO4)(OH)2 · H2O
Reference: Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 938.; Am. Min. 50 (1965), 713-717; Mineralogical Record (1973) 4:103-130; USGS Prof Paper 353; NIZAMOFF, James W., SIMMONS, William B., and FALSTER, Alexander U. (2004) PHOSPHATE MINERALOGY AND PARAGENESIS OF THE PALERMO #2 PEGMATITE, NORTH GROTON, NEW HAMPSHIRE Geological Society of America Abstracts with Programs, Vol. 36, No. 5, p. 115 ; Kampf, A. R., Falster, A. U., Simmons, W. B., & Whitmore, R. W. (2013). Nizamoffite, Mn2+ Zn2 (PO4) 2 (H2O) 4, the Mn analogue of hopeite from the Palermo No. 1 pegmatite, North Groton, New Hampshire. American Mineralogist, 98(10), 1893-1898.
Ernstite ?
Formula: (Mn2+,Fe3+)Al(PO4)(OH,O)2 · H2O
Reference: No reference listed
Fairfieldite
Formula: Ca2Mn2+(PO4)2 · 2H2O
Reference: Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 686, 953; Rocks & Minerals: 16: 208-211.; Am. Min. 50 (1965), 713-717; USGS Prof Paper 255; USGS Prof Paper 353; NIZAMOFF, James W., SIMMONS, William B., and FALSTER, Alexander U. (2004) PHOSPHATE MINERALOGY AND PARAGENESIS OF THE PALERMO #2 PEGMATITE, NORTH GROTON, NEW HAMPSHIRE Geological Society of America Abstracts with Programs, Vol. 36, No. 5, p. 115 ; Kampf, A. R., Falster, A. U., Simmons, W. B., & Whitmore, R. W. (2013). Nizamoffite, Mn2+ Zn2 (PO4) 2 (H2O) 4, the Mn analogue of hopeite from the Palermo No. 1 pegmatite, North Groton, New Hampshire. American Mineralogist, 98(10), 1893-1898.
Falsterite (TL)
Formula: Ca2MgMn2+2Fe2+2Fe3+2Zn4(PO4)8(OH)4(H2O)14
Type Locality:
Reference: Anthony R. Kampf, Stuart J. Mills, W.B. Simmons, James W. Nizamoff, and R.W. Whitmore (2012) Falsterite, Ca2MgMn2+2(Fe2+0.5Fe3+0.5)4Zn4(PO4)8(OH)4(H2O)14, a new secondary phosphate mineral from the Palermo No. 1 pegmatite, North Groton, New Hampshire. American Mineralogist, 97:496–502; Kampf, A. R., Falster, A. U., Simmons, W. B., & Whitmore, R. W. (2013). Nizamoffite, Mn2+ Zn2 (PO4) 2 (H2O) 4, the Mn analogue of hopeite from the Palermo No. 1 pegmatite, North Groton, New Hampshire. American Mineralogist, 98(10), 1893-1898.
'Feldspar Group'
Habit: 4 by 8 by 6 feet in size
Reference: Rocks & Min. (Sept/Oct 1981); Am. Min. 50 (1965), 713-717; USGS Prof Paper 255; USGS Prof Paper 353
'Feldspar Group var: Perthite'
Habit: 4 by 8 by 6 feet in size
Reference: Rocks & Min. (Sept/Oct 1981); Am. Min. 50 (1965), 713-717; USGS Prof Paper 255; USGS Prof Paper 353; Korzeb, Stanley L., Foord, Eugene E., and Lichte, Frederick E. (1997) The chemical evolution and paragenesis of uranium minerals from the Ruggles and Palermo granitic pegmatites, New Hampshire. Canadian Mineralogist, 35, 135-144.
Ferrirockbridgeite (TL)
Formula: (Fe3+0.670.33)2(Fe3+)3(PO4)3(OH)4(H2O)
Type Locality:
Reference: Grey, I.E., Kampf, A.R., MacRae, C.M., Cashion, J.D., Gozukara, Y., Shanks, F.L. (2018) Ferrirockbridgeite, IMA 2018-065. CNMNC Newsletter No. 45, October 2018: page xxx; Mineralogical Magazine: 82: xxx-xxx; http://forum.amiminerals.it/viewtopic.php?f=5&t=14984
Ferrisicklerite
Formula: Li1-x(Fe3+xFe2+1-x)PO4
Reference: Rocks & Min.: 16:208-211.; USGS Prof Paper 255; USGS Prof Paper 353; NIZAMOFF, James W., SIMMONS, William B., and FALSTER, Alexander U. (2004) PHOSPHATE MINERALOGY AND PARAGENESIS OF THE PALERMO #2 PEGMATITE, NORTH GROTON, NEW HAMPSHIRE Geological Society of America Abstracts with Programs, Vol. 36, No. 5, p. 115
'Ferrohagendorfite'
Formula: NaCaFe2+Fe2+2(PO4)3
Reference: www.dvminerals.com/Newadditions17.html.
Ferrostrunzite
Formula: Fe2+Fe3+2(PO4)2(OH)2 · 6H2O
Reference: Whitmore & Lawrence, 2004. The Pegmatite Mines Known As Palermo, p.95.
Florencite-(Ce)
Formula: CeAl3(PO4)2(OH)6
Reference: Nashua Min. Soc. Disp. Cat., 1995
Fluorapatite
Formula: Ca5(PO4)3F
Reference: Morrill, 1960. NH Mines and Minerals Localities, 2nd ed.; Rocks & Min.: 16:208-211. ; NIZAMOFF, James W., SIMMONS, William B., and FALSTER, Alexander U. (2004) PHOSPHATE MINERALOGY AND PARAGENESIS OF THE PALERMO #2 PEGMATITE, NORTH GROTON, NEW HAMPSHIRE Geological Society of America Abstracts with Programs, Vol. 36, No. 5, p. 115 ; Anthony R. Kampf, Stuart J. Mills, W.B. Simmons, James W. Nizamoff, and R.W. Whitmore (2012) Falsterite, A New Zinc-Bearing Secondary Phosphate From The Palermo #1 Mine, North Groton, New Hampshire. 39th Rochester Symposium abstracts.; Kampf, A. R., Falster, A. U., Simmons, W. B., & Whitmore, R. W. (2013). Nizamoffite, Mn2+ Zn2 (PO4) 2 (H2O) 4, the Mn analogue of hopeite from the Palermo No. 1 pegmatite, North Groton, New Hampshire. American Mineralogist, 98(10), 1893-1898.
Fluorapatite var: Carbonate-rich Fluorapatite
Formula: Ca5(PO4,CO3)3(F,O)
Reference: Rocks & Minerals (July-Aug. 2002).
Foggite (TL)
Formula: CaAl(PO4)(OH)2 · H2O
Type Locality:
Reference: Amer.Min.(1975) 60, 957-964
Frondelite
Formula: Mn2+Fe3+4(PO4)3(OH)5
Description: Frondelite was erroneously listed from Palermo #1 Pegmatite because of a mis-reading of the reference cited.
Reference: Paul Moore, Am. Min. 50 (1965), 713-717; Kampf, A. R., Falster, A. U., Simmons, W. B., & Whitmore, R. W. (2013). Nizamoffite, Mn2+ Zn2 (PO4) 2 (H2O) 4, the Mn analogue of hopeite from the Palermo No. 1 pegmatite, North Groton, New Hampshire. American Mineralogist, 98(10), 1893-1898.
Galena
Formula: PbS
Reference: Rocks & Min. (Sept/Oct 1981); Anthony R. Kampf, Stuart J. Mills, W.B. Simmons, James W. Nizamoff, and R.W. Whitmore (2012) Falsterite, A New Zinc-Bearing Secondary Phosphate From The Palermo #1 Mine, North Groton, New Hampshire. 39th Rochester Symposium abstracts.; Kampf, A. R., Falster, A. U., Simmons, W. B., & Whitmore, R. W. (2013). Nizamoffite, Mn2+ Zn2 (PO4) 2 (H2O) 4, the Mn analogue of hopeite from the Palermo No. 1 pegmatite, North Groton, New Hampshire. American Mineralogist, 98(10), 1893-1898.
Gatumbaite
Formula: CaAl2(PO4)2(OH)2 · H2O
Description: Subsequently described as sinkankasite.
Reference: Segeler, C.G., Ulrich, W., Kampf, A.R., and Whitmore, R.W. (1981) Phosphate minerals of the Palermo No. 1 Pegmatite. Rocks & Minerals: 56: 196-214.; Peacor, D.R., Dunn, P.J., Roberts, W.L., Campbell, T.J., and Simmons, W.B. (1984) Sinkankasite, a new phosphate from the Barker pegmatite, South Dakota. American Mineralogist: 69: 380-382. Daltry, V.D.C. and von Knorring, O. (1998) Type-mineralogy of Rwanda with particular reference to the Buranga pegmatite. Geologica Belgica: 1: 9-15. (referring to Segeler et al., 1981).
Goedkenite (TL)
Formula: Sr2Al(PO4)2(OH)
Type Locality:
Reference: Amer.Min.(1975) 60, 957-964
Goethite
Formula: α-Fe3+O(OH)
Reference: Rocks & Min. (Sept/Oct 1981)
Gordonite
Formula: MgAl2(PO4)2(OH)2 · 8H2O
Reference: NIZAMOFF, James W., SIMMONS, William B., and FALSTER, Alexander U. (2004) PHOSPHATE MINERALOGY AND PARAGENESIS OF THE PALERMO #2 PEGMATITE, NORTH GROTON, NEW HAMPSHIRE Geological Society of America Abstracts with Programs, Vol. 36, No. 5, p. 115
Gormanite
Formula: (Fe2+,Mg)3(Al,Fe3+)4(PO4)4(OH)6 · 2H2O
Reference: Whitmore & Lawrence, 2004. The Pegmatite Mines Known As Palermo, p.95.; NIZAMOFF, James W., SIMMONS, William B., and FALSTER, Alexander U. (2004) PHOSPHATE MINERALOGY AND PARAGENESIS OF THE PALERMO #2 PEGMATITE, NORTH GROTON, NEW HAMPSHIRE Geological Society of America Abstracts with Programs, Vol. 36, No. 5, p. 115
Goyazite
Formula: SrAl3(PO4)(PO3OH)(OH)6
Reference: Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 835.; Mineralogical Record (1973) 4:103-130; American Mineralogist (1953): 38: 728-729.; NIZAMOFF, James W., SIMMONS, William B., and FALSTER, Alexander U. (2004) PHOSPHATE MINERALOGY AND PARAGENESIS OF THE PALERMO #2 PEGMATITE, NORTH GROTON, NEW HAMPSHIRE Geological Society of America Abstracts with Programs, Vol. 36, No. 5, p. 115 ; Kampf, A. R., Falster, A. U., Simmons, W. B., & Whitmore, R. W. (2013). Nizamoffite, Mn2+ Zn2 (PO4) 2 (H2O) 4, the Mn analogue of hopeite from the Palermo No. 1 pegmatite, North Groton, New Hampshire. American Mineralogist, 98(10), 1893-1898.
Graftonite
Formula: Fe2+Fe2+2(PO4)2
Description: Pods with triphyllite reach 15 by 7 by 4 feet in size.
Reference: Rocks & Minerals: 16: 208-211; Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 687.; Mineralogical Record (1973) 4:103-130; USGS Prof Paper 255; USGS Prof Paper 353
'Granite'
Reference: Korzeb, Stanley L., Foord, Eugene E., and Lichte, Frederick E. (1997) The chemical evolution and paragenesis of uranium minerals from the Ruggles and Palermo granitic pegmatites, New Hampshire. Canadian Mineralogist, 35, 135-144.
Greifensteinite
Formula: Ca2Fe2+5Be4(PO4)6(OH)4 · 6H2O
Reference: www.uno.edu/pegmatology/abstract/abstniz.html.
'Gummite'
Reference: Rocks & Min.: 16:208-211.; USGS Prof Paper 255; USGS Prof Paper 353; Korzeb, Stanley L., Foord, Eugene E., and Lichte, Frederick E. (1997) The chemical evolution and paragenesis of uranium minerals from the Ruggles and Palermo granitic pegmatites, New Hampshire. Canadian Mineralogist, 35, 135-144.
Gypsum
Formula: CaSO4 · 2H2O
Reference: Morrill, 1960. NH Mines and Minerals Localities, 2nd ed.
Hagendorfite
Formula: NaCaMn2+Fe2+2(PO4)3
Reference: Am. Min. 50 (1965), 713-717
'Hagendorfite-(Na)(Na)' (FRL)
Formula: Fe2+Mn2+(PO4)-(Na)(Na)
Type Locality:
Habit: Originally called Hühnerkobelite by Moore (1965). Redefined by Moore and Ito (1979)
Reference: Moore, Paul B. (1965) Hühnerkobelite Crystals from the Palermo No. 1 Pegmatite, North Groton, New Hampshire American Mineralogist, v. 50, p. 713-717. Moore, Paul B. (1971) American Mineralogist, v. 55, p. 1955.
Hematite
Formula: Fe2O3
Reference: Rocks & Min. (Sept/Oct 1981)
Heterosite
Formula: (Fe3+,Mn3+)PO4
Description: Parent triphylite from this locality has Mn/Mn + Fe = 0.24 (Moore, 2000).
Reference: Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 702; Rocks & Minerals: 16: 208-211.; USGS Prof Paper 255; USGS Prof Paper 353; Moore, P. B., 2000, Analyses of Primary Phosphates from Pegmatites in Maine and Other Localities, in V. T. King (editor), Mineralogy of Maine. Mining History, Gems, and Geology, Maine Geological Survey, Augusta, Maine, p. 333-336., NIZAMOFF, James W., SIMMONS, William B., and FALSTER, Alexander U. (2004) PHOSPHATE MINERALOGY AND PARAGENESIS OF THE PALERMO #2 PEGMATITE, NORTH GROTON, NEW HAMPSHIRE Geological Society of America Abstracts with Programs, Vol. 36, No. 5, p. 115
Hinsdalite
Formula: PbAl3(PO4)(SO4)(OH)6
Reference: No reference listed
Hisingerite
Formula: Fe3+2(Si2O5)(OH)4 · 2H2O
Reference: Rocks & Min. 80:256 (2005)
Hollandite
Formula: Ba(Mn4+6Mn3+2)O16
Reference: Rocks & Min. (Sept/Oct 1981)
Hopeite
Formula: Zn3(PO4)2 · 4H2O
Reference: Kampf, A. R., Falster, A. U., Simmons, W. B., & Whitmore, R. W. (2013). Nizamoffite, Mn2+ Zn2 (PO4) 2 (H2O) 4, the Mn analogue of hopeite from the Palermo No. 1 pegmatite, North Groton, New Hampshire. American Mineralogist, 98(10), 1893-1898.
Hureaulite
Formula: (Mn,Fe)5(PO4)2(HPO4)2 · 4H2O
Reference: Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 702.; Mineralogical Record (1973) 4:103-130
Hydroxylapatite
Formula: Ca5(PO4)3(OH)
Reference: Whitmore & Lawrence, 2004. The Pegmatite Mines Known As Palermo, p.95.; Am. Min. 50 (1965), 713-717; NIZAMOFF, James W., SIMMONS, William B., and FALSTER, Alexander U. (2004) PHOSPHATE MINERALOGY AND PARAGENESIS OF THE PALERMO #2 PEGMATITE, NORTH GROTON, NEW HAMPSHIRE Geological Society of America Abstracts with Programs, Vol. 36, No. 5, p. 115
Hydroxylapatite var: Carbonate-rich Hydroxylapatite
Formula: Ca5(PO4,CO3)3(OH,O)
Reference: No reference listed
Hydroxylherderite
Formula: CaBe(PO4)(OH,F)
Reference: Am Min 63:913-917
Ice
Formula: H2O
Reference: Nashua Min. Soc. Disp. Cat., 1995
Jahnsite-(CaMnFe)
Formula: {Ca}{Mn2+}{Fe2+2}{Fe3+2}(PO4)4(OH)2 · 8H2O
Reference: NIZAMOFF, James W., SIMMONS, William B., and FALSTER, Alexander U. (2004) PHOSPHATE MINERALOGY AND PARAGENESIS OF THE PALERMO #2 PEGMATITE, NORTH GROTON, NEW HAMPSHIRE Geological Society of America Abstracts with Programs, Vol. 36, No. 5, p. 115
Jahnsite-(CaMnMn)
Formula: {Ca}{Mn2+}{Mn2+2}{Fe3+2}(PO4)4(OH)2 · 8H2O
Reference: Whitmore & Lawrence, 2004. The Pegmatite Mines Known As Palermo, p.95.; NIZAMOFF, James W., SIMMONS, William B., and FALSTER, Alexander U. (2004) PHOSPHATE MINERALOGY AND PARAGENESIS OF THE PALERMO #2 PEGMATITE, NORTH GROTON, NEW HAMPSHIRE Geological Society of America Abstracts with Programs, Vol. 36, No. 5, p. 115
Keckite
Formula: CaMn2+(Fe3+Mn2+)Fe3+2(PO4)4(OH)3 · 7H2O
Reference: Whitmore & Lawrence, 2004. The Pegmatite Mines Known As Palermo, p.95.; Anthony R. Kampf, Stuart J. Mills, W.B. Simmons, James W. Nizamoff, and R.W. Whitmore (2012) Falsterite, A New Zinc-Bearing Secondary Phosphate From The Palermo #1 Mine, North Groton, New Hampshire. 39th Rochester Symposium abstracts.; Kampf, A. R., Falster, A. U., Simmons, W. B., & Whitmore, R. W. (2013). Nizamoffite, Mn2+ Zn2 (PO4) 2 (H2O) 4, the Mn analogue of hopeite from the Palermo No. 1 pegmatite, North Groton, New Hampshire. American Mineralogist, 98(10), 1893-1898.
Kryzhanovskite
Formula: (Fe3+,Mn2+)3(PO4)2(OH,H2O)3
Reference: NIZAMOFF, James W., SIMMONS, William B., and FALSTER, Alexander U. (2004) PHOSPHATE MINERALOGY AND PARAGENESIS OF THE PALERMO #2 PEGMATITE, NORTH GROTON, NEW HAMPSHIRE Geological Society of America Abstracts with Programs, Vol. 36, No. 5, p. 115
Kulanite
Formula: Ba(Fe2+,Mn2+,Mg)2(Al,Fe3+)2(PO4)3(OH)3
Reference: Whitmore & Lawrence, 2004. The Pegmatite Mines Known As Palermo, p.95.
Landesite
Formula: Mn2+3-xFe3+x(PO4)2(OH)x · (3-x)H2O
Reference: Morrill, 1960. NH Mines and Minerals Localities, 2nd ed.
Laueite
Formula: Mn2+Fe3+2(PO4)2(OH)2 · 8H2O
Reference: Am. Min. 50 (1965), 713-717; Mineralogical Record (1973) 4:103-130; NIZAMOFF, James W., SIMMONS, William B., and FALSTER, Alexander U. (2004) PHOSPHATE MINERALOGY AND PARAGENESIS OF THE PALERMO #2 PEGMATITE, NORTH GROTON, NEW HAMPSHIRE Geological Society of America Abstracts with Programs, Vol. 36, No. 5, p. 115
Lazulite
Formula: MgAl2(PO4)2(OH)2
Reference: Rocks & Min.: 16:208-211.; Mineralogical Record (1973) 4:103-130; USGS Prof Paper 255; USGS Prof Paper 353; American Mineralogist (1953): 38: 728-729.; NIZAMOFF, James W., SIMMONS, William B., and FALSTER, Alexander U. (2004) PHOSPHATE MINERALOGY AND PARAGENESIS OF THE PALERMO #2 PEGMATITE, NORTH GROTON, NEW HAMPSHIRE Geological Society of America Abstracts with Programs, Vol. 36, No. 5, p. 115
Lefontite
Formula: Fe2Al2Be(PO4)2(OH)6
Reference: RRUFF specimen with natropalermoite and childrenite
Leucophosphite
Formula: KFe3+2(PO4)2(OH) · 2H2O
Reference: Mineralogical Record (1973) 4:103-130
'Limonite'
Formula: (Fe,O,OH,H2O)
Reference: Rocks & Min. (July-Aug 2002); USGS Prof Paper 255; USGS Prof Paper 353
Löllingite
Formula: FeAs2
Reference: Rocks & Min.: 16:208-211.; USGS Prof Paper 255; USGS Prof Paper 353
Ludlamite
Formula: Fe2+3(PO4)2 · 4H2O
Reference: Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 686, 953.; Am. Min. 50 (1965), 713-717; Mineralogical Record (1973) 4:103-130; USGS Prof Paper 353; NIZAMOFF, James W., SIMMONS, William B., and FALSTER, Alexander U. (2004) PHOSPHATE MINERALOGY AND PARAGENESIS OF THE PALERMO #2 PEGMATITE, NORTH GROTON, NEW HAMPSHIRE Geological Society of America Abstracts with Programs, Vol. 36, No. 5, p. 115
Magnetite
Formula: Fe2+Fe3+2O4
Reference: Rocks & Min. (Sept/Oct 1981)
Malachite
Formula: Cu2(CO3)(OH)2
Reference: Rocks & Min. (Sept/Oct 1981)
'Manganese Oxides'
Reference: P. Cristofono collection
'Manganese Oxides var: Manganese Dendrites'
Reference: P. Cristofono collection
Manganite
Formula: Mn3+O(OH)
Reference: Rocks & Min.: 16:208-211.; USGS Prof Paper 255; USGS Prof Paper 353
Marcasite
Formula: FeS2
Reference: Whitmore & Lawrence, 2004. The Pegmatite Mines Known As Palermo, p.95.
Melanterite
Formula: Fe2+(H2O)6SO4 · H2O
Reference: Rocks & Min.: 16:208-211.; USGS Prof Paper 255; USGS Prof Paper 353
Messelite
Formula: Ca2Fe2+(PO4)2 · 2H2O
Reference: Mineralogical Record (1970) 1:47,53; Mineralogical Record (1973) 4:103-130; USGS Prof Paper 353; NIZAMOFF, James W., SIMMONS, William B., and FALSTER, Alexander U. (2004) PHOSPHATE MINERALOGY AND PARAGENESIS OF THE PALERMO #2 PEGMATITE, NORTH GROTON, NEW HAMPSHIRE Geological Society of America Abstracts with Programs, Vol. 36, No. 5, p. 115 ; Kampf, A. R., Falster, A. U., Simmons, W. B., & Whitmore, R. W. (2013). Nizamoffite, Mn2+ Zn2 (PO4) 2 (H2O) 4, the Mn analogue of hopeite from the Palermo No. 1 pegmatite, North Groton, New Hampshire. American Mineralogist, 98(10), 1893-1898.
Meta-autunite
Formula: Ca(UO2)2(PO4)2 · 6-8H2O
Reference: Rocks & Min. (Sept/Oct 1981); Korzeb, Stanley L., Foord, Eugene E., and Lichte, Frederick E. (1997) The chemical evolution and paragenesis of uranium minerals from the Ruggles and Palermo granitic pegmatites, New Hampshire. Canadian Mineralogist, 35, 135-144.
Metaswitzerite ?
Formula: Mn2+3(PO4)2 · 4H2O
Reference: Nashua Min. Soc. Display Cat., 1995
Metatorbernite
Formula: Cu(UO2)2(PO4)2 · 8H2O
Reference: Rocks & Min. 80:256 (2005)
Metavivianite
Formula: Fe2+Fe3+2(PO4)2(OH)2 · 6H2O
Reference: No reference listed
'commodity:Mica'
Reference:  
Microcline
Formula: K(AlSi3O8)
Reference: Rocks & Min.: 16:208-211.
Mitridatite
Formula: Ca2Fe3+3(PO4)3O2 · 3H2O
Reference: Am. Min. 50 (1965), 713-717; Mineralogical Record (1973) 4:103-130; NIZAMOFF, James W., SIMMONS, William B., and FALSTER, Alexander U. (2004) PHOSPHATE MINERALOGY AND PARAGENESIS OF THE PALERMO #2 PEGMATITE, NORTH GROTON, NEW HAMPSHIRE Geological Society of America Abstracts with Programs, Vol. 36, No. 5, p. 115 ; Kampf, A. R., Falster, A. U., Simmons, W. B., & Whitmore, R. W. (2013). Nizamoffite, Mn2+ Zn2 (PO4) 2 (H2O) 4, the Mn analogue of hopeite from the Palermo No. 1 pegmatite, North Groton, New Hampshire. American Mineralogist, 98(10), 1893-1898.
Montebrasite
Formula: LiAl(PO4)(OH)
Reference: NIZAMOFF, James W., SIMMONS, William B., and FALSTER, Alexander U. (2004) PHOSPHATE MINERALOGY AND PARAGENESIS OF THE PALERMO #2 PEGMATITE, NORTH GROTON, NEW HAMPSHIRE Geological Society of America Abstracts with Programs, Vol. 36, No. 5, p. 115
Moraesite
Formula: Be2(PO4)(OH) · 4H2O
Reference: Mineralogical Record (1973) 4:103-130
Muscovite
Formula: KAl2(AlSi3O10)(OH)2
Habit: Books up to 4 feet in diameter and 2 feet thick were found
Reference: Rocks & Min.: 16:208-211.; USGS Prof Paper 255; USGS Prof Paper 353; Korzeb, Stanley L., Foord, Eugene E., and Lichte, Frederick E. (1997) The chemical evolution and paragenesis of uranium minerals from the Ruggles and Palermo granitic pegmatites, New Hampshire. Canadian Mineralogist, 35, 135-144.
Muscovite var: Illite
Formula: K0.65Al2.0[Al0.65Si3.35O10](OH)2
Reference: Whitmore & Lawrence, 2004. The Pegmatite Mines Known As Palermo, p.95.
Muscovite var: Sericite
Formula: KAl2(AlSi3O10)(OH)2
Reference: Page & Larrabee, 1962. Beryl Resources of NH (USGS Prof. Paper 353); USGS Prof Paper 353
Natropalermoite (TL)
Formula: Na2SrAl4(PO4)4(OH)4
Type Locality:
Reference: Schumer, B.N., Yang, H. and Downs, R.T. (2014) Natropalermoite, IMA 2013-118. CNMNC Newsletter No. 19, February 2014, page 170; Mineralogical Magazine, 78, 165-170; Schumer, B.N., Yang, H., Downs, R.T. (2017): Natropalermoite, Na2SrAl4(PO4)4(OH)4, a new mineral isostructural with palermoite, from the Palermo No. 1 mine, Groton, New Hampshire, USA. Mineralogical Magazine, 81, 833-840.
Nizamoffite (TL)
Formula: Mn2+Zn2(PO4)2(H2O)4
Type Locality:
Reference: Kampf, A. R., Falster, A. U., Simmons, W. B., & Whitmore, R. W. (2013). Nizamoffite, Mn2+ Zn2 (PO4) 2 (H2O) 4, the Mn analogue of hopeite from the Palermo No. 1 pegmatite, North Groton, New Hampshire. American Mineralogist, 98(10), 1893-1898.
Nontronite
Formula: Na0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Reference: Whitmore & Lawrence, 2004. The Pegmatite Mines Known As Palermo, p.95.
Opal
Formula: SiO2 · nH2O
Reference: Whitmore & Lawrence, 2004. The Pegmatite Mines Known As Palermo, p.95.
Opal var: Opal-AN
Formula: SiO2 · nH2O
Reference: Whitmore & Lawrence, 2004. The Pegmatite Mines Known As Palermo, p.187
Palermoite (TL)
Formula: (Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
Type Locality:
Reference: Amer.Min.(1953) 38, 354; Mineralogical Record (1973) 4:103-130
Parascholzite
Formula: CaZn2(PO4)2 · 2H2O
Reference: Whitmore & Lawrence, 2004. The Pegmatite Mines Known As Palermo, p.95.; Anthony R. Kampf, Stuart J. Mills, W.B. Simmons, James W. Nizamoff, and R.W. Whitmore (2012) Falsterite, A New Zinc-Bearing Secondary Phosphate From The Palermo #1 Mine, North Groton, New Hampshire. 39th Rochester Symposium abstracts.; Kampf, A. R., Falster, A. U., Simmons, W. B., & Whitmore, R. W. (2013). Nizamoffite, Mn2+ Zn2 (PO4) 2 (H2O) 4, the Mn analogue of hopeite from the Palermo No. 1 pegmatite, North Groton, New Hampshire. American Mineralogist, 98(10), 1893-1898.
Paravauxite
Formula: Fe2+Al2(PO4)2(OH)2 · 8H2O
Reference: NIZAMOFF, James W., SIMMONS, William B., and FALSTER, Alexander U. (2004) PHOSPHATE MINERALOGY AND PARAGENESIS OF THE PALERMO #2 PEGMATITE, NORTH GROTON, NEW HAMPSHIRE Geological Society of America Abstracts with Programs, Vol. 36, No. 5, p. 115
Paulscherrerite
Formula: UO2(OH)2
Reference: Brugger, J., Meisser, N., Etschmann, B., Ansermet, S., Pring, A. (2011): Paulscherrerite from the Number 2 Workings, Mount Painter Inlier, Northern Flinders Ranges, South Australia: “dehydrated schoepite” is a mineral after all. American Mineralogist, 96
'Pegmatite'
Reference: Korzeb, Stanley L., Foord, Eugene E., and Lichte, Frederick E. (1997) The chemical evolution and paragenesis of uranium minerals from the Ruggles and Palermo granitic pegmatites, New Hampshire. Canadian Mineralogist, 35, 135-144.
'Pegmatitic granite'
Reference: Korzeb, Stanley L., Foord, Eugene E., and Lichte, Frederick E. (1997) The chemical evolution and paragenesis of uranium minerals from the Ruggles and Palermo granitic pegmatites, New Hampshire. Canadian Mineralogist, 35, 135-144.
Phosphoferrite
Formula: (Fe2+,Mn2+)3(PO4)2 · 3H2O
Reference: Mineralogical Record (1973) 4:103-130
Phosphophyllite
Formula: Zn2Fe(PO4)2 · 4H2O
Reference: Rocks & Minerals 82:145; Mineralogical Record (1973) 4:103-130; Anthony R. Kampf, Stuart J. Mills, W.B. Simmons, James W. Nizamoff, and R.W. Whitmore (2012) Falsterite, A New Zinc-Bearing Secondary Phosphate From The Palermo #1 Mine, North Groton, New Hampshire. 39th Rochester Symposium abstracts.; Kampf, A. R., Falster, A. U., Simmons, W. B., & Whitmore, R. W. (2013). Nizamoffite, Mn2+ Zn2 (PO4) 2 (H2O) 4, the Mn analogue of hopeite from the Palermo No. 1 pegmatite, North Groton, New Hampshire. American Mineralogist, 98(10), 1893-1898.
Phosphosiderite
Formula: FePO4 · 2H2O
Reference: Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 702.; Am. Min. 50 (1965), 713-717; Mineralogical Record (1973) 4:103-130; NIZAMOFF, James W., SIMMONS, William B., and FALSTER, Alexander U. (2004) PHOSPHATE MINERALOGY AND PARAGENESIS OF THE PALERMO #2 PEGMATITE, NORTH GROTON, NEW HAMPSHIRE Geological Society of America Abstracts with Programs, Vol. 36, No. 5, p. 115
Phosphuranylite
Formula: (H3O)3KCa(UO2)7(PO4)4O4 · 8H2O
Reference: Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 876; Rocks & Minerals (2005): 80: 256.; Korzeb, Stanley L., Foord, Eugene E., and Lichte, Frederick E. (1997) The chemical evolution and paragenesis of uranium minerals from the Ruggles and Palermo granitic pegmatites, New Hampshire. Canadian Mineralogist, 35, 135-144.
Pseudolaueite
Formula: Mn2+Fe3+2(PO4)2(OH)2 · 8H2O
Reference: Am. Min. 50 (1965), 713-717
Pseudomalachite
Formula: Cu5(PO4)2(OH)4
Reference: No reference listed
'Psilomelane'
Reference: Rocks & Min.: 16:208-211.; USGS Prof Paper 255; USGS Prof Paper 353
Purpurite
Formula: (Mn3+,Fe3+)PO4
Reference: No reference listed
Pyrite
Formula: FeS2
Reference: Rocks & Min.: 16:208-211.; Am. Min. 50 (1965), 713-717; USGS Prof Paper 255; USGS Prof Paper 353; Anthony R. Kampf, Stuart J. Mills, W.B. Simmons, James W. Nizamoff, and R.W. Whitmore (2012) Falsterite, A New Zinc-Bearing Secondary Phosphate From The Palermo #1 Mine, North Groton, New Hampshire. 39th Rochester Symposium abstracts.; Kampf, A. R., Falster, A. U., Simmons, W. B., & Whitmore, R. W. (2013). Nizamoffite, Mn2+ Zn2 (PO4) 2 (H2O) 4, the Mn analogue of hopeite from the Palermo No. 1 pegmatite, North Groton, New Hampshire. American Mineralogist, 98(10), 1893-1898.
Pyrolusite
Formula: Mn4+O2
Description: Reference cited does not contain any data or description relating to the occurrence of pyrolusite at this locality. The discreditation of pyrolusite in dendrite form by Potter and Rossman (1979) mean that any dendrites from this locality that were labeled as this species would be the first known in the world and would require considerable scientific effort to validate.
Reference: Rocks & Min. (Sept/Oct 1981)
Pyromorphite
Formula: Pb5(PO4)3Cl
Reference: Whitmore & Lawrence, 2004. The Pegmatite Mines Known As Palermo, p.95.; Anthony R. Kampf, Stuart J. Mills, W.B. Simmons, James W. Nizamoff, and R.W. Whitmore (2012) Falsterite, A New Zinc-Bearing Secondary Phosphate From The Palermo #1 Mine, North Groton, New Hampshire. 39th Rochester Symposium abstracts.; Kampf, A. R., Falster, A. U., Simmons, W. B., & Whitmore, R. W. (2013). Nizamoffite, Mn2+ Zn2 (PO4) 2 (H2O) 4, the Mn analogue of hopeite from the Palermo No. 1 pegmatite, North Groton, New Hampshire. American Mineralogist, 98(10), 1893-1898.
Pyrrhotite
Formula: Fe7S8
Reference: Rocks & Min. (Sept/Oct 1981)
Quartz
Formula: SiO2
Reference: Rocks & Min.: 16:208-211.; Am. Min. 50 (1965), 713-717; USGS Prof Paper 255; USGS Prof Paper 353; American Mineralogist (1953): 38: 728-729.; Anthony R. Kampf, Stuart J. Mills, W.B. Simmons, James W. Nizamoff, and R.W. Whitmore (2012) Falsterite, A New Zinc-Bearing Secondary Phosphate From The Palermo #1 Mine, North Groton, New Hampshire. 39th Rochester Symposium abstracts.; Kampf, A. R., Falster, A. U., Simmons, W. B., & Whitmore, R. W. (2013). Nizamoffite, Mn2+ Zn2 (PO4) 2 (H2O) 4, the Mn analogue of hopeite from the Palermo No. 1 pegmatite, North Groton, New Hampshire. American Mineralogist, 98(10), 1893-1898.; Korzeb, Stanley L., Foord, Eugene E., and Lichte, Frederick E. (1997) The chemical evolution and paragenesis of uranium minerals from the Ruggles and Palermo granitic pegmatites, New Hampshire. Canadian Mineralogist, 35, 135-144.
Quartz var: Blue Quartz
Formula: SiO2
Reference: Harvard Mineralogical Museum
Quartz var: Citrine
Formula: SiO2
Reference: Nashua Min. Soc. Display Cat., 1995
Quartz var: Milky Quartz
Formula: SiO2
Reference: Morrill, 1960. NH Mines and Minerals Localities, 2nd ed.
Quartz var: Rock Crystal
Formula: SiO2
Quartz var: Rose Quartz
Formula: SiO2
Quartz var: Sceptre Quartz
Formula: SiO2
Reference: P. Cristofono collection
Quartz var: Smoky Quartz
Formula: SiO2
Reference: Rocks & Min. 80:256 (2005)
'commodity:Quartz crystal'
Reference:  
Realgar
Formula: As4S4
Reference: Rocks & Min. (Sept/Oct 1981)
Reddingite
Formula: (Mn2+,Fe2+)3(PO4)2 · 3H2O
Reference: Morrill, 1960. NH Mines and Minerals Localities, 2nd ed.
Rhodochrosite
Formula: MnCO3
Reference: Rocks & Min.: 16:208-211.; USGS Prof Paper 255; USGS Prof Paper 353
Rockbridgeite
Formula: Fe2+Fe3+4(PO4)3(OH)5
Reference: Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 868, 977.; Am. Min. 50 (1965), 713-717; NIZAMOFF, James W., SIMMONS, William B., and FALSTER, Alexander U. (2004) PHOSPHATE MINERALOGY AND PARAGENESIS OF THE PALERMO #2 PEGMATITE, NORTH GROTON, NEW HAMPSHIRE Geological Society of America Abstracts with Programs, Vol. 36, No. 5, p. 115 ; Kampf, A. R., Falster, A. U., Simmons, W. B., & Whitmore, R. W. (2013). Nizamoffite, Mn2+ Zn2 (PO4) 2 (H2O) 4, the Mn analogue of hopeite from the Palermo No. 1 pegmatite, North Groton, New Hampshire. American Mineralogist, 98(10), 1893-1898.
Roscherite
Formula: Ca2Mn2+5Be4(PO4)6(OH)4 · 6H2O
Reference: No reference listed
Rutherfordine
Formula: (UO2)CO3
Reference: Rocks & Min. 80:256 (2005); Korzeb, Stanley L., Foord, Eugene E., and Lichte, Frederick E. (1997) The chemical evolution and paragenesis of uranium minerals from the Ruggles and Palermo granitic pegmatites, New Hampshire. Canadian Mineralogist, 35, 135-144.
Samuelsonite (TL)
Formula: (Ca,Ba)Ca8Fe2+2Mn2+2Al2(PO4)10(OH)2
Type Locality:
Reference: Amer.Min.(1975) 60, 957-964
Sarcopside
Formula: (Fe2+,Mn2+,Mg)3(PO4)2
Reference: No reference listed
'Schist'
Reference: Korzeb, Stanley L., Foord, Eugene E., and Lichte, Frederick E. (1997) The chemical evolution and paragenesis of uranium minerals from the Ruggles and Palermo granitic pegmatites, New Hampshire. Canadian Mineralogist, 35, 135-144.
Schoepite
Formula: (UO2)8O2(OH)12 · 12H2O
Reference: Whitmore & Lawrence, 2004. The Pegmatite Mines Known As Palermo, p.95.
Schoonerite (TL)
Formula: ZnMn2+Fe2+2Fe3+(PO4)3(OH)2 · 9H2O
Type Locality:
Reference: [Amer.Min.(1977) 62, 246-249 ; Anthony R. Kampf, Stuart J. Mills, W.B. Simmons, James W. Nizamoff, and R.W. Whitmore (2012) Falsterite, A New Zinc-Bearing Secondary Phosphate From The Palermo #1 Mine, North Groton, New Hampshire. 39th Rochester Symposium abstracts.; Kampf, A. R., Falster, A. U., Simmons, W. B., & Whitmore, R. W. (2013). Nizamoffite, Mn2+ Zn2 (PO4) 2 (H2O) 4, the Mn analogue of hopeite from the Palermo No. 1 pegmatite, North Groton, New Hampshire. American Mineralogist, 98(10), 1893-1898.
Schorl
Formula: Na(Fe2+3)Al6(Si6O18)(BO3)3(OH)3(OH)
Reference: USGS Prof Paper 255
Scorzalite
Formula: Fe2+Al2(PO4)2(OH)2
Reference: Handbook of Mineralogy - Anthony, Bideaux, Bladh, Nichols; Am. Min. 50 (1965), 713-717; Mineralogical Record (1973) 4:103-130; NIZAMOFF, James W., SIMMONS, William B., and FALSTER, Alexander U. (2004) PHOSPHATE MINERALOGY AND PARAGENESIS OF THE PALERMO #2 PEGMATITE, NORTH GROTON, NEW HAMPSHIRE Geological Society of America Abstracts with Programs, Vol. 36, No. 5, p. 115
Siderite
Formula: FeCO3
Reference: Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 686, 953; Rocks & Minerals: 16: 208-211.; Am. Min. 50 (1965), 713-717; USGS Prof Paper 255; USGS Prof Paper 353; American Mineralogist (1953): 38: 728-729.; Kampf, A. R., Falster, A. U., Simmons, W. B., & Whitmore, R. W. (2013). Nizamoffite, Mn2+ Zn2 (PO4) 2 (H2O) 4, the Mn analogue of hopeite from the Palermo No. 1 pegmatite, North Groton, New Hampshire. American Mineralogist, 98(10), 1893-1898.
Sillimanite
Formula: Al2(SiO4)O
Reference: Page & Larrabee, 1962. Beryl Resources of NH (USGS Prof. Paper 353); USGS Prof Paper 353; Korzeb, Stanley L., Foord, Eugene E., and Lichte, Frederick E. (1997) The chemical evolution and paragenesis of uranium minerals from the Ruggles and Palermo granitic pegmatites, New Hampshire. Canadian Mineralogist, 35, 135-144.
Sinkankasite
Formula: Mn2+Al(PO3OH)2(OH) · 6H2O
Habit: flattened 2-3 mm sprays acicular crystals
Colour: white
Description: previously described as gatumbaite by Segeler et al. Rocks & Minerals 56,197-214(1981)
Reference: American Mineralogist (1984): 69: 380-382.
Smithsonite
Formula: ZnCO3
Reference: Whitmore & Lawrence, 2004. The Pegmatite Mines Known As Palermo, p.95.; Anthony R. Kampf, Stuart J. Mills, W.B. Simmons, James W. Nizamoff, and R.W. Whitmore (2012) Falsterite, A New Zinc-Bearing Secondary Phosphate From The Palermo #1 Mine, North Groton, New Hampshire. 39th Rochester Symposium abstracts.; Kampf, A. R., Falster, A. U., Simmons, W. B., & Whitmore, R. W. (2013). Nizamoffite, Mn2+ Zn2 (PO4) 2 (H2O) 4, the Mn analogue of hopeite from the Palermo No. 1 pegmatite, North Groton, New Hampshire. American Mineralogist, 98(10), 1893-1898.
Souzalite
Formula: (Mg,Fe2+)3(Al,Fe3+)4(PO4)4(OH)6 · 2H2O
Reference: Whitmore & Lawrence, 2004. The Pegmatite Mines Known As Palermo, p.95.; NIZAMOFF, James W., SIMMONS, William B., and FALSTER, Alexander U. (2004) PHOSPHATE MINERALOGY AND PARAGENESIS OF THE PALERMO #2 PEGMATITE, NORTH GROTON, NEW HAMPSHIRE Geological Society of America Abstracts with Programs, Vol. 36, No. 5, p. 115
Sphalerite
Formula: ZnS
Reference: Rocks & Min. (Sept/Oct 1981); Am. Min. 50 (1965), 713-717; Anthony R. Kampf, Stuart J. Mills, W.B. Simmons, James W. Nizamoff, and R.W. Whitmore (2012) Falsterite, A New Zinc-Bearing Secondary Phosphate From The Palermo #1 Mine, North Groton, New Hampshire. 39th Rochester Symposium abstracts.; Kampf, A. R., Falster, A. U., Simmons, W. B., & Whitmore, R. W. (2013). Nizamoffite, Mn2+ Zn2 (PO4) 2 (H2O) 4, the Mn analogue of hopeite from the Palermo No. 1 pegmatite, North Groton, New Hampshire. American Mineralogist, 98(10), 1893-1898.
Stewartite
Formula: Mn2+Fe3+2(PO4)2(OH)2 · 8H2O
Reference: Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 730.; Mineralogical Record (1973) 4:103-130; NIZAMOFF, James W., SIMMONS, William B., and FALSTER, Alexander U. (2004) PHOSPHATE MINERALOGY AND PARAGENESIS OF THE PALERMO #2 PEGMATITE, NORTH GROTON, NEW HAMPSHIRE Geological Society of America Abstracts with Programs, Vol. 36, No. 5, p. 115
Strengite
Formula: FePO4 · 2H2O
Reference: Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 702.; Mineralogical Record (1973) 4:103-130; NIZAMOFF, James W., SIMMONS, William B., and FALSTER, Alexander U. (2004) PHOSPHATE MINERALOGY AND PARAGENESIS OF THE PALERMO #2 PEGMATITE, NORTH GROTON, NEW HAMPSHIRE Geological Society of America Abstracts with Programs, Vol. 36, No. 5, p. 115
Strunzite
Formula: Mn2+Fe3+2(PO4)2(OH)2 · 6H2O
Reference: Am. Min. 50 (1965), 713-717; Mineralogical Record (1973) 4:103-130; NIZAMOFF, James W., SIMMONS, William B., and FALSTER, Alexander U. (2004) PHOSPHATE MINERALOGY AND PARAGENESIS OF THE PALERMO #2 PEGMATITE, NORTH GROTON, NEW HAMPSHIRE Geological Society of America Abstracts with Programs, Vol. 36, No. 5, p. 115
Tantalite-(Fe)
Formula: Fe2+Ta2O6
Reference: Rocks & Min. 80:256 (2005)
Tavorite
Formula: LiFe3+(PO4)(OH)
Reference: Mineralogical Record (1973) 4:103-130
Todorokite
Formula: (Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
Reference: Rocks & Min. (Sept/Oct 1981)
Torbernite
Formula: Cu(UO2)2(PO4)2 · 12H2O
Reference: Rocks & Min. 80:256 (2005)
'Tourmaline'
Formula: A(D3)G6(T6O18)(BO3)3X3Z
Reference: Korzeb, Stanley L., Foord, Eugene E., and Lichte, Frederick E. (1997) The chemical evolution and paragenesis of uranium minerals from the Ruggles and Palermo granitic pegmatites, New Hampshire. Canadian Mineralogist, 35, 135-144.
Triphylite
Formula: LiFe2+PO4
Description: Triphylite from this locality has Mn/Mn + Fe = 0.24 (Moore, 2000).
Reference: Rocks & Minerals: 16: 208-211.; Am. Min. 50 (1965), 713-717; Mineralogical Record (1973) 4:103-130; USGS Prof Paper 255; USGS Prof Paper 353; Moore, P. B., 2000, Analyses of Primary Phosphates from Pegmatites in Maine and Other Localities, in V. T. King (editor), Mineralogy of Maine. Mining History, Gems, and Geology, Maine Geological Survey, Augusta, Maine, p. 333-336., NIZAMOFF, James W., SIMMONS, William B., and FALSTER, Alexander U. (2004) PHOSPHATE MINERALOGY AND PARAGENESIS OF THE PALERMO #2 PEGMATITE, NORTH GROTON, NEW HAMPSHIRE Geological Society of America Abstracts with Programs, Vol. 36, No. 5, p. 115 ; Anthony R. Kampf, Stuart J. Mills, W.B. Simmons, James W. Nizamoff, and R.W. Whitmore (2012) Falsterite, A New Zinc-Bearing Secondary Phosphate From The Palermo #1 Mine, North Groton, New Hampshire. 39th Rochester Symposium abstracts.; Kampf, A. R., Falster, A. U., Simmons, W. B., & Whitmore, R. W. (2013). Nizamoffite, Mn2+ Zn2 (PO4) 2 (H2O) 4, the Mn analogue of hopeite from the Palermo No. 1 pegmatite, North Groton, New Hampshire. American Mineralogist, 98(10), 1893-1898.
Triploidite
Formula: (Mn2+,Fe2+)2(PO4)(OH)
Reference: Whitmore & Lawrence, 2004. The Pegmatite Mines Known As Palermo, p.95.; USGS Prof Paper 353
Uraninite
Formula: UO2
Reference: Korzeb, Stanley L., Foord, Eugene E., and Lichte, Frederick E. (1997) The chemical evolution and paragenesis of uranium minerals from the Ruggles and Palermo granitic pegmatites, New Hampshire. Canadian Mineralogist, 35, 135-144.
Uranophane
Formula: Ca(UO2)2(SiO3OH)2 · 5H2O
Reference: Rocks & Min.: 16:208-211.; USGS Prof Paper 255; USGS Prof Paper 353
Uranophane-β
Formula: Ca(UO2)2(SiO3OH)2 · 5H2O
Reference: Rocks & Minerals (Sept/Oct 1981).; Korzeb, Stanley L., Foord, Eugene E., and Lichte, Frederick E. (1997) The chemical evolution and paragenesis of uranium minerals from the Ruggles and Palermo granitic pegmatites, New Hampshire. Canadian Mineralogist, 35, 135-144.
Ushkovite
Formula: MgFe3+2(PO4)2(OH)2 · 8H2O
Reference: NIZAMOFF, James W., SIMMONS, William B., and FALSTER, Alexander U. (2004) PHOSPHATE MINERALOGY AND PARAGENESIS OF THE PALERMO #2 PEGMATITE, NORTH GROTON, NEW HAMPSHIRE Geological Society of America Abstracts with Programs, Vol. 36, No. 5, p. 115
Vandendriesscheite
Formula: PbU7O22 · 12H2O
Reference: Rocks & Min. (Sept/Oct 1981)
Vivianite
Formula: Fe2+3(PO4)2 · 8H2O
Reference: Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 953; Rocks & Minerals: 16:208-211.; Am. Min. 50 (1965), 713-717; Mineralogical Record (1973) 4:103-130; USGS Prof Paper 255; USGS Prof Paper 353; NIZAMOFF, James W., SIMMONS, William B., and FALSTER, Alexander U. (2004) PHOSPHATE MINERALOGY AND PARAGENESIS OF THE PALERMO #2 PEGMATITE, NORTH GROTON, NEW HAMPSHIRE Geological Society of America Abstracts with Programs, Vol. 36, No. 5, p. 115 ; Kampf, A. R., Falster, A. U., Simmons, W. B., & Whitmore, R. W. (2013). Nizamoffite, Mn2+ Zn2 (PO4) 2 (H2O) 4, the Mn analogue of hopeite from the Palermo No. 1 pegmatite, North Groton, New Hampshire. American Mineralogist, 98(10), 1893-1898.
Wardite
Formula: NaAl3(PO4)2(OH)4 · 2H2O
Reference: No reference listed
Whiteite-(CaMnMg)
Formula: {Ca}{Mn2+}{Mg2}{Al2}(PO4)4(OH)2 · 8H2O
Reference: Whitmore & Lawrence, 2004. The Pegmatite Mines Known As Palermo, p.95.; NIZAMOFF, James W., SIMMONS, William B., and FALSTER, Alexander U. (2004) PHOSPHATE MINERALOGY AND PARAGENESIS OF THE PALERMO #2 PEGMATITE, NORTH GROTON, NEW HAMPSHIRE Geological Society of America Abstracts with Programs, Vol. 36, No. 5, p. 115
Whiteite-(MnFeMg)
Formula: {(Mn2+,Ca)}{(Fe2+,Mn2+)}{Mg2}{Al2}(PO4)4(OH)2 · 8H2O
Reference: Whitmore & Lawrence, 2004. The Pegmatite Mines Known As Palermo, p.95.; NIZAMOFF, James W., SIMMONS, William B., and FALSTER, Alexander U. (2004) PHOSPHATE MINERALOGY AND PARAGENESIS OF THE PALERMO #2 PEGMATITE, NORTH GROTON, NEW HAMPSHIRE Geological Society of America Abstracts with Programs, Vol. 36, No. 5, p. 115
Whitlockite (TL)
Formula: Ca9Mg(PO4)6(HPO4)
Type Locality:
Reference: American Mineralogical Society, Program and Abstracts (1940) p. 7; Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 686, 842, 953, 977; Rocks & Minerals: 16: 208-211.; Mineralogical Record (1973) 4:103-130; USGS Prof Paper 255; USGS Prof Paper 353; American Mineralogist (1953): 38: 728-729.
Whitmoreite (TL)
Formula: Fe2+Fe3+2(PO4)2(OH)2 · 4H2O
Type Locality:
Reference: Am.Min. 59, 900-905 (1974); NIZAMOFF, James W., SIMMONS, William B., and FALSTER, Alexander U. (2004) PHOSPHATE MINERALOGY AND PARAGENESIS OF THE PALERMO #2 PEGMATITE, NORTH GROTON, NEW HAMPSHIRE Geological Society of America Abstracts with Programs, Vol. 36, No. 5, p. 115
Wolfeite (TL)
Formula: (Fe2+,Mn2+)2(PO4)(OH)
Type Locality:
Reference: American Mineralogist (1949): 34: 692-705; Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 855.; Mineralogical Record (1973) 4:103-130; NIZAMOFF, James W., SIMMONS, William B., and FALSTER, Alexander U. (2004) PHOSPHATE MINERALOGY AND PARAGENESIS OF THE PALERMO #2 PEGMATITE, NORTH GROTON, NEW HAMPSHIRE Geological Society of America Abstracts with Programs, Vol. 36, No. 5, p. 115
Xanthoxenite (TL)
Formula: Ca4Fe3+2(PO4)4(OH)2 · 3H2O
Type Locality:
Reference: American Mineralogist (1949): 34: 692-705; Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 686, 977; American Mineralogist (1979): 64: 466.; Am. Min. 50 (1965), 713-717
Zanazziite
Formula: Ca2Mg5Be4(PO4)6(OH)4 · 6H2O
Reference: www.uno.edu/pegmatology/abstract/abstniz.html.
'Zinnwaldite'
Reference: Morrill, 1960. NH Mines and Minerals Localities, 2nd ed. ; USGS Prof Paper 255
Zircon
Formula: Zr(SiO4)
Reference: Rocks & Min. (Sept/Oct 1981)
Zircon var: Cyrtolite
Formula: Zr[(SiO4),(OH)4]
Reference: Rocks & Min.: 16:208-211.; USGS Prof Paper 255; USGS Prof Paper 353

List of minerals arranged by Strunz 10th Edition classification

Group 1 - Elements
Bismuth1.CA.05Bi
Group 2 - Sulphides and Sulfosalts
Arsenopyrite2.EB.20FeAsS
Bismuthinite2.DB.05Bi2S3
Bornite2.BA.15Cu5FeS4
Chalcopyrite2.CB.10aCuFeS2
Covellite2.CA.05aCuS
Djurleite2.BA.05Cu31S16
Galena2.CD.10PbS
Löllingite2.EB.15aFeAs2
'Marcasite'2.EB.10aFeS2
'Pyrite'2.EB.05aFeS2
'Pyrrhotite'2.CC.10Fe7S8
'Realgar'2.FA.15aAs4S4
Sphalerite2.CB.05aZnS
Group 4 - Oxides and Hydroxides
'Anatase'4.DD.05TiO2
Birnessite4.FL.45(Na,Ca)0.5(Mn4+,Mn3+)2O4 · 1.5H2O
Clarkeite ?4.GC.05(Na,Ca,Pb)(UO2)O(OH) · 0-1H2O
Columbite-(Fe)4.DB.35Fe2+Nb2O6
Compreignacite4.GB.05K2(UO2)6O4(OH)6 · 7H2O
Cuprite4.AA.10Cu2O
var: Chalcotrichite4.AA.10Cu2O
Goethite4.00.α-Fe3+O(OH)
Hematite4.CB.05Fe2O3
Hollandite4.DK.05aBa(Mn4+6Mn3+2)O16
Ice4.AA.05H2O
Magnetite4.BB.05Fe2+Fe3+2O4
'Manganite' ?4.FD.15Mn3+O(OH)
Opal4.DA.10SiO2 · nH2O
var: Opal-AN4.DA.10SiO2 · nH2O
Paulscherrerite4.GA.20UO2(OH)2
'Pyrolusite' ?4.DB.05Mn4+O2
'Quartz'4.DA.05SiO2
var: Blue Quartz4.DA.05SiO2
var: Citrine4.DA.05SiO2
var: Milky Quartz4.DA.05SiO2
var: Rock Crystal4.DA.05SiO2
var: Rose Quartz4.DA.05SiO2
var: Sceptre Quartz4.DA.05SiO2
var: Smoky Quartz4.DA.05SiO2
Schoepite4.GA.05(UO2)8O2(OH)12 · 12H2O
Tantalite-(Fe)4.DB.35Fe2+Ta2O6
Todorokite4.DK.10(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
Uraninite4.DL.05UO2
Vandendriesscheite4.GB.40PbU7O22 · 12H2O
Group 5 - Nitrates and Carbonates
Azurite5.BA.05Cu3(CO3)2(OH)2
Cerussite5.AB.15PbCO3
Malachite5.BA.10Cu2(CO3)(OH)2
'Rhodochrosite'5.AB.05MnCO3
Rutherfordine5.EB.05(UO2)CO3
Siderite5.AB.05FeCO3
Smithsonite5.AB.05ZnCO3
Group 7 - Sulphates, Chromates, Molybdates and Tungstates
Gypsum7.CD.40CaSO4 · 2H2O
'Melanterite'7.CB.35Fe2+(H2O)6SO4 · H2O
Group 8 - Phosphates, Arsenates and Vanadates
'Amblygonite' ?8.BB.05LiAl(PO4)F
'Anapaite'8.CH.10Ca2Fe2+(PO4)2 · 4H2O
Arrojadite-(KFe)8.BF.05{KNa}{Fe2+⃞}{Ca}{Na2⃞}{Fe2+13}{Al}(PO4)11(HPO4)(OH)2
Augelite8.BE.05Al2(PO4)(OH)3
Autunite8.EB.05Ca(UO2)2(PO4)2 · 11H2O
Barbosalite8.BB.40Fe2+Fe3+2(PO4)2(OH)2
Beraunite8.DC.27Fe2+Fe3+5(PO4)4(OH)5 · 6H2O
Bermanite8.DC.20Mn2+Mn3+2(PO4)2(OH)2 · 4H2O
Beryllonite8.AA.10NaBePO4
Bjarebyite (TL)8.BH.20(Ba,Sr)(Mn2+,Fe2+,Mg)2Al2(PO4)3(OH)3
Brazilianite8.BK.05NaAl3(PO4)2(OH)4
Brushite8.CJ.50Ca(HPO4) · 2H2O
Cacoxenite8.DC.40Fe3+24AlO6(PO4)17(OH)12 · 75H2O
Childrenite8.DD.20Fe2+Al(PO4)(OH)2 · H2O
Chlorapatite8.BN.05Ca5(PO4)3Cl
Collinsite8.CG.05Ca2Mg(PO4)2 · 2H2O
Crandallite8.BL.10CaAl3(PO4)(PO3OH)(OH)6
Diadochite8.DB.05Fe3+2(PO4)(SO4)(OH) · 5H2O
Dickinsonite-(KMnNa) ?8.BF.05{KNa}{Mn2+⃞}{Ca}{Na3}{Mn2+13}{Al}(PO4)12(OH)2
Dufrénite8.DK.15Ca0.5Fe2+Fe3+5(PO4)4(OH)6 · 2H2O
Eosphorite8.DD.20Mn2+Al(PO4)(OH)2 · H2O
Ernstite ?8.DD.20(Mn2+,Fe3+)Al(PO4)(OH,O)2 · H2O
Fairfieldite8.CG.05Ca2Mn2+(PO4)2 · 2H2O
Ferrisicklerite8.AB.10Li1-x(Fe3+xFe2+1-x)PO4
Ferrohagendorfite8.AC.10NaCaFe2+Fe2+2(PO4)3
Ferrostrunzite8.DC.25Fe2+Fe3+2(PO4)2(OH)2 · 6H2O
Florencite-(Ce)8.BL.13CeAl3(PO4)2(OH)6
Fluorapatite8.BN.05Ca5(PO4)3F
var: Carbonate-rich Fluorapatite8.BN.05Ca5(PO4,CO3)3(F,O)
Foggite (TL)8.DL.05CaAl(PO4)(OH)2 · H2O
Frondelite ?8.BC.10Mn2+Fe3+4(PO4)3(OH)5
Gatumbaite ?8.DJ.10CaAl2(PO4)2(OH)2 · H2O
Goedkenite (TL)8.BG.05Sr2Al(PO4)2(OH)
Gordonite8.DC.30MgAl2(PO4)2(OH)2 · 8H2O
Gormanite8.DC.45(Fe2+,Mg)3(Al,Fe3+)4(PO4)4(OH)6 · 2H2O
Goyazite8.BL.10SrAl3(PO4)(PO3OH)(OH)6
Graftonite8.AB.20Fe2+Fe2+2(PO4)2
Greifensteinite8.DA.10Ca2Fe2+5Be4(PO4)6(OH)4 · 6H2O
Hagendorfite8.AC.10NaCaMn2+Fe2+2(PO4)3
Heterosite8.AB.10(Fe3+,Mn3+)PO4
Hinsdalite8.BL.05PbAl3(PO4)(SO4)(OH)6
Hopeite8.CA.30Zn3(PO4)2 · 4H2O
Hureaulite8.CB.10(Mn,Fe)5(PO4)2(HPO4)2 · 4H2O
Hydroxylapatite8.BN.05Ca5(PO4)3(OH)
var: Carbonate-rich Hydroxylapatite8.BN.05Ca5(PO4,CO3)3(OH,O)
Hydroxylherderite8.BA.10CaBe(PO4)(OH,F)
Jahnsite-(CaMnFe)8.DH.15{Ca}{Mn2+}{Fe2+2}{Fe3+2}(PO4)4(OH)2 · 8H2O
Jahnsite-(CaMnMn)8.DH.15{Ca}{Mn2+}{Mn2+2}{Fe3+2}(PO4)4(OH)2 · 8H2O
Keckite8.DH.15CaMn2+(Fe3+Mn2+)Fe3+2(PO4)4(OH)3 · 7H2O
Kryzhanovskite8.CC.05(Fe3+,Mn2+)3(PO4)2(OH,H2O)3
Kulanite8.BH.20Ba(Fe2+,Mn2+,Mg)2(Al,Fe3+)2(PO4)3(OH)3
Landesite8.CC.05Mn2+3-xFe3+x(PO4)2(OH)x · (3-x)H2O
Laueite8.DC.30Mn2+Fe3+2(PO4)2(OH)2 · 8H2O
Lazulite8.BB.40MgAl2(PO4)2(OH)2
Leucophosphite8.DH.10KFe3+2(PO4)2(OH) · 2H2O
Ludlamite8.CD.20Fe2+3(PO4)2 · 4H2O
'Messelite'8.CG.05Ca2Fe2+(PO4)2 · 2H2O
'Meta-autunite'8.EB.10Ca(UO2)2(PO4)2 · 6-8H2O
'Metaswitzerite' ?8.CE.25Mn2+3(PO4)2 · 4H2O
'Metatorbernite'8.EB.10Cu(UO2)2(PO4)2 · 8H2O
'Metavivianite'8.DC.25Fe2+Fe3+2(PO4)2(OH)2 · 6H2O
Mitridatite8.DH.30Ca2Fe3+3(PO4)3O2 · 3H2O
Montebrasite8.BB.05LiAl(PO4)(OH)
Moraesite8.DA.05Be2(PO4)(OH) · 4H2O
Palermoite (TL)8.BH.25(Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
Parascholzite8.CA.45CaZn2(PO4)2 · 2H2O
Paravauxite8.DC.30Fe2+Al2(PO4)2(OH)2 · 8H2O
'Phosphoferrite'8.CC.05(Fe2+,Mn2+)3(PO4)2 · 3H2O
'Phosphophyllite'8.CA.40Zn2Fe(PO4)2 · 4H2O
'Phosphosiderite'8.CD.05FePO4 · 2H2O
'Phosphuranylite'8.EC.10(H3O)3KCa(UO2)7(PO4)4O4 · 8H2O
'Pseudolaueite'8.DC.30Mn2+Fe3+2(PO4)2(OH)2 · 8H2O
'Pseudomalachite'8.BD.05Cu5(PO4)2(OH)4
'Purpurite' ?8.AB.10(Mn3+,Fe3+)PO4
'Pyromorphite'8.BN.05Pb5(PO4)3Cl
'Reddingite'8.CC.05(Mn2+,Fe2+)3(PO4)2 · 3H2O
'Rockbridgeite'8.BC.10Fe2+Fe3+4(PO4)3(OH)5
Roscherite8.DA.10Ca2Mn2+5Be4(PO4)6(OH)4 · 6H2O
Samuelsonite (TL)8.BF.10(Ca,Ba)Ca8Fe2+2Mn2+2Al2(PO4)10(OH)2
Sarcopside8.AB.15(Fe2+,Mn2+,Mg)3(PO4)2
Schoonerite (TL)8.DB.15ZnMn2+Fe2+2Fe3+(PO4)3(OH)2 · 9H2O
Scorzalite8.BB.40Fe2+Al2(PO4)2(OH)2
Sinkankasite8.DB.20Mn2+Al(PO3OH)2(OH) · 6H2O
Souzalite8.DC.45(Mg,Fe2+)3(Al,Fe3+)4(PO4)4(OH)6 · 2H2O
Stewartite8.DC.30Mn2+Fe3+2(PO4)2(OH)2 · 8H2O
Strengite8.CD.10FePO4 · 2H2O
Strunzite8.DC.25Mn2+Fe3+2(PO4)2(OH)2 · 6H2O
Tavorite8.BB.05LiFe3+(PO4)(OH)
Torbernite8.EB.05Cu(UO2)2(PO4)2 · 12H2O
Triphylite8.AB.10LiFe2+PO4
Triploidite8.BB.15(Mn2+,Fe2+)2(PO4)(OH)
Ushkovite8.DC.30MgFe3+2(PO4)2(OH)2 · 8H2O
Vivianite8.CE.40Fe2+3(PO4)2 · 8H2O
Wardite8.DL.10NaAl3(PO4)2(OH)4 · 2H2O
Whiteite-(CaMnMg)8.DH.15{Ca}{Mn2+}{Mg2}{Al2}(PO4)4(OH)2 · 8H2O
Whiteite-(MnFeMg)8.DH.15{(Mn2+,Ca)}{(Fe2+,Mn2+)}{Mg2}{Al2}(PO4)4(OH)2 · 8H2O
Whitlockite (TL)8.AC.45Ca9Mg(PO4)6(HPO4)
Whitmoreite (TL)8.DC.15Fe2+Fe3+2(PO4)2(OH)2 · 4H2O
Wolfeite (TL)8.BB.15(Fe2+,Mn2+)2(PO4)(OH)
Xanthoxenite (TL)8.DH.40Ca4Fe3+2(PO4)4(OH)2 · 3H2O
Zanazziite8.DA.10Ca2Mg5Be4(PO4)6(OH)4 · 6H2O
Group 9 - Silicates
'Albite'9.FA.35Na(AlSi3O8)
var: Cleavelandite9.FA.35Na(AlSi3O8)
var: Oligoclase9.FA.35(Na,Ca)[Al(Si,Al)Si2O8]
'Almandine'9.AD.25Fe2+3Al2(SiO4)3
Bertrandite9.BD.05Be4(Si2O7)(OH)2
Beryl9.CJ.05Be3Al2(Si6O18)
var: Aquamarine9.CJ.05Be3Al2Si6O18
var: Heliodor9.CJ.05Be3Al2(Si6O18)
Elbaite ?9.CK.05Na(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
Hisingerite9.ED.10Fe3+2(Si2O5)(OH)4 · 2H2O
'Microcline'9.FA.30K(AlSi3O8)
Muscovite9.EC.15KAl2(AlSi3O10)(OH)2
var: Illite9.EC.15K0.65Al2.0[Al0.65Si3.35O10](OH)2
var: Sericite9.EC.15KAl2(AlSi3O10)(OH)2
Nontronite9.EC.40Na0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Schorl9.CK.05Na(Fe2+3)Al6(Si6O18)(BO3)3(OH)3(OH)
Sillimanite9.AF.05Al2(SiO4)O
Uranophane9.AK.15Ca(UO2)2(SiO3OH)2 · 5H2O
Uranophane-β9.AK.15Ca(UO2)2(SiO3OH)2 · 5H2O
Zircon9.AD.30Zr(SiO4)
var: Cyrtolite9.AD.30Zr[(SiO4),(OH)4]
Unclassified Minerals, Rocks, etc.
'Albite-Anorthite Series'-
'Alluaudite-Ferroalluaudite Series'-
'Apatite'-
Biotite-
Chlorite Group-
Eleonorite-Fe3+6(PO4)4O(OH)4 · 6H2O
Falsterite (TL)-Ca2MgMn2+2Fe2+2Fe3+2Zn4(PO4)8(OH)4(H2O)14
Feldspar Group-
'var: Perthite'-
Ferrirockbridgeite (TL)-(Fe3+0.670.33)2(Fe3+)3(PO4)3(OH)4(H2O)
Granite-
Gummite-
Hagendorfite-(Na)(Na) (TL)-Fe2+Mn2+(PO4)-(Na)(Na)
Lefontite-Fe2Al2Be(PO4)2(OH)6
Limonite-(Fe,O,OH,H2O)
'Manganese Oxides'-
'var: Manganese Dendrites'-
Natropalermoite (TL)-Na2SrAl4(PO4)4(OH)4
Nizamoffite (TL)-Mn2+Zn2(PO4)2(H2O)4
Pegmatite-
Pegmatitic granite-
'Psilomelane'-
Schist-
Tourmaline-A(D3)G6(T6O18)(BO3)3X3Z
Zinnwaldite-

List of minerals arranged by Dana 8th Edition classification

Group 1 - NATIVE ELEMENTS AND ALLOYS
Semi-metals and non-metals
Bismuth1.3.1.4Bi
Group 2 - SULFIDES
AmBnXp, with (m+n):p = 2:1
Djurleite2.4.7.2Cu31S16
AmBnXp, with (m+n):p = 3:2
Bornite2.5.2.1Cu5FeS4
AmXp, with m:p = 1:1
Covellite2.8.12.1CuS
Galena2.8.1.1PbS
Pyrrhotite2.8.10.1Fe7S8
Realgar2.8.21.1As4S4
Sphalerite2.8.2.1ZnS
AmBnXp, with (m+n):p = 1:1
Chalcopyrite2.9.1.1CuFeS2
AmBnXp, with (m+n):p = 2:3
Bismuthinite2.11.2.3Bi2S3
AmBnXp, with (m+n):p = 1:2
Arsenopyrite2.12.4.1FeAsS
Löllingite2.12.2.9FeAs2
Marcasite2.12.2.1FeS2
Pyrite2.12.1.1FeS2
Group 4 - SIMPLE OXIDES
A2X
Cuprite4.1.1.1Cu2O
Ice4.1.2.1H2O
A2X3
Hematite4.3.1.2Fe2O3
AX2
Anatase4.4.4.1TiO2
Pyrolusite ?4.4.1.4Mn4+O2
Group 5 - OXIDES CONTAINING URANIUM OR THORIUM
AXO2·xH2O
Uraninite5.1.1.1UO2
AXO3·xH2O
Paulscherrerite5.2.2.UO2(OH)2
Schoepite5.2.1.3(UO2)8O2(OH)12 · 12H2O
AX2O7·xH2O
Clarkeite ?5.4.1.1(Na,Ca,Pb)(UO2)O(OH) · 0-1H2O
AX6O19·xH2O
Compreignacite5.7.1.1K2(UO2)6O4(OH)6 · 7H2O
AX7O22·xH2O
Vandendriesscheite5.8.1.1PbU7O22 · 12H2O
Group 6 - HYDROXIDES AND OXIDES CONTAINING HYDROXYL
XO(OH)
Goethite6.1.1.2α-Fe3+O(OH)
Manganite ?6.1.3.1Mn3+O(OH)
Group 7 - MULTIPLE OXIDES
AB2X4
Magnetite7.2.2.3Fe2+Fe3+2O4
(AB)2X3
Birnessite7.5.3.1(Na,Ca)0.5(Mn4+,Mn3+)2O4 · 1.5H2O
AB3X7
Todorokite7.8.1.1(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
AB8X16
Hollandite7.9.1.1Ba(Mn4+6Mn3+2)O16
Group 8 - MULTIPLE OXIDES CONTAINING NIOBIUM,TANTALUM OR TITANIUM
AB2O6
Columbite-(Fe)8.3.2.2Fe2+Nb2O6
Tantalite-(Fe)8.3.2.1Fe2+Ta2O6
Group 14 - ANHYDROUS NORMAL CARBONATES
A(XO3)
Cerussite14.1.3.4PbCO3
Rhodochrosite14.1.1.4MnCO3
Rutherfordine14.1.4.1(UO2)CO3
Siderite14.1.1.3FeCO3
Smithsonite14.1.1.6ZnCO3
Group 16a - ANHYDROUS CARBONATES CONTAINING HYDROXYL OR HALOGEN
Azurite16a.2.1.1Cu3(CO3)2(OH)2
Malachite16a.3.1.1Cu2(CO3)(OH)2
Group 29 - HYDRATED ACID AND NORMAL SULFATES
AXO4·xH2O
Gypsum29.6.3.1CaSO4 · 2H2O
Melanterite29.6.10.1Fe2+(H2O)6SO4 · H2O
Group 38 - ANHYDROUS NORMAL PHOSPHATES, ARSENATES, AND VANADATES
ABXO4
Beryllonite38.1.5.1NaBePO4
Ferrisicklerite38.1.4.1Li1-x(Fe3+xFe2+1-x)PO4
Triphylite38.1.1.1LiFe2+PO4
(AB)5(XO4)3
'Ferrohagendorfite'38.2.3.1NaCaFe2+Fe2+2(PO4)3
Hagendorfite38.2.3.2NaCaMn2+Fe2+2(PO4)3
(AB)3(XO4)2
Graftonite38.3.3.1Fe2+Fe2+2(PO4)2
Sarcopside38.3.1.1(Fe2+,Mn2+,Mg)3(PO4)2
Whitlockite (TL)38.3.4.1Ca9Mg(PO4)6(HPO4)
AXO4
Heterosite38.4.1.1(Fe3+,Mn3+)PO4
Purpurite ?38.4.1.2(Mn3+,Fe3+)PO4
Group 39 - HYDRATED ACID PHOSPHATES,ARSENATES AND VANADATES
A[HXO4]·xH2O
Brushite39.1.1.1Ca(HPO4) · 2H2O
(AB)5[HXO4]2[XO4]2.xH2O
Hureaulite39.2.1.1(Mn,Fe)5(PO4)2(HPO4)2 · 4H2O
Group 40 - HYDRATED NORMAL PHOSPHATES,ARSENATES AND VANADATES
AB2(XO4)2·xH2O
Anapaite40.2.1.1Ca2Fe2+(PO4)2 · 4H2O
Autunite40.2a.1.1Ca(UO2)2(PO4)2 · 11H2O
Collinsite40.2.2.3Ca2Mg(PO4)2 · 2H2O
Fairfieldite40.2.2.1Ca2Mn2+(PO4)2 · 2H2O
Messelite40.2.2.2Ca2Fe2+(PO4)2 · 2H2O
Meta-autunite40.2a.1.2Ca(UO2)2(PO4)2 · 6-8H2O
Metatorbernite40.2a.13.2Cu(UO2)2(PO4)2 · 8H2O
Parascholzite40.2.5.1CaZn2(PO4)2 · 2H2O
Phosphophyllite40.2.7.1Zn2Fe(PO4)2 · 4H2O
Torbernite40.2a.13.1Cu(UO2)2(PO4)2 · 12H2O
A3(XO4)2·xH2O
Hopeite40.3.4.1Zn3(PO4)2 · 4H2O
Kryzhanovskite40.3.2.2(Fe3+,Mn2+)3(PO4)2(OH,H2O)3
Landesite40.3.2.4Mn2+3-xFe3+x(PO4)2(OH)x · (3-x)H2O
Ludlamite40.3.5.1Fe2+3(PO4)2 · 4H2O
Metaswitzerite ?40.3.5.2Mn2+3(PO4)2 · 4H2O
Phosphoferrite40.3.2.1(Fe2+,Mn2+)3(PO4)2 · 3H2O
Reddingite40.3.2.3(Mn2+,Fe2+)3(PO4)2 · 3H2O
Vivianite40.3.6.1Fe2+3(PO4)2 · 8H2O
(AB)5(XO4)2·xH2O
Phosphosiderite40.4.3.2FePO4 · 2H2O
Strengite40.4.1.2FePO4 · 2H2O
Metavivianite40.11.9.4Fe2+Fe3+2(PO4)2(OH)2 · 6H2O
Group 41 - ANHYDROUS PHOSPHATES, ETC.CONTAINING HYDROXYL OR HALOGEN
(AB)5(XO4)2Zq
Pseudomalachite41.4.3.1Cu5(PO4)2(OH)4
(AB)2(XO4)Zq
Amblygonite ?41.5.8.1LiAl(PO4)F
Brazilianite41.5.7.1NaAl3(PO4)2(OH)4
Florencite-(Ce)41.5.10.2CeAl3(PO4)2(OH)6
Hydroxylherderite41.5.4.2CaBe(PO4)(OH,F)
Montebrasite41.5.8.2LiAl(PO4)(OH)
Tavorite41.5.9.1LiFe3+(PO4)(OH)
A2(XO4)Zq
Augelite41.6.8.1Al2(PO4)(OH)3
Triploidite41.6.3.2(Mn2+,Fe2+)2(PO4)(OH)
Wolfeite (TL)41.6.3.1(Fe2+,Mn2+)2(PO4)(OH)
(AB)7(XO4)4Zq
Arrojadite-(KFe)41.7.2.1{KNa}{Fe2+⃞}{Ca}{Na2⃞}{Fe2+13}{Al}(PO4)11(HPO4)(OH)2
Dickinsonite-(KMnNa) ?41.7.2.2{KNa}{Mn2+⃞}{Ca}{Na3}{Mn2+13}{Al}(PO4)12(OH)2
Palermoite (TL)41.7.1.1(Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
A5(XO4)3Zq
Chlorapatite41.8.1.2Ca5(PO4)3Cl
Fluorapatite41.8.1.1Ca5(PO4)3F
var: Carbonate-rich Fluorapatite41.8.1.4Ca5(PO4,CO3)3(F,O)
Hydroxylapatite41.8.1.3Ca5(PO4)3(OH)
Pyromorphite41.8.4.1Pb5(PO4)3Cl
(AB)5(XO4)3Zq
Bjarebyite (TL)41.9.1.3(Ba,Sr)(Mn2+,Fe2+,Mg)2Al2(PO4)3(OH)3
Frondelite ?41.9.2.2Mn2+Fe3+4(PO4)3(OH)5
Kulanite41.9.1.1Ba(Fe2+,Mn2+,Mg)2(Al,Fe3+)2(PO4)3(OH)3
Rockbridgeite41.9.2.1Fe2+Fe3+4(PO4)3(OH)5
(AB)3(XO4)2Zq
Barbosalite41.10.1.4Fe2+Fe3+2(PO4)2(OH)2
Goedkenite (TL)41.10.4.1Sr2Al(PO4)2(OH)
Lazulite41.10.1.1MgAl2(PO4)2(OH)2
Samuelsonite (TL)41.10.8.1(Ca,Ba)Ca8Fe2+2Mn2+2Al2(PO4)10(OH)2
Scorzalite41.10.1.2Fe2+Al2(PO4)2(OH)2
Group 42 - HYDRATED PHOSPHATES, ETC.CONTAINING HYDROXYL OR HALOGEN
(AB)5(XO4)2Zq·xH2O
Phosphuranylite42.4.8.1(H3O)3KCa(UO2)7(PO4)4O4 · 8H2O
A2(XO4)Zq·xH2O
Moraesite42.6.1.1Be2(PO4)(OH) · 4H2O
(AB)2(XO4)Zq·xH2O
Childrenite42.7.1.1Fe2+Al(PO4)(OH)2 · H2O
Crandallite42.7.3.1CaAl3(PO4)(PO3OH)(OH)6
Eosphorite42.7.1.2Mn2+Al(PO4)(OH)2 · H2O
Ernstite ?42.7.1.3(Mn2+,Fe3+)Al(PO4)(OH,O)2 · H2O
Foggite (TL)42.7.2.1CaAl(PO4)(OH)2 · H2O
Goyazite42.7.3.3SrAl3(PO4)(PO3OH)(OH)6
Roscherite42.7.7.1Ca2Mn2+5Be4(PO4)6(OH)4 · 6H2O
Sinkankasite42.7.1.4Mn2+Al(PO3OH)2(OH) · 6H2O
Wardite42.7.8.2NaAl3(PO4)2(OH)4 · 2H2O
Zanazziite42.7.7.3Ca2Mg5Be4(PO4)6(OH)4 · 6H2O
(AB)5(XO4)3Zq·xH2O
Mitridatite42.8.4.1Ca2Fe3+3(PO4)3O2 · 3H2O
Schoonerite (TL)42.8.3.1ZnMn2+Fe2+2Fe3+(PO4)3(OH)2 · 9H2O
(AB)7(XO4)4Zq·xH2O
Dufrénite42.9.1.2Ca0.5Fe2+Fe3+5(PO4)4(OH)6 · 2H2O
Gormanite42.9.2.2(Fe2+,Mg)3(Al,Fe3+)4(PO4)4(OH)6 · 2H2O
Souzalite42.9.2.1(Mg,Fe2+)3(Al,Fe3+)4(PO4)4(OH)6 · 2H2O
(AB)3(XO4)2Zq·xH2O
Beraunite42.11.16.1Fe2+Fe3+5(PO4)4(OH)5 · 6H2O
Bermanite42.11.17.1Mn2+Mn3+2(PO4)2(OH)2 · 4H2O
Ferrostrunzite42.11.9.2Fe2+Fe3+2(PO4)2(OH)2 · 6H2O
Gatumbaite ?42.11.12.1CaAl2(PO4)2(OH)2 · H2O
Gordonite42.11.14.4MgAl2(PO4)2(OH)2 · 8H2O
Jahnsite-(CaMnFe)42.11.2.2{Ca}{Mn2+}{Fe2+2}{Fe3+2}(PO4)4(OH)2 · 8H2O
Jahnsite-(CaMnMn)42.11.2.3{Ca}{Mn2+}{Mn2+2}{Fe3+2}(PO4)4(OH)2 · 8H2O
Keckite42.11.4.1CaMn2+(Fe3+Mn2+)Fe3+2(PO4)4(OH)3 · 7H2O
Laueite42.11.10.1Mn2+Fe3+2(PO4)2(OH)2 · 8H2O
Leucophosphite42.11.6.1KFe3+2(PO4)2(OH) · 2H2O
Paravauxite42.11.14.2Fe2+Al2(PO4)2(OH)2 · 8H2O
Pseudolaueite42.11.10.3Mn2+Fe3+2(PO4)2(OH)2 · 8H2O
Stewartite42.11.10.2Mn2+Fe3+2(PO4)2(OH)2 · 8H2O
Strunzite42.11.9.1Mn2+Fe3+2(PO4)2(OH)2 · 6H2O
Ushkovite42.11.10.4MgFe3+2(PO4)2(OH)2 · 8H2O
Whiteite-(CaMnMg)42.11.3.3{Ca}{Mn2+}{Mg2}{Al2}(PO4)4(OH)2 · 8H2O
Whiteite-(MnFeMg)42.11.3.2{(Mn2+,Ca)}{(Fe2+,Mn2+)}{Mg2}{Al2}(PO4)4(OH)2 · 8H2O
Whitmoreite (TL)42.11.20.1Fe2+Fe3+2(PO4)2(OH)2 · 4H2O
Xanthoxenite (TL)42.11.15.1Ca4Fe3+2(PO4)4(OH)2 · 3H2O
Miscellaneous
Cacoxenite42.13.5.1Fe3+24AlO6(PO4)17(OH)12 · 75H2O
Group 43 - COMPOUND PHOSPHATES, ETC.
Anhydrous Compound Phosphates, etc·, Containing Hydroxyl or Halogen
Hinsdalite43.4.1.5PbAl3(PO4)(SO4)(OH)6
Hydrated Compound Phosphates, etc·, Containing Hydroxyl or Halogen
Diadochite43.5.2.1Fe3+2(PO4)(SO4)(OH) · 5H2O
Group 51 - NESOSILICATES Insular SiO4 Groups Only
Insular SiO4 Groups Only with cations in [6] and >[6] coordination
Almandine51.4.3a.2Fe2+3Al2(SiO4)3
Insular SiO4 Groups Only with cations in >[6] coordination
Zircon51.5.2.1Zr(SiO4)
Group 52 - NESOSILICATES Insular SiO4 Groups and O,OH,F,H2O
Insular SiO4 Groups and O, OH, F, and H2O with cations in [4] and >[4] coordination
Sillimanite52.2.2a.1Al2(SiO4)O
Group 53 - NESOSILICATES Insular SiO4 Groups and Other Anions or Complex Cations
Insular SiO4 Groups and Other Anions of Complex Cations with (UO2)
Uranophane53.3.1.2Ca(UO2)2(SiO3OH)2 · 5H2O
Uranophane-β53.3.1.9Ca(UO2)2(SiO3OH)2 · 5H2O
Group 56 - SOROSILICATES Si2O7 Groups, With Additional O, OH, F and H2O
Si2O7 Groups and O, OH, F, and H2O with cations in [4] coordination
Bertrandite56.1.1.1Be4(Si2O7)(OH)2
Group 61 - CYCLOSILICATES Six-Membered Rings
Six-Membered Rings with [Si6O18] rings; possible (OH) and Al substitution
Beryl61.1.1.1Be3Al2(Si6O18)
Six-Membered Rings with borate groups
Elbaite ?61.3.1.8Na(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
Schorl61.3.1.10Na(Fe2+3)Al6(Si6O18)(BO3)3(OH)3(OH)
Group 71 - PHYLLOSILICATES Sheets of Six-Membered Rings
Sheets of 6-membered rings with 1:1 layers
Hisingerite71.1.5.2Fe3+2(Si2O5)(OH)4 · 2H2O
Sheets of 6-membered rings with 2:1 layers
Muscovite71.2.2a.1KAl2(AlSi3O10)(OH)2
var: Illite71.2.2d.2K0.65Al2.0[Al0.65Si3.35O10](OH)2
Sheets of 6-membered rings with 2:1 clays
Nontronite71.3.1a.3Na0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Group 75 - TECTOSILICATES Si Tetrahedral Frameworks
Si Tetrahedral Frameworks - SiO2 with [4] coordinated Si
Quartz75.1.3.1SiO2
Si Tetrahedral Frameworks - SiO2 with H2O and organics
Opal75.2.1.1SiO2 · nH2O
Group 76 - TECTOSILICATES Al-Si Framework
Al-Si Framework with Al-Si frameworks
Albite76.1.3.1Na(AlSi3O8)
Microcline76.1.1.5K(AlSi3O8)
Unclassified Minerals, Rocks, etc.
Albite
var: Cleavelandite
-Na(AlSi3O8)
var: Oligoclase-(Na,Ca)[Al(Si,Al)Si2O8]
'Albite-Anorthite Series'-
'Alluaudite-Ferroalluaudite Series'-
'Apatite'-
Beryl
var: Aquamarine
-Be3Al2Si6O18
var: Heliodor-Be3Al2(Si6O18)
'Biotite'-
'Chlorite Group'-
Cuprite
var: Chalcotrichite
-Cu2O
Eleonorite-Fe3+6(PO4)4O(OH)4 · 6H2O
Falsterite (TL)-Ca2MgMn2+2Fe2+2Fe3+2Zn4(PO4)8(OH)4(H2O)14
'Feldspar Group'-
'var: Perthite'-
Ferrirockbridgeite (TL)-(Fe3+0.670.33)2(Fe3+)3(PO4)3(OH)4(H2O)
'Granite'-
Greifensteinite-Ca2Fe2+5Be4(PO4)6(OH)4 · 6H2O
'Gummite'-
'Hagendorfite-(Na)(Na)' (FRL)-Fe2+Mn2+(PO4)-(Na)(Na)
Hydroxylapatite
var: Carbonate-rich Hydroxylapatite
-Ca5(PO4,CO3)3(OH,O)
Lefontite-Fe2Al2Be(PO4)2(OH)6
'Limonite'-(Fe,O,OH,H2O)
'Manganese Oxides'-
'var: Manganese Dendrites'-
Muscovite
var: Sericite
-KAl2(AlSi3O10)(OH)2
Natropalermoite (TL)-Na2SrAl4(PO4)4(OH)4
Nizamoffite (TL)-Mn2+Zn2(PO4)2(H2O)4
Opal
var: Opal-AN
-SiO2 · nH2O
'Pegmatite'-
'Pegmatitic granite'-
'Psilomelane'-
Quartz
var: Blue Quartz
-SiO2
var: Citrine-SiO2
var: Milky Quartz-SiO2
var: Rock Crystal-SiO2
var: Rose Quartz-SiO2
var: Sceptre Quartz-SiO2
var: Smoky Quartz-SiO2
'Schist'-
'Tourmaline'-A(D3)G6(T6O18)(BO3)3X3Z
'Zinnwaldite'-
Zircon
var: Cyrtolite
-Zr[(SiO4),(OH)4]

List of minerals for each chemical element

HHydrogen
H AnapaiteCa2Fe2+(PO4)2 · 4H2O
H Arrojadite-(KFe){KNa}{Fe2+⃞}{Ca}{Na2⃞}{Fe132+}{Al}(PO4)11(HPO4)(OH)2
H AugeliteAl2(PO4)(OH)3
H AutuniteCa(UO2)2(PO4)2 · 11H2O
H AzuriteCu3(CO3)2(OH)2
H BarbosaliteFe2+Fe23+(PO4)2(OH)2
H BerauniteFe2+Fe53+(PO4)4(OH)5 · 6H2O
H BermaniteMn2+Mn23+(PO4)2(OH)2 · 4H2O
H BertranditeBe4(Si2O7)(OH)2
H Birnessite(Na,Ca)0.5(Mn4+,Mn3+)2O4 · 1.5H2O
H Bjarebyite(Ba,Sr)(Mn2+,Fe2+,Mg)2Al2(PO4)3(OH)3
H BrazilianiteNaAl3(PO4)2(OH)4
H BrushiteCa(HPO4) · 2H2O
H CacoxeniteFe243+AlO6(PO4)17(OH)12 · 75H2O
H Hydroxylapatite (var: Carbonate-rich Hydroxylapatite)Ca5(PO4,CO3)3(OH,O)
H ChildreniteFe2+Al(PO4)(OH)2 · H2O
H Clarkeite(Na,Ca,Pb)(UO2)O(OH) · 0-1H2O
H CollinsiteCa2Mg(PO4)2 · 2H2O
H CompreignaciteK2(UO2)6O4(OH)6 · 7H2O
H CrandalliteCaAl3(PO4)(PO3OH)(OH)6
H Zircon (var: Cyrtolite)Zr[(SiO4),(OH)4]
H DiadochiteFe23+(PO4)(SO4)(OH) · 5H2O
H Dickinsonite-(KMnNa){KNa}{Mn2+⃞}{Ca}{Na3}{Mn132+}{Al}(PO4)12(OH)2
H DufréniteCa0.5Fe2+Fe53+(PO4)4(OH)6 · 2H2O
H ElbaiteNa(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
H EleonoriteFe63+(PO4)4O(OH)4 · 6H2O
H EosphoriteMn2+Al(PO4)(OH)2 · H2O
H Ernstite(Mn2+,Fe3+)Al(PO4)(OH,O)2 · H2O
H FairfielditeCa2Mn2+(PO4)2 · 2H2O
H FalsteriteCa2MgMn22+Fe22+Fe23+Zn4(PO4)8(OH)4(H2O)14
H Ferrirockbridgeite(Fe3+0.670.33)2(Fe3+)3(PO4)3(OH)4(H2O)
H FerrostrunziteFe2+Fe23+(PO4)2(OH)2 · 6H2O
H Florencite-(Ce)CeAl3(PO4)2(OH)6
H FoggiteCaAl(PO4)(OH)2 · H2O
H FrondeliteMn2+Fe43+(PO4)3(OH)5
H GatumbaiteCaAl2(PO4)2(OH)2 · H2O
H GoedkeniteSr2Al(PO4)2(OH)
H Goethiteα-Fe3+O(OH)
H GordoniteMgAl2(PO4)2(OH)2 · 8H2O
H Gormanite(Fe2+,Mg)3(Al,Fe3+)4(PO4)4(OH)6 · 2H2O
H GoyaziteSrAl3(PO4)(PO3OH)(OH)6
H GreifensteiniteCa2Fe52+Be4(PO4)6(OH)4 · 6H2O
H GypsumCaSO4 · 2H2O
H HinsdalitePbAl3(PO4)(SO4)(OH)6
H HisingeriteFe23+(Si2O5)(OH)4 · 2H2O
H HopeiteZn3(PO4)2 · 4H2O
H Hureaulite(Mn,Fe)5(PO4)2(HPO4)2 · 4H2O
H HydroxylapatiteCa5(PO4)3(OH)
H HydroxylherderiteCaBe(PO4)(OH,F)
H IceH2O
H Muscovite (var: Illite)K0.65Al2.0[Al0.65Si3.35O10](OH)2
H Jahnsite-(CaMnFe){Ca}{Mn2+}{Fe22+}{Fe23+}(PO4)4(OH)2 · 8H2O
H Jahnsite-(CaMnMn){Ca}{Mn2+}{Mn22+}{Fe23+}(PO4)4(OH)2 · 8H2O
H KeckiteCaMn2+(Fe3+Mn2+)Fe23+(PO4)4(OH)3 · 7H2O
H Kryzhanovskite(Fe3+,Mn2+)3(PO4)2(OH,H2O)3
H KulaniteBa(Fe2+,Mn2+,Mg)2(Al,Fe3+)2(PO4)3(OH)3
H LandesiteMn2+3-xFex3+(PO4)2(OH)x · (3-x)H2O
H LaueiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
H LazuliteMgAl2(PO4)2(OH)2
H LefontiteFe2Al2Be(PO4)2(OH)6
H LeucophosphiteKFe23+(PO4)2(OH) · 2H2O
H Limonite(Fe,O,OH,H2O)
H LudlamiteFe32+(PO4)2 · 4H2O
H MalachiteCu2(CO3)(OH)2
H ManganiteMn3+O(OH)
H MelanteriteFe2+(H2O)6SO4 · H2O
H MesseliteCa2Fe2+(PO4)2 · 2H2O
H Meta-autuniteCa(UO2)2(PO4)2 · 6-8H2O
H MetaswitzeriteMn32+(PO4)2 · 4H2O
H MetatorberniteCu(UO2)2(PO4)2 · 8H2O
H MetavivianiteFe2+Fe23+(PO4)2(OH)2 · 6H2O
H MitridatiteCa2Fe33+(PO4)3O2 · 3H2O
H MontebrasiteLiAl(PO4)(OH)
H MoraesiteBe2(PO4)(OH) · 4H2O
H MuscoviteKAl2(AlSi3O10)(OH)2
H NatropalermoiteNa2SrAl4(PO4)4(OH)4
H NizamoffiteMn2+Zn2(PO4)2(H2O)4
H NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
H OpalSiO2 · nH2O
H Opal (var: Opal-AN)SiO2 · nH2O
H Palermoite(Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
H ParascholziteCaZn2(PO4)2 · 2H2O
H ParavauxiteFe2+Al2(PO4)2(OH)2 · 8H2O
H PaulscherreriteUO2(OH)2
H Phosphoferrite(Fe2+,Mn2+)3(PO4)2 · 3H2O
H PhosphophylliteZn2Fe(PO4)2 · 4H2O
H PhosphosideriteFePO4 · 2H2O
H Phosphuranylite(H3O)3KCa(UO2)7(PO4)4O4 · 8H2O
H PseudolaueiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
H PseudomalachiteCu5(PO4)2(OH)4
H Reddingite(Mn2+,Fe2+)3(PO4)2 · 3H2O
H RockbridgeiteFe2+Fe43+(PO4)3(OH)5
H RoscheriteCa2Mn52+Be4(PO4)6(OH)4 · 6H2O
H Samuelsonite(Ca,Ba)Ca8Fe22+Mn22+Al2(PO4)10(OH)2
H Schoepite(UO2)8O2(OH)12 · 12H2O
H SchooneriteZnMn2+Fe22+Fe3+(PO4)3(OH)2 · 9H2O
H SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
H ScorzaliteFe2+Al2(PO4)2(OH)2
H Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
H SinkankasiteMn2+Al(PO3OH)2(OH) · 6H2O
H Souzalite(Mg,Fe2+)3(Al,Fe3+)4(PO4)4(OH)6 · 2H2O
H StewartiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
H StrengiteFePO4 · 2H2O
H StrunziteMn2+Fe23+(PO4)2(OH)2 · 6H2O
H TavoriteLiFe3+(PO4)(OH)
H Todorokite(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
H TorberniteCu(UO2)2(PO4)2 · 12H2O
H Triploidite(Mn2+,Fe2+)2(PO4)(OH)
H UranophaneCa(UO2)2(SiO3OH)2 · 5H2O
H Uranophane-βCa(UO2)2(SiO3OH)2 · 5H2O
H UshkoviteMgFe23+(PO4)2(OH)2 · 8H2O
H VandendriesscheitePbU7O22 · 12H2O
H VivianiteFe32+(PO4)2 · 8H2O
H WarditeNaAl3(PO4)2(OH)4 · 2H2O
H Whiteite-(CaMnMg){Ca}{Mn2+}{Mg2}{Al2}(PO4)4(OH)2 · 8H2O
H Whiteite-(MnFeMg){(Mn2+,Ca)}{(Fe2+,Mn2+)}{Mg2}{Al2}(PO4)4(OH)2 · 8H2O
H WhitlockiteCa9Mg(PO4)6(HPO4)
H WhitmoreiteFe2+Fe23+(PO4)2(OH)2 · 4H2O
H Wolfeite(Fe2+,Mn2+)2(PO4)(OH)
H XanthoxeniteCa4Fe23+(PO4)4(OH)2 · 3H2O
H ZanazziiteCa2Mg5Be4(PO4)6(OH)4 · 6H2O
LiLithium
Li AmblygoniteLiAl(PO4)F
Li ElbaiteNa(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
Li FerrisickleriteLi1-x(Fex3+Fe2+1-x)PO4
Li MontebrasiteLiAl(PO4)(OH)
Li Palermoite(Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
Li TavoriteLiFe3+(PO4)(OH)
Li TriphyliteLiFe2+PO4
BeBeryllium
Be Beryl (var: Aquamarine)Be3Al2Si6O18
Be BertranditeBe4(Si2O7)(OH)2
Be BerylBe3Al2(Si6O18)
Be BerylloniteNaBePO4
Be GreifensteiniteCa2Fe52+Be4(PO4)6(OH)4 · 6H2O
Be Beryl (var: Heliodor)Be3Al2(Si6O18)
Be HydroxylherderiteCaBe(PO4)(OH,F)
Be LefontiteFe2Al2Be(PO4)2(OH)6
Be MoraesiteBe2(PO4)(OH) · 4H2O
Be RoscheriteCa2Mn52+Be4(PO4)6(OH)4 · 6H2O
Be ZanazziiteCa2Mg5Be4(PO4)6(OH)4 · 6H2O
BBoron
B ElbaiteNa(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
B SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
B TourmalineA(D3)G6(T6O18)(BO3)3X3Z
CCarbon
C AzuriteCu3(CO3)2(OH)2
C Fluorapatite (var: Carbonate-rich Fluorapatite)Ca5(PO4,CO3)3(F,O)
C Hydroxylapatite (var: Carbonate-rich Hydroxylapatite)Ca5(PO4,CO3)3(OH,O)
C CerussitePbCO3
C MalachiteCu2(CO3)(OH)2
C RhodochrositeMnCO3
C Rutherfordine(UO2)CO3
C SideriteFeCO3
C SmithsoniteZnCO3
OOxygen
O AlbiteNa(AlSi3O8)
O AlmandineFe32+Al2(SiO4)3
O AmblygoniteLiAl(PO4)F
O AnapaiteCa2Fe2+(PO4)2 · 4H2O
O AnataseTiO2
O Beryl (var: Aquamarine)Be3Al2Si6O18
O Arrojadite-(KFe){KNa}{Fe2+⃞}{Ca}{Na2⃞}{Fe132+}{Al}(PO4)11(HPO4)(OH)2
O AugeliteAl2(PO4)(OH)3
O AutuniteCa(UO2)2(PO4)2 · 11H2O
O AzuriteCu3(CO3)2(OH)2
O BarbosaliteFe2+Fe23+(PO4)2(OH)2
O BerauniteFe2+Fe53+(PO4)4(OH)5 · 6H2O
O BermaniteMn2+Mn23+(PO4)2(OH)2 · 4H2O
O BertranditeBe4(Si2O7)(OH)2
O BerylBe3Al2(Si6O18)
O BerylloniteNaBePO4
O Birnessite(Na,Ca)0.5(Mn4+,Mn3+)2O4 · 1.5H2O
O Bjarebyite(Ba,Sr)(Mn2+,Fe2+,Mg)2Al2(PO4)3(OH)3
O Quartz (var: Blue Quartz)SiO2
O BrazilianiteNaAl3(PO4)2(OH)4
O BrushiteCa(HPO4) · 2H2O
O CacoxeniteFe243+AlO6(PO4)17(OH)12 · 75H2O
O Fluorapatite (var: Carbonate-rich Fluorapatite)Ca5(PO4,CO3)3(F,O)
O Hydroxylapatite (var: Carbonate-rich Hydroxylapatite)Ca5(PO4,CO3)3(OH,O)
O CerussitePbCO3
O Cuprite (var: Chalcotrichite)Cu2O
O ChildreniteFe2+Al(PO4)(OH)2 · H2O
O ChlorapatiteCa5(PO4)3Cl
O Quartz (var: Citrine)SiO2
O Clarkeite(Na,Ca,Pb)(UO2)O(OH) · 0-1H2O
O Albite (var: Cleavelandite)Na(AlSi3O8)
O CollinsiteCa2Mg(PO4)2 · 2H2O
O Columbite-(Fe)Fe2+Nb2O6
O CompreignaciteK2(UO2)6O4(OH)6 · 7H2O
O CrandalliteCaAl3(PO4)(PO3OH)(OH)6
O CupriteCu2O
O Zircon (var: Cyrtolite)Zr[(SiO4),(OH)4]
O DiadochiteFe23+(PO4)(SO4)(OH) · 5H2O
O Dickinsonite-(KMnNa){KNa}{Mn2+⃞}{Ca}{Na3}{Mn132+}{Al}(PO4)12(OH)2
O DufréniteCa0.5Fe2+Fe53+(PO4)4(OH)6 · 2H2O
O ElbaiteNa(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
O EleonoriteFe63+(PO4)4O(OH)4 · 6H2O
O EosphoriteMn2+Al(PO4)(OH)2 · H2O
O Ernstite(Mn2+,Fe3+)Al(PO4)(OH,O)2 · H2O
O FairfielditeCa2Mn2+(PO4)2 · 2H2O
O FalsteriteCa2MgMn22+Fe22+Fe23+Zn4(PO4)8(OH)4(H2O)14
O Ferrirockbridgeite(Fe3+0.670.33)2(Fe3+)3(PO4)3(OH)4(H2O)
O FerrisickleriteLi1-x(Fex3+Fe2+1-x)PO4
O FerrohagendorfiteNaCaFe2+Fe22+(PO4)3
O FerrostrunziteFe2+Fe23+(PO4)2(OH)2 · 6H2O
O Florencite-(Ce)CeAl3(PO4)2(OH)6
O FluorapatiteCa5(PO4)3F
O FoggiteCaAl(PO4)(OH)2 · H2O
O FrondeliteMn2+Fe43+(PO4)3(OH)5
O GatumbaiteCaAl2(PO4)2(OH)2 · H2O
O GoedkeniteSr2Al(PO4)2(OH)
O Goethiteα-Fe3+O(OH)
O GordoniteMgAl2(PO4)2(OH)2 · 8H2O
O Gormanite(Fe2+,Mg)3(Al,Fe3+)4(PO4)4(OH)6 · 2H2O
O GoyaziteSrAl3(PO4)(PO3OH)(OH)6
O GraftoniteFe2+Fe22+(PO4)2
O GreifensteiniteCa2Fe52+Be4(PO4)6(OH)4 · 6H2O
O GypsumCaSO4 · 2H2O
O HagendorfiteNaCaMn2+Fe22+(PO4)3
O Hagendorfite-(Na)(Na)Fe2+Mn2+(PO4)-(Na)(Na)
O Beryl (var: Heliodor)Be3Al2(Si6O18)
O HematiteFe2O3
O Heterosite(Fe3+,Mn3+)PO4
O HinsdalitePbAl3(PO4)(SO4)(OH)6
O HisingeriteFe23+(Si2O5)(OH)4 · 2H2O
O HollanditeBa(Mn64+Mn23+)O16
O HopeiteZn3(PO4)2 · 4H2O
O Hureaulite(Mn,Fe)5(PO4)2(HPO4)2 · 4H2O
O HydroxylapatiteCa5(PO4)3(OH)
O HydroxylherderiteCaBe(PO4)(OH,F)
O IceH2O
O Muscovite (var: Illite)K0.65Al2.0[Al0.65Si3.35O10](OH)2
O Jahnsite-(CaMnFe){Ca}{Mn2+}{Fe22+}{Fe23+}(PO4)4(OH)2 · 8H2O
O Jahnsite-(CaMnMn){Ca}{Mn2+}{Mn22+}{Fe23+}(PO4)4(OH)2 · 8H2O
O KeckiteCaMn2+(Fe3+Mn2+)Fe23+(PO4)4(OH)3 · 7H2O
O Kryzhanovskite(Fe3+,Mn2+)3(PO4)2(OH,H2O)3
O KulaniteBa(Fe2+,Mn2+,Mg)2(Al,Fe3+)2(PO4)3(OH)3
O LandesiteMn2+3-xFex3+(PO4)2(OH)x · (3-x)H2O
O LaueiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
O LazuliteMgAl2(PO4)2(OH)2
O LefontiteFe2Al2Be(PO4)2(OH)6
O LeucophosphiteKFe23+(PO4)2(OH) · 2H2O
O Limonite(Fe,O,OH,H2O)
O LudlamiteFe32+(PO4)2 · 4H2O
O MagnetiteFe2+Fe23+O4
O MalachiteCu2(CO3)(OH)2
O ManganiteMn3+O(OH)
O MelanteriteFe2+(H2O)6SO4 · H2O
O MesseliteCa2Fe2+(PO4)2 · 2H2O
O Meta-autuniteCa(UO2)2(PO4)2 · 6-8H2O
O MetaswitzeriteMn32+(PO4)2 · 4H2O
O MetatorberniteCu(UO2)2(PO4)2 · 8H2O
O MetavivianiteFe2+Fe23+(PO4)2(OH)2 · 6H2O
O MicroclineK(AlSi3O8)
O Quartz (var: Milky Quartz)SiO2
O MitridatiteCa2Fe33+(PO4)3O2 · 3H2O
O MontebrasiteLiAl(PO4)(OH)
O MoraesiteBe2(PO4)(OH) · 4H2O
O MuscoviteKAl2(AlSi3O10)(OH)2
O NatropalermoiteNa2SrAl4(PO4)4(OH)4
O NizamoffiteMn2+Zn2(PO4)2(H2O)4
O NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
O Albite (var: Oligoclase)(Na,Ca)[Al(Si,Al)Si2O8]
O OpalSiO2 · nH2O
O Opal (var: Opal-AN)SiO2 · nH2O
O Palermoite(Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
O ParascholziteCaZn2(PO4)2 · 2H2O
O ParavauxiteFe2+Al2(PO4)2(OH)2 · 8H2O
O PaulscherreriteUO2(OH)2
O Phosphoferrite(Fe2+,Mn2+)3(PO4)2 · 3H2O
O PhosphophylliteZn2Fe(PO4)2 · 4H2O
O PhosphosideriteFePO4 · 2H2O
O Phosphuranylite(H3O)3KCa(UO2)7(PO4)4O4 · 8H2O
O PseudolaueiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
O PseudomalachiteCu5(PO4)2(OH)4
O Purpurite(Mn3+,Fe3+)PO4
O PyrolusiteMn4+O2
O PyromorphitePb5(PO4)3Cl
O QuartzSiO2
O Reddingite(Mn2+,Fe2+)3(PO4)2 · 3H2O
O RhodochrositeMnCO3
O RockbridgeiteFe2+Fe43+(PO4)3(OH)5
O Quartz (var: Rock Crystal)SiO2
O RoscheriteCa2Mn52+Be4(PO4)6(OH)4 · 6H2O
O Quartz (var: Rose Quartz)SiO2
O Rutherfordine(UO2)CO3
O Samuelsonite(Ca,Ba)Ca8Fe22+Mn22+Al2(PO4)10(OH)2
O Sarcopside(Fe2+,Mn2+,Mg)3(PO4)2
O Quartz (var: Sceptre Quartz)SiO2
O Schoepite(UO2)8O2(OH)12 · 12H2O
O SchooneriteZnMn2+Fe22+Fe3+(PO4)3(OH)2 · 9H2O
O SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
O ScorzaliteFe2+Al2(PO4)2(OH)2
O Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
O SideriteFeCO3
O SillimaniteAl2(SiO4)O
O SinkankasiteMn2+Al(PO3OH)2(OH) · 6H2O
O SmithsoniteZnCO3
O Quartz (var: Smoky Quartz)SiO2
O Souzalite(Mg,Fe2+)3(Al,Fe3+)4(PO4)4(OH)6 · 2H2O
O StewartiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
O StrengiteFePO4 · 2H2O
O StrunziteMn2+Fe23+(PO4)2(OH)2 · 6H2O
O Tantalite-(Fe)Fe2+Ta2O6
O TavoriteLiFe3+(PO4)(OH)
O Todorokite(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
O TorberniteCu(UO2)2(PO4)2 · 12H2O
O TourmalineA(D3)G6(T6O18)(BO3)3X3Z
O TriphyliteLiFe2+PO4
O Triploidite(Mn2+,Fe2+)2(PO4)(OH)
O UraniniteUO2
O UranophaneCa(UO2)2(SiO3OH)2 · 5H2O
O Uranophane-βCa(UO2)2(SiO3OH)2 · 5H2O
O UshkoviteMgFe23+(PO4)2(OH)2 · 8H2O
O VandendriesscheitePbU7O22 · 12H2O
O VivianiteFe32+(PO4)2 · 8H2O
O WarditeNaAl3(PO4)2(OH)4 · 2H2O
O Whiteite-(CaMnMg){Ca}{Mn2+}{Mg2}{Al2}(PO4)4(OH)2 · 8H2O
O Whiteite-(MnFeMg){(Mn2+,Ca)}{(Fe2+,Mn2+)}{Mg2}{Al2}(PO4)4(OH)2 · 8H2O
O WhitlockiteCa9Mg(PO4)6(HPO4)
O WhitmoreiteFe2+Fe23+(PO4)2(OH)2 · 4H2O
O Wolfeite(Fe2+,Mn2+)2(PO4)(OH)
O XanthoxeniteCa4Fe23+(PO4)4(OH)2 · 3H2O
O ZanazziiteCa2Mg5Be4(PO4)6(OH)4 · 6H2O
O ZirconZr(SiO4)
FFluorine
F AmblygoniteLiAl(PO4)F
F Fluorapatite (var: Carbonate-rich Fluorapatite)Ca5(PO4,CO3)3(F,O)
F FluorapatiteCa5(PO4)3F
NaSodium
Na AlbiteNa(AlSi3O8)
Na Arrojadite-(KFe){KNa}{Fe2+⃞}{Ca}{Na2⃞}{Fe132+}{Al}(PO4)11(HPO4)(OH)2
Na BerylloniteNaBePO4
Na Birnessite(Na,Ca)0.5(Mn4+,Mn3+)2O4 · 1.5H2O
Na BrazilianiteNaAl3(PO4)2(OH)4
Na Clarkeite(Na,Ca,Pb)(UO2)O(OH) · 0-1H2O
Na Albite (var: Cleavelandite)Na(AlSi3O8)
Na Dickinsonite-(KMnNa){KNa}{Mn2+⃞}{Ca}{Na3}{Mn132+}{Al}(PO4)12(OH)2
Na ElbaiteNa(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
Na FerrohagendorfiteNaCaFe2+Fe22+(PO4)3
Na HagendorfiteNaCaMn2+Fe22+(PO4)3
Na Hagendorfite-(Na)(Na)Fe2+Mn2+(PO4)-(Na)(Na)
Na NatropalermoiteNa2SrAl4(PO4)4(OH)4
Na NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Na Albite (var: Oligoclase)(Na,Ca)[Al(Si,Al)Si2O8]
Na Palermoite(Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
Na SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
Na Todorokite(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
Na WarditeNaAl3(PO4)2(OH)4 · 2H2O
MgMagnesium
Mg Bjarebyite(Ba,Sr)(Mn2+,Fe2+,Mg)2Al2(PO4)3(OH)3
Mg CollinsiteCa2Mg(PO4)2 · 2H2O
Mg FalsteriteCa2MgMn22+Fe22+Fe23+Zn4(PO4)8(OH)4(H2O)14
Mg GordoniteMgAl2(PO4)2(OH)2 · 8H2O
Mg LazuliteMgAl2(PO4)2(OH)2
Mg Souzalite(Mg,Fe2+)3(Al,Fe3+)4(PO4)4(OH)6 · 2H2O
Mg Todorokite(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
Mg UshkoviteMgFe23+(PO4)2(OH)2 · 8H2O
Mg Whiteite-(CaMnMg){Ca}{Mn2+}{Mg2}{Al2}(PO4)4(OH)2 · 8H2O
Mg Whiteite-(MnFeMg){(Mn2+,Ca)}{(Fe2+,Mn2+)}{Mg2}{Al2}(PO4)4(OH)2 · 8H2O
Mg WhitlockiteCa9Mg(PO4)6(HPO4)
Mg ZanazziiteCa2Mg5Be4(PO4)6(OH)4 · 6H2O
AlAluminium
Al AlbiteNa(AlSi3O8)
Al AlmandineFe32+Al2(SiO4)3
Al AmblygoniteLiAl(PO4)F
Al Beryl (var: Aquamarine)Be3Al2Si6O18
Al Arrojadite-(KFe){KNa}{Fe2+⃞}{Ca}{Na2⃞}{Fe132+}{Al}(PO4)11(HPO4)(OH)2
Al AugeliteAl2(PO4)(OH)3
Al BerylBe3Al2(Si6O18)
Al Bjarebyite(Ba,Sr)(Mn2+,Fe2+,Mg)2Al2(PO4)3(OH)3
Al BrazilianiteNaAl3(PO4)2(OH)4
Al CacoxeniteFe243+AlO6(PO4)17(OH)12 · 75H2O
Al ChildreniteFe2+Al(PO4)(OH)2 · H2O
Al Albite (var: Cleavelandite)Na(AlSi3O8)
Al CrandalliteCaAl3(PO4)(PO3OH)(OH)6
Al Dickinsonite-(KMnNa){KNa}{Mn2+⃞}{Ca}{Na3}{Mn132+}{Al}(PO4)12(OH)2
Al ElbaiteNa(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
Al EosphoriteMn2+Al(PO4)(OH)2 · H2O
Al Ernstite(Mn2+,Fe3+)Al(PO4)(OH,O)2 · H2O
Al Florencite-(Ce)CeAl3(PO4)2(OH)6
Al FoggiteCaAl(PO4)(OH)2 · H2O
Al GatumbaiteCaAl2(PO4)2(OH)2 · H2O
Al GoedkeniteSr2Al(PO4)2(OH)
Al GordoniteMgAl2(PO4)2(OH)2 · 8H2O
Al Gormanite(Fe2+,Mg)3(Al,Fe3+)4(PO4)4(OH)6 · 2H2O
Al GoyaziteSrAl3(PO4)(PO3OH)(OH)6
Al Beryl (var: Heliodor)Be3Al2(Si6O18)
Al HinsdalitePbAl3(PO4)(SO4)(OH)6
Al Muscovite (var: Illite)K0.65Al2.0[Al0.65Si3.35O10](OH)2
Al KulaniteBa(Fe2+,Mn2+,Mg)2(Al,Fe3+)2(PO4)3(OH)3
Al LazuliteMgAl2(PO4)2(OH)2
Al LefontiteFe2Al2Be(PO4)2(OH)6
Al MicroclineK(AlSi3O8)
Al MontebrasiteLiAl(PO4)(OH)
Al MuscoviteKAl2(AlSi3O10)(OH)2
Al NatropalermoiteNa2SrAl4(PO4)4(OH)4
Al NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Al Albite (var: Oligoclase)(Na,Ca)[Al(Si,Al)Si2O8]
Al Palermoite(Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
Al ParavauxiteFe2+Al2(PO4)2(OH)2 · 8H2O
Al Samuelsonite(Ca,Ba)Ca8Fe22+Mn22+Al2(PO4)10(OH)2
Al SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
Al ScorzaliteFe2+Al2(PO4)2(OH)2
Al Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
Al SillimaniteAl2(SiO4)O
Al SinkankasiteMn2+Al(PO3OH)2(OH) · 6H2O
Al Souzalite(Mg,Fe2+)3(Al,Fe3+)4(PO4)4(OH)6 · 2H2O
Al Todorokite(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
Al WarditeNaAl3(PO4)2(OH)4 · 2H2O
Al Whiteite-(CaMnMg){Ca}{Mn2+}{Mg2}{Al2}(PO4)4(OH)2 · 8H2O
Al Whiteite-(MnFeMg){(Mn2+,Ca)}{(Fe2+,Mn2+)}{Mg2}{Al2}(PO4)4(OH)2 · 8H2O
SiSilicon
Si AlbiteNa(AlSi3O8)
Si AlmandineFe32+Al2(SiO4)3
Si Beryl (var: Aquamarine)Be3Al2Si6O18
Si BertranditeBe4(Si2O7)(OH)2
Si BerylBe3Al2(Si6O18)
Si Quartz (var: Blue Quartz)SiO2
Si Quartz (var: Citrine)SiO2
Si Albite (var: Cleavelandite)Na(AlSi3O8)
Si Zircon (var: Cyrtolite)Zr[(SiO4),(OH)4]
Si ElbaiteNa(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
Si Beryl (var: Heliodor)Be3Al2(Si6O18)
Si HisingeriteFe23+(Si2O5)(OH)4 · 2H2O
Si Muscovite (var: Illite)K0.65Al2.0[Al0.65Si3.35O10](OH)2
Si MicroclineK(AlSi3O8)
Si Quartz (var: Milky Quartz)SiO2
Si MuscoviteKAl2(AlSi3O10)(OH)2
Si NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Si Albite (var: Oligoclase)(Na,Ca)[Al(Si,Al)Si2O8]
Si OpalSiO2 · nH2O
Si Opal (var: Opal-AN)SiO2 · nH2O
Si QuartzSiO2
Si Quartz (var: Rock Crystal)SiO2
Si Quartz (var: Rose Quartz)SiO2
Si Quartz (var: Sceptre Quartz)SiO2
Si SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
Si Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
Si SillimaniteAl2(SiO4)O
Si Quartz (var: Smoky Quartz)SiO2
Si UranophaneCa(UO2)2(SiO3OH)2 · 5H2O
Si Uranophane-βCa(UO2)2(SiO3OH)2 · 5H2O
Si ZirconZr(SiO4)
PPhosphorus
P AmblygoniteLiAl(PO4)F
P AnapaiteCa2Fe2+(PO4)2 · 4H2O
P Arrojadite-(KFe){KNa}{Fe2+⃞}{Ca}{Na2⃞}{Fe132+}{Al}(PO4)11(HPO4)(OH)2
P AugeliteAl2(PO4)(OH)3
P AutuniteCa(UO2)2(PO4)2 · 11H2O
P BarbosaliteFe2+Fe23+(PO4)2(OH)2
P BerauniteFe2+Fe53+(PO4)4(OH)5 · 6H2O
P BermaniteMn2+Mn23+(PO4)2(OH)2 · 4H2O
P BerylloniteNaBePO4
P Bjarebyite(Ba,Sr)(Mn2+,Fe2+,Mg)2Al2(PO4)3(OH)3
P BrazilianiteNaAl3(PO4)2(OH)4
P BrushiteCa(HPO4) · 2H2O
P CacoxeniteFe243+AlO6(PO4)17(OH)12 · 75H2O
P Fluorapatite (var: Carbonate-rich Fluorapatite)Ca5(PO4,CO3)3(F,O)
P Hydroxylapatite (var: Carbonate-rich Hydroxylapatite)Ca5(PO4,CO3)3(OH,O)
P ChildreniteFe2+Al(PO4)(OH)2 · H2O
P ChlorapatiteCa5(PO4)3Cl
P CollinsiteCa2Mg(PO4)2 · 2H2O
P CrandalliteCaAl3(PO4)(PO3OH)(OH)6
P DiadochiteFe23+(PO4)(SO4)(OH) · 5H2O
P Dickinsonite-(KMnNa){KNa}{Mn2+⃞}{Ca}{Na3}{Mn132+}{Al}(PO4)12(OH)2
P DufréniteCa0.5Fe2+Fe53+(PO4)4(OH)6 · 2H2O
P EleonoriteFe63+(PO4)4O(OH)4 · 6H2O
P EosphoriteMn2+Al(PO4)(OH)2 · H2O
P Ernstite(Mn2+,Fe3+)Al(PO4)(OH,O)2 · H2O
P FairfielditeCa2Mn2+(PO4)2 · 2H2O
P FalsteriteCa2MgMn22+Fe22+Fe23+Zn4(PO4)8(OH)4(H2O)14
P Ferrirockbridgeite(Fe3+0.670.33)2(Fe3+)3(PO4)3(OH)4(H2O)
P FerrisickleriteLi1-x(Fex3+Fe2+1-x)PO4
P FerrohagendorfiteNaCaFe2+Fe22+(PO4)3
P FerrostrunziteFe2+Fe23+(PO4)2(OH)2 · 6H2O
P Florencite-(Ce)CeAl3(PO4)2(OH)6
P FluorapatiteCa5(PO4)3F
P FoggiteCaAl(PO4)(OH)2 · H2O
P FrondeliteMn2+Fe43+(PO4)3(OH)5
P GatumbaiteCaAl2(PO4)2(OH)2 · H2O
P GoedkeniteSr2Al(PO4)2(OH)
P GordoniteMgAl2(PO4)2(OH)2 · 8H2O
P Gormanite(Fe2+,Mg)3(Al,Fe3+)4(PO4)4(OH)6 · 2H2O
P GoyaziteSrAl3(PO4)(PO3OH)(OH)6
P GraftoniteFe2+Fe22+(PO4)2
P GreifensteiniteCa2Fe52+Be4(PO4)6(OH)4 · 6H2O
P HagendorfiteNaCaMn2+Fe22+(PO4)3
P Hagendorfite-(Na)(Na)Fe2+Mn2+(PO4)-(Na)(Na)
P Heterosite(Fe3+,Mn3+)PO4
P HinsdalitePbAl3(PO4)(SO4)(OH)6
P HopeiteZn3(PO4)2 · 4H2O
P Hureaulite(Mn,Fe)5(PO4)2(HPO4)2 · 4H2O
P HydroxylapatiteCa5(PO4)3(OH)
P HydroxylherderiteCaBe(PO4)(OH,F)
P Jahnsite-(CaMnFe){Ca}{Mn2+}{Fe22+}{Fe23+}(PO4)4(OH)2 · 8H2O
P Jahnsite-(CaMnMn){Ca}{Mn2+}{Mn22+}{Fe23+}(PO4)4(OH)2 · 8H2O
P KeckiteCaMn2+(Fe3+Mn2+)Fe23+(PO4)4(OH)3 · 7H2O
P Kryzhanovskite(Fe3+,Mn2+)3(PO4)2(OH,H2O)3
P KulaniteBa(Fe2+,Mn2+,Mg)2(Al,Fe3+)2(PO4)3(OH)3
P LandesiteMn2+3-xFex3+(PO4)2(OH)x · (3-x)H2O
P LaueiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
P LazuliteMgAl2(PO4)2(OH)2
P LefontiteFe2Al2Be(PO4)2(OH)6
P LeucophosphiteKFe23+(PO4)2(OH) · 2H2O
P LudlamiteFe32+(PO4)2 · 4H2O
P MesseliteCa2Fe2+(PO4)2 · 2H2O
P Meta-autuniteCa(UO2)2(PO4)2 · 6-8H2O
P MetaswitzeriteMn32+(PO4)2 · 4H2O
P MetatorberniteCu(UO2)2(PO4)2 · 8H2O
P MetavivianiteFe2+Fe23+(PO4)2(OH)2 · 6H2O
P MitridatiteCa2Fe33+(PO4)3O2 · 3H2O
P MontebrasiteLiAl(PO4)(OH)
P MoraesiteBe2(PO4)(OH) · 4H2O
P NatropalermoiteNa2SrAl4(PO4)4(OH)4
P NizamoffiteMn2+Zn2(PO4)2(H2O)4
P Palermoite(Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
P ParascholziteCaZn2(PO4)2 · 2H2O
P ParavauxiteFe2+Al2(PO4)2(OH)2 · 8H2O
P Phosphoferrite(Fe2+,Mn2+)3(PO4)2 · 3H2O
P PhosphophylliteZn2Fe(PO4)2 · 4H2O
P PhosphosideriteFePO4 · 2H2O
P Phosphuranylite(H3O)3KCa(UO2)7(PO4)4O4 · 8H2O
P PseudolaueiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
P PseudomalachiteCu5(PO4)2(OH)4
P Purpurite(Mn3+,Fe3+)PO4
P PyromorphitePb5(PO4)3Cl
P Reddingite(Mn2+,Fe2+)3(PO4)2 · 3H2O
P RockbridgeiteFe2+Fe43+(PO4)3(OH)5
P RoscheriteCa2Mn52+Be4(PO4)6(OH)4 · 6H2O
P Samuelsonite(Ca,Ba)Ca8Fe22+Mn22+Al2(PO4)10(OH)2
P Sarcopside(Fe2+,Mn2+,Mg)3(PO4)2
P SchooneriteZnMn2+Fe22+Fe3+(PO4)3(OH)2 · 9H2O
P ScorzaliteFe2+Al2(PO4)2(OH)2
P SinkankasiteMn2+Al(PO3OH)2(OH) · 6H2O
P Souzalite(Mg,Fe2+)3(Al,Fe3+)4(PO4)4(OH)6 · 2H2O
P StewartiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
P StrengiteFePO4 · 2H2O
P StrunziteMn2+Fe23+(PO4)2(OH)2 · 6H2O
P TavoriteLiFe3+(PO4)(OH)
P TorberniteCu(UO2)2(PO4)2 · 12H2O
P TriphyliteLiFe2+PO4
P Triploidite(Mn2+,Fe2+)2(PO4)(OH)
P UshkoviteMgFe23+(PO4)2(OH)2 · 8H2O
P VivianiteFe32+(PO4)2 · 8H2O
P WarditeNaAl3(PO4)2(OH)4 · 2H2O
P Whiteite-(CaMnMg){Ca}{Mn2+}{Mg2}{Al2}(PO4)4(OH)2 · 8H2O
P Whiteite-(MnFeMg){(Mn2+,Ca)}{(Fe2+,Mn2+)}{Mg2}{Al2}(PO4)4(OH)2 · 8H2O
P WhitlockiteCa9Mg(PO4)6(HPO4)
P WhitmoreiteFe2+Fe23+(PO4)2(OH)2 · 4H2O
P Wolfeite(Fe2+,Mn2+)2(PO4)(OH)
P XanthoxeniteCa4Fe23+(PO4)4(OH)2 · 3H2O
P ZanazziiteCa2Mg5Be4(PO4)6(OH)4 · 6H2O
SSulfur
S ArsenopyriteFeAsS
S BismuthiniteBi2S3
S BorniteCu5FeS4
S ChalcopyriteCuFeS2
S CovelliteCuS
S DiadochiteFe23+(PO4)(SO4)(OH) · 5H2O
S DjurleiteCu31S16
S GalenaPbS
S GypsumCaSO4 · 2H2O
S HinsdalitePbAl3(PO4)(SO4)(OH)6
S MarcasiteFeS2
S MelanteriteFe2+(H2O)6SO4 · H2O
S PyriteFeS2
S PyrrhotiteFe7S8
S RealgarAs4S4
S SphaleriteZnS
ClChlorine
Cl ChlorapatiteCa5(PO4)3Cl
Cl PyromorphitePb5(PO4)3Cl
KPotassium
K Arrojadite-(KFe){KNa}{Fe2+⃞}{Ca}{Na2⃞}{Fe132+}{Al}(PO4)11(HPO4)(OH)2
K CompreignaciteK2(UO2)6O4(OH)6 · 7H2O
K Dickinsonite-(KMnNa){KNa}{Mn2+⃞}{Ca}{Na3}{Mn132+}{Al}(PO4)12(OH)2
K Muscovite (var: Illite)K0.65Al2.0[Al0.65Si3.35O10](OH)2
K LeucophosphiteKFe23+(PO4)2(OH) · 2H2O
K MicroclineK(AlSi3O8)
K MuscoviteKAl2(AlSi3O10)(OH)2
K Phosphuranylite(H3O)3KCa(UO2)7(PO4)4O4 · 8H2O
K Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
K Todorokite(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
CaCalcium
Ca AnapaiteCa2Fe2+(PO4)2 · 4H2O
Ca Arrojadite-(KFe){KNa}{Fe2+⃞}{Ca}{Na2⃞}{Fe132+}{Al}(PO4)11(HPO4)(OH)2
Ca AutuniteCa(UO2)2(PO4)2 · 11H2O
Ca Birnessite(Na,Ca)0.5(Mn4+,Mn3+)2O4 · 1.5H2O
Ca BrushiteCa(HPO4) · 2H2O
Ca Fluorapatite (var: Carbonate-rich Fluorapatite)Ca5(PO4,CO3)3(F,O)
Ca Hydroxylapatite (var: Carbonate-rich Hydroxylapatite)Ca5(PO4,CO3)3(OH,O)
Ca ChlorapatiteCa5(PO4)3Cl
Ca CollinsiteCa2Mg(PO4)2 · 2H2O
Ca CrandalliteCaAl3(PO4)(PO3OH)(OH)6
Ca Dickinsonite-(KMnNa){KNa}{Mn2+⃞}{Ca}{Na3}{Mn132+}{Al}(PO4)12(OH)2
Ca DufréniteCa0.5Fe2+Fe53+(PO4)4(OH)6 · 2H2O
Ca FairfielditeCa2Mn2+(PO4)2 · 2H2O
Ca FalsteriteCa2MgMn22+Fe22+Fe23+Zn4(PO4)8(OH)4(H2O)14
Ca FerrohagendorfiteNaCaFe2+Fe22+(PO4)3
Ca FluorapatiteCa5(PO4)3F
Ca FoggiteCaAl(PO4)(OH)2 · H2O
Ca GatumbaiteCaAl2(PO4)2(OH)2 · H2O
Ca GreifensteiniteCa2Fe52+Be4(PO4)6(OH)4 · 6H2O
Ca GypsumCaSO4 · 2H2O
Ca HagendorfiteNaCaMn2+Fe22+(PO4)3
Ca HydroxylapatiteCa5(PO4)3(OH)
Ca HydroxylherderiteCaBe(PO4)(OH,F)
Ca Jahnsite-(CaMnFe){Ca}{Mn2+}{Fe22+}{Fe23+}(PO4)4(OH)2 · 8H2O
Ca Jahnsite-(CaMnMn){Ca}{Mn2+}{Mn22+}{Fe23+}(PO4)4(OH)2 · 8H2O
Ca KeckiteCaMn2+(Fe3+Mn2+)Fe23+(PO4)4(OH)3 · 7H2O
Ca MesseliteCa2Fe2+(PO4)2 · 2H2O
Ca Meta-autuniteCa(UO2)2(PO4)2 · 6-8H2O
Ca MitridatiteCa2Fe33+(PO4)3O2 · 3H2O
Ca Albite (var: Oligoclase)(Na,Ca)[Al(Si,Al)Si2O8]
Ca Palermoite(Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
Ca ParascholziteCaZn2(PO4)2 · 2H2O
Ca Phosphuranylite(H3O)3KCa(UO2)7(PO4)4O4 · 8H2O
Ca RoscheriteCa2Mn52+Be4(PO4)6(OH)4 · 6H2O
Ca Samuelsonite(Ca,Ba)Ca8Fe22+Mn22+Al2(PO4)10(OH)2
Ca Todorokite(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
Ca UranophaneCa(UO2)2(SiO3OH)2 · 5H2O
Ca Uranophane-βCa(UO2)2(SiO3OH)2 · 5H2O
Ca Whiteite-(CaMnMg){Ca}{Mn2+}{Mg2}{Al2}(PO4)4(OH)2 · 8H2O
Ca Whiteite-(MnFeMg){(Mn2+,Ca)}{(Fe2+,Mn2+)}{Mg2}{Al2}(PO4)4(OH)2 · 8H2O
Ca WhitlockiteCa9Mg(PO4)6(HPO4)
Ca XanthoxeniteCa4Fe23+(PO4)4(OH)2 · 3H2O
Ca ZanazziiteCa2Mg5Be4(PO4)6(OH)4 · 6H2O
TiTitanium
Ti AnataseTiO2
MnManganese
Mn BermaniteMn2+Mn23+(PO4)2(OH)2 · 4H2O
Mn Birnessite(Na,Ca)0.5(Mn4+,Mn3+)2O4 · 1.5H2O
Mn Bjarebyite(Ba,Sr)(Mn2+,Fe2+,Mg)2Al2(PO4)3(OH)3
Mn Dickinsonite-(KMnNa){KNa}{Mn2+⃞}{Ca}{Na3}{Mn132+}{Al}(PO4)12(OH)2
Mn EosphoriteMn2+Al(PO4)(OH)2 · H2O
Mn Ernstite(Mn2+,Fe3+)Al(PO4)(OH,O)2 · H2O
Mn FairfielditeCa2Mn2+(PO4)2 · 2H2O
Mn FalsteriteCa2MgMn22+Fe22+Fe23+Zn4(PO4)8(OH)4(H2O)14
Mn FrondeliteMn2+Fe43+(PO4)3(OH)5
Mn HagendorfiteNaCaMn2+Fe22+(PO4)3
Mn Hagendorfite-(Na)(Na)Fe2+Mn2+(PO4)-(Na)(Na)
Mn Heterosite(Fe3+,Mn3+)PO4
Mn HollanditeBa(Mn64+Mn23+)O16
Mn Hureaulite(Mn,Fe)5(PO4)2(HPO4)2 · 4H2O
Mn Jahnsite-(CaMnFe){Ca}{Mn2+}{Fe22+}{Fe23+}(PO4)4(OH)2 · 8H2O
Mn Jahnsite-(CaMnMn){Ca}{Mn2+}{Mn22+}{Fe23+}(PO4)4(OH)2 · 8H2O
Mn KeckiteCaMn2+(Fe3+Mn2+)Fe23+(PO4)4(OH)3 · 7H2O
Mn Kryzhanovskite(Fe3+,Mn2+)3(PO4)2(OH,H2O)3
Mn LandesiteMn2+3-xFex3+(PO4)2(OH)x · (3-x)H2O
Mn LaueiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
Mn ManganiteMn3+O(OH)
Mn MetaswitzeriteMn32+(PO4)2 · 4H2O
Mn NizamoffiteMn2+Zn2(PO4)2(H2O)4
Mn PseudolaueiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
Mn Purpurite(Mn3+,Fe3+)PO4
Mn PyrolusiteMn4+O2
Mn Reddingite(Mn2+,Fe2+)3(PO4)2 · 3H2O
Mn RhodochrositeMnCO3
Mn RoscheriteCa2Mn52+Be4(PO4)6(OH)4 · 6H2O
Mn Samuelsonite(Ca,Ba)Ca8Fe22+Mn22+Al2(PO4)10(OH)2
Mn SchooneriteZnMn2+Fe22+Fe3+(PO4)3(OH)2 · 9H2O
Mn SinkankasiteMn2+Al(PO3OH)2(OH) · 6H2O
Mn StewartiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
Mn StrunziteMn2+Fe23+(PO4)2(OH)2 · 6H2O
Mn Todorokite(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
Mn Triploidite(Mn2+,Fe2+)2(PO4)(OH)
Mn Whiteite-(CaMnMg){Ca}{Mn2+}{Mg2}{Al2}(PO4)4(OH)2 · 8H2O
Mn Whiteite-(MnFeMg){(Mn2+,Ca)}{(Fe2+,Mn2+)}{Mg2}{Al2}(PO4)4(OH)2 · 8H2O
FeIron
Fe AlmandineFe32+Al2(SiO4)3
Fe AnapaiteCa2Fe2+(PO4)2 · 4H2O
Fe Arrojadite-(KFe){KNa}{Fe2+⃞}{Ca}{Na2⃞}{Fe132+}{Al}(PO4)11(HPO4)(OH)2
Fe ArsenopyriteFeAsS
Fe BarbosaliteFe2+Fe23+(PO4)2(OH)2
Fe BerauniteFe2+Fe53+(PO4)4(OH)5 · 6H2O
Fe Bjarebyite(Ba,Sr)(Mn2+,Fe2+,Mg)2Al2(PO4)3(OH)3
Fe BorniteCu5FeS4
Fe CacoxeniteFe243+AlO6(PO4)17(OH)12 · 75H2O
Fe ChalcopyriteCuFeS2
Fe ChildreniteFe2+Al(PO4)(OH)2 · H2O
Fe Columbite-(Fe)Fe2+Nb2O6
Fe DiadochiteFe23+(PO4)(SO4)(OH) · 5H2O
Fe DufréniteCa0.5Fe2+Fe53+(PO4)4(OH)6 · 2H2O
Fe EleonoriteFe63+(PO4)4O(OH)4 · 6H2O
Fe Ernstite(Mn2+,Fe3+)Al(PO4)(OH,O)2 · H2O
Fe FalsteriteCa2MgMn22+Fe22+Fe23+Zn4(PO4)8(OH)4(H2O)14
Fe Ferrirockbridgeite(Fe3+0.670.33)2(Fe3+)3(PO4)3(OH)4(H2O)
Fe FerrisickleriteLi1-x(Fex3+Fe2+1-x)PO4
Fe FerrohagendorfiteNaCaFe2+Fe22+(PO4)3
Fe FerrostrunziteFe2+Fe23+(PO4)2(OH)2 · 6H2O
Fe FrondeliteMn2+Fe43+(PO4)3(OH)5
Fe Goethiteα-Fe3+O(OH)
Fe Gormanite(Fe2+,Mg)3(Al,Fe3+)4(PO4)4(OH)6 · 2H2O
Fe GraftoniteFe2+Fe22+(PO4)2
Fe GreifensteiniteCa2Fe52+Be4(PO4)6(OH)4 · 6H2O
Fe HagendorfiteNaCaMn2+Fe22+(PO4)3
Fe Hagendorfite-(Na)(Na)Fe2+Mn2+(PO4)-(Na)(Na)
Fe HematiteFe2O3
Fe Heterosite(Fe3+,Mn3+)PO4
Fe HisingeriteFe23+(Si2O5)(OH)4 · 2H2O
Fe Jahnsite-(CaMnFe){Ca}{Mn2+}{Fe22+}{Fe23+}(PO4)4(OH)2 · 8H2O
Fe Jahnsite-(CaMnMn){Ca}{Mn2+}{Mn22+}{Fe23+}(PO4)4(OH)2 · 8H2O
Fe KeckiteCaMn2+(Fe3+Mn2+)Fe23+(PO4)4(OH)3 · 7H2O
Fe Kryzhanovskite(Fe3+,Mn2+)3(PO4)2(OH,H2O)3
Fe KulaniteBa(Fe2+,Mn2+,Mg)2(Al,Fe3+)2(PO4)3(OH)3
Fe LandesiteMn2+3-xFex3+(PO4)2(OH)x · (3-x)H2O
Fe LaueiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
Fe LefontiteFe2Al2Be(PO4)2(OH)6
Fe LeucophosphiteKFe23+(PO4)2(OH) · 2H2O
Fe Limonite(Fe,O,OH,H2O)
Fe LöllingiteFeAs2
Fe LudlamiteFe32+(PO4)2 · 4H2O
Fe MagnetiteFe2+Fe23+O4
Fe MarcasiteFeS2
Fe MelanteriteFe2+(H2O)6SO4 · H2O
Fe MesseliteCa2Fe2+(PO4)2 · 2H2O
Fe MetavivianiteFe2+Fe23+(PO4)2(OH)2 · 6H2O
Fe MitridatiteCa2Fe33+(PO4)3O2 · 3H2O
Fe NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Fe ParavauxiteFe2+Al2(PO4)2(OH)2 · 8H2O
Fe Phosphoferrite(Fe2+,Mn2+)3(PO4)2 · 3H2O
Fe PhosphophylliteZn2Fe(PO4)2 · 4H2O
Fe PhosphosideriteFePO4 · 2H2O
Fe PseudolaueiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
Fe Purpurite(Mn3+,Fe3+)PO4
Fe PyriteFeS2
Fe PyrrhotiteFe7S8
Fe RockbridgeiteFe2+Fe43+(PO4)3(OH)5
Fe Sarcopside(Fe2+,Mn2+,Mg)3(PO4)2
Fe SchooneriteZnMn2+Fe22+Fe3+(PO4)3(OH)2 · 9H2O
Fe SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
Fe ScorzaliteFe2+Al2(PO4)2(OH)2
Fe SideriteFeCO3
Fe StewartiteMn2+Fe23+(PO4)2(OH)2 · 8H2O
Fe StrengiteFePO4 · 2H2O
Fe StrunziteMn2+Fe23+(PO4)2(OH)2 · 6H2O
Fe Tantalite-(Fe)Fe2+Ta2O6
Fe TavoriteLiFe3+(PO4)(OH)
Fe TriphyliteLiFe2+PO4
Fe UshkoviteMgFe23+(PO4)2(OH)2 · 8H2O
Fe VivianiteFe32+(PO4)2 · 8H2O
Fe Whiteite-(MnFeMg){(Mn2+,Ca)}{(Fe2+,Mn2+)}{Mg2}{Al2}(PO4)4(OH)2 · 8H2O
Fe WhitmoreiteFe2+Fe23+(PO4)2(OH)2 · 4H2O
Fe Wolfeite(Fe2+,Mn2+)2(PO4)(OH)
Fe XanthoxeniteCa4Fe23+(PO4)4(OH)2 · 3H2O
CuCopper
Cu AzuriteCu3(CO3)2(OH)2
Cu BorniteCu5FeS4
Cu ChalcopyriteCuFeS2
Cu Cuprite (var: Chalcotrichite)Cu2O
Cu CovelliteCuS
Cu CupriteCu2O
Cu DjurleiteCu31S16
Cu MalachiteCu2(CO3)(OH)2
Cu MetatorberniteCu(UO2)2(PO4)2 · 8H2O
Cu PseudomalachiteCu5(PO4)2(OH)4
Cu TorberniteCu(UO2)2(PO4)2 · 12H2O
ZnZinc
Zn FalsteriteCa2MgMn22+Fe22+Fe23+Zn4(PO4)8(OH)4(H2O)14
Zn HopeiteZn3(PO4)2 · 4H2O
Zn NizamoffiteMn2+Zn2(PO4)2(H2O)4
Zn ParascholziteCaZn2(PO4)2 · 2H2O
Zn PhosphophylliteZn2Fe(PO4)2 · 4H2O
Zn SchooneriteZnMn2+Fe22+Fe3+(PO4)3(OH)2 · 9H2O
Zn SmithsoniteZnCO3
Zn SphaleriteZnS
AsArsenic
As ArsenopyriteFeAsS
As LöllingiteFeAs2
As RealgarAs4S4
SrStrontium
Sr Bjarebyite(Ba,Sr)(Mn2+,Fe2+,Mg)2Al2(PO4)3(OH)3
Sr GoedkeniteSr2Al(PO4)2(OH)
Sr GoyaziteSrAl3(PO4)(PO3OH)(OH)6
Sr NatropalermoiteNa2SrAl4(PO4)4(OH)4
Sr Palermoite(Li,Na)2(Sr,Ca)Al4(PO4)4(OH)4
Sr Todorokite(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
ZrZirconium
Zr Zircon (var: Cyrtolite)Zr[(SiO4),(OH)4]
Zr ZirconZr(SiO4)
NbNiobium
Nb Columbite-(Fe)Fe2+Nb2O6
BaBarium
Ba Bjarebyite(Ba,Sr)(Mn2+,Fe2+,Mg)2Al2(PO4)3(OH)3
Ba HollanditeBa(Mn64+Mn23+)O16
Ba KulaniteBa(Fe2+,Mn2+,Mg)2(Al,Fe3+)2(PO4)3(OH)3
Ba Todorokite(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
CeCerium
Ce Florencite-(Ce)CeAl3(PO4)2(OH)6
TaTantalum
Ta Tantalite-(Fe)Fe2+Ta2O6
PbLead
Pb CerussitePbCO3
Pb GalenaPbS
Pb HinsdalitePbAl3(PO4)(SO4)(OH)6
Pb PyromorphitePb5(PO4)3Cl
Pb VandendriesscheitePbU7O22 · 12H2O
BiBismuth
Bi BismuthBi
Bi BismuthiniteBi2S3
UUranium
U AutuniteCa(UO2)2(PO4)2 · 11H2O
U Clarkeite(Na,Ca,Pb)(UO2)O(OH) · 0-1H2O
U CompreignaciteK2(UO2)6O4(OH)6 · 7H2O
U Meta-autuniteCa(UO2)2(PO4)2 · 6-8H2O
U MetatorberniteCu(UO2)2(PO4)2 · 8H2O
U PaulscherreriteUO2(OH)2
U Phosphuranylite(H3O)3KCa(UO2)7(PO4)4O4 · 8H2O
U Rutherfordine(UO2)CO3
U Schoepite(UO2)8O2(OH)12 · 12H2O
U TorberniteCu(UO2)2(PO4)2 · 12H2O
U UraniniteUO2
U UranophaneCa(UO2)2(SiO3OH)2 · 5H2O
U Uranophane-βCa(UO2)2(SiO3OH)2 · 5H2O
U VandendriesscheitePbU7O22 · 12H2O

Regional Geology

This geological map and associated information on rock units at or nearby to the coordinates given for this locality is based on relatively small scale geological maps provided by various national Geological Surveys. This does not necessarily represent the complete geology at this locality but it gives a background for the region in which it is found.

Click on geological units on the map for more information. Click here to view full-screen map on Macrostrat.org

Devonian - Silurian
358.9 - 443.8 Ma



ID: 3184704
Paleozoic intrusive rocks

Age: Paleozoic (358.9 - 443.8 Ma)

Lithology: Intrusive igneous rocks

Reference: Chorlton, L.B. Generalized geology of the world: bedrock domains and major faults in GIS format: a small-scale world geology map with an extended geological attribute database. doi: 10.4095/223767. Geological Survey of Canada, Open File 5529. [154]

Early Devonian
393.3 - 419.2 Ma



ID: 2793797
Littleton Formation, Upper unnamed member

Age: Early Devonian (393.3 - 419.2 Ma)

Stratigraphic Name: Littleton Formation

Description: Light-gray metaturbidite, lithologically identical to, and probably correlative with, the Seboomook Formation of Maine. Coticule layers common.

Comments: Part of the Central Maine Composite Terrane (Central Maine Trough) - Variably metamorphosed sedimentary and volcanic rocks of greenschist to granulite facies, locally migmatized. Area includes structural belts between the Monroe fault on the west and the Campbell Hill fault on the east; that is, the Bronson Hill anticlinorium, Piedmont allochthon, Kearsarge-central Maine synclinorium, central New Hampshire anticlinorium, and Rochester-Lebanon (Maine) antiformal synclinorium. Original map source: Bennett, D.S., Wittkop, C.A., and Dicken, C.L., 2006, Bedrock Geologic Map of New Hampshire - A Digital Representation of the Lyons and others 1997 map and ancillary files: U.S. Geological Survey Data Series 215, CD-ROM, scale 1:250,000.

Lithology: Major:{metaclastic}

Reference: Horton, J.D., C.A. San Juan, and D.B. Stoeser. The State Geologic Map Compilation (SGMC) geodatabase of the conterminous United States. doi: 10.3133/ds1052. U.S. Geological Survey Data Series 1052. [133]

Data and map coding provided by Macrostrat.org, used under Creative Commons Attribution 4.0 License

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
Wadsworth, Marshman Edward (1880) Report on the Mica Deposits of the Hartford Mica Mining Company, Groton, Grafton County, New Hampshire (Boston: private publication).
Fuller, Myron L. (1898) Crushed Quartz and Its Source. Stone, an Illustrated Magazine, 18, 3.
Sterrett, D. (1914) Some deposits of Mica in the United States. United States Geological Survey Bulletin 580-F: 72-74.
Sterrett, D. (1923) Mica deposits of the United States. United States Geological Survey Bulletin 740.
Berman, Harry (1927) Graftonite from a new locality in New Hampshire. American Mineralogist, 12, 170.
Elwell, Wilbur J. (1936) A Mineralogical Trip Through New England. Rocks and Minerals, 11(3), 36-7.
Verrow, H.J. (1941) Pegmatite minerals of the Palermo quarry, North Groton, New Hampshire. Rocks & Minerals, 16, 208-211.
Frondel, C. and Lindberg, M. (1948) Second occurrence of brazilianite. American Mineralogist, 33, 135–141.
Frondel, Clifford (1949) Wolfeite, xanthoxenite and whitlockite from the Palermo Mine, New Hampshire. American Mineralogist, 34, 692.
Wolfe, C.W. (1949) Ludlamite from the Palermo mine, North Groton, New Hampshire. American Mineralogist, 34, 94.
Palache, C., Berman, H., and Frondel, C. (1951) The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 835, 842-843, 855, 868, 876, 938, 953, 960, 977.
Mrose, M.E. (1953) Palermoite and goyazite, two strontium minerals from the Palermo Mine, North Groton, New Hampshire. American Mineralogist, 38, 354.
Cameron, E.N., Larabee, D.M., McNair, A.H., Page, J.J., Stewart, G.W., and Shainin, V.E. (1954) Pegmatite investigations 1942-1945, New England. United States Geological Survey Professional Paper 255: 1-352.
Frondel, Clifford (1956) Systematic Mineralogy of Uranium and Thorium. United States Geological Survey Bulletin 1064: 400.
Frondel, Clifford and Ito, Jun (1965) Composition of palermoite. American Mineralogist, 50, 777.
Gregory, G.E. (1965) Palermo No. 1 Mine. Gems and Minerals (Dec. 1965) 22-23.
Moore, P.B., Lund, D.H., and Keester, K.L. (1973) Bjarebyite, (Ba,Sr)(Mn,Fe,Mg)2Al2(OH)3(PO4)3, a new species. Mineralogical Record, 4, 282-285.
Moore, P.B., Kampf, A.R., and Irving, A.J.(1974) Whitmoreite, a new species: its description and atomic arrangement. American Mineralogist, 59, 900-905.
Thompson, W. (1974) The Palermo mine, New Hampshire. Mineralogical Record, 5, 274-279.
Calvo, C., and Gopal, R. (1975) The Crystal Structure of Whitlockite from the Palermo Quarry. American Mineralogist, 60, 120-133.
Moore, P.B., Irving, A.J., and Kampf, A.R. (1975) Foggite, Goedkenite, and Samuelsonite: Three new species from the Palermo No. 1 pegmatite, North Groton, New Hampshire. American Mineralogist, 60, 957-964.
Francis, C. (1976) The Palermo #1 Pegmatite, North Groton, Grafton County, New Hampshire. Mineralogical Record, 7, 102.
Moore, P.B. and Kampf, A.R. (1977) Schoonerite, a new zinc-manganese-iron phosphate mineral. American Mineralogist, 62, 246-249.
Segeler, C.G., Ulrich, W., Kampf, A.R., and Whitmore, R.W. (1981) Phosphate minerals of the Palermo No. 1 Pegmatite. Rocks & Minerals, 56, 196-214.
Pitman, L.C. (1989) Laueite from Hagendorf-Süd and the Palermo mine. Mineralogical Record, 20, 363–364.
Dallaire, D.A. and Whitmore, R.W. (1990) Mines and minerals of North Groton, New Hampshire. Rocks & Minerals, 65, 350-360.
Korzeb, Stanley L. (1990) Pseudomalachite: New Find at the Palermo No. 1 Pegmatite, New Hampshire. Rocks & Minerals, 65, 348-349.
Barker, Pat Berry (1995) Palermo Mine's Vanishing Bubbles. Mineral News, 11(5), 1-2.
Foord, Eugene E., Korzeb, Stanley L., Lichte, Frederick, E., and Fitzpatrick, Joan J. (1997) Additional Studies on Mixed Uranyl Oxide-Hydroxide Hydrate Alteration Products of Uraninite from the Palermo and Ruggles Granitic Pegmatites, Grafton County, New Hampshire. Canadian Mineralogist, 35, 145-151.
Korzeb, Stanley L., Foord, Eugene E., and Lichte, Frederick E. (1997) The chemical evolution and paragenesis of uranium minerals from the Ruggles and Palermo granitic pegmatites, New Hampshire. Canadian Mineralogist, 35, 135-144.
Moore, P.B. (2000) Analyses of Primary Phosphates from Pegmatites in Maine and Other Localities, in V. T. King (editor), Mineralogy of Maine. Mining History, Gems, and Geology, Maine Geological Survey, Augusta, Maine, 333-336.
King, V. (2002) Palermoite from the Palermo No.1 pegmatite, Groton, Grafton county, New Hampshire. Rocks & Minerals, 77, 173 (Crystallography); 77, 240-241 (Paragenesis).
Whitmore, R.W. and Lawrence, R.C., Jr. (2004) The Pegmatite Mines Known as Palermo (Friends of Palermo Mines, North Groton, New Hampshire).
Nizamoff, James W., et al. (2007) Parascholzite, keckite, gormanite, and other previously unreported secondary species and new data on kulanite and phosphophyllite from the Palermo No. 1 Mine, North Groton, New Hampshire. Rocks & Minerals, 82, 145 (abstract, Rochester Mineralogical Symposium).
Hughes, John M., Jolliff, Bradley L., and Rakovan, John (2008) The crystal chemistry of whitlockite and merrillite and the dehydrogenation of whitlockite to merrillite. American Mineralogist, 93, 1300-1305.
McManus, Catherine E., McMillan, Nancy J., Harmon, Russell S., Whitmore, Robert, De Lucia, Frank C. Jr., and Miziolek, Andrzej W. (2008) Use of laser induced breakdown spectroscopy in the determination of gem provenance: beryls. Applied Optics, 47, G72-G79.
Kampf, A.R., Mills, S.J., Simmons, W.B., Nizamoff, J.W., Whitmore, R.W. (2012) Falsterite,Ca2MgMn2+2(Fe2+0.5Fe3+0.5)4Zn4(PO4)8(OH)4(H2O)14, a new secondary phosphate mineral from the Palermo No. 1 pegmatite, North Groton, New Hampshire. American Mineralogist, 97, 496-502.
Schumer, B.N., Yang, H., and Downs, R.T. (2017) Natropalermoite, Na2SrAl4(PO4)4(OH)4, a new mineral isostructural with palermoite, from the Palermo No. 1 mine, Groton, New Hampshire, USA. Mineralogical Magazine, 81, 833-840.

Mindat Articles

Pre Hibernation Collecting by Paul Gilmore



This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2018, except where stated. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: December 12, 2018 23:15:12 Page generated: December 12, 2018 00:36:25
Go to top of page