IMPORTANT MESSAGE. We need your support now to keep mindat.org running. Click here to find out why.
Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for Educators
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsThe ElementsUsersBooks & MagazinesMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery

Itabira, Minas Gerais, Brazil

This page is currently not sponsored. Click here to sponsor this page.
Key
Lock Map
Neighbouring regions:


Portions of the Itabira area are assigned to overlapping geological provinces, the Iron Quadrangle Province (known in Brazil as the Quadrilátero Ferrífero) and Eastern Brazilian Pegmatite Province. The Iron Quadrangle Province is named for a more-or-less rectangular region containing rich deposits of iron ore in the form of banded iron formation (BIF). Brazil has become the world’s leading exporter of iron, largely due to these BIF deposits, and they are so important to the economy of the country that this kind of ore has become known throughout Brazil as “itabirite.” The BIF occurs in folded and thrust-faulted, marine metasedimentary rocks of Mesoproterozoic age. Geological features of these rocks formed during accretion of an island arc onto a portion of the ancient supercontinent of Rodinia roughly 2.0 billion years ago–an event typically referred to as the Transamazonian Orogeny (see Brito Neves et al., 2014).

Gold, platinum, and palladium deposits also formed in the Iron Quadrangle at that time. Those deposits occur in shear-zone veins and pods characterized by specular hematite, quartz, and kaolinite, forming a distinctive ore type referred to as “jacutinga” in Brazil. The Morro Velho Mine at Nova Lima in the Iron Quadrangle is the world’s oldest continuously operating gold mine, having opened in 1725. Upon reaching a depth of 1775 meters in 1915 it became the deepest mine in the world (since exceeded by diamond mines in South Africa). By 1960 it had produced 450 tons of gold. Platinoid ores in the area include five different essential platinum-bearing minerals, for which Itabira is type locality of one. Six essential palladium-bearing minerals have been reported from Itabira, which, rather remarkably, is the type locality for four of those. More recent hydrothermal activity associated with near-surface processes may have contributed to conditions that gave rise to this degree of mineralogic novelty, but by this time the gold and platinoids were already there.

The Eastern Brazilian Pegmatite Province (EBPP) is characterized by local pegmatitic intrusions, many of which have produced colored gemstones such as aquamarine, tourmaline, and topaz. The pegmatites are related to larger granitic intrusions that invaded what is now the eastern portion of Minas Gerais and adjacent parts of Rio de Janeiro, Espírito Santo, and Bahia states. These granites are associated with a second episode of tectonic accretion known as the Brasiliano Orogeny, of late Neoproterozoic and early Paleozoic age, roughly 660-500 million years ago. This was the most recent tectonic event that contributed to the geographic and tectonic outlines of the southern portion of the supercontinent Gondwana. The granites and associated pegmatites invaded country rock typical for the Iron Quadrangle province and other geologic provinces in eastern Brazil. Deposits of the EBPP are therefore spottily overprinted on older geological features, but because the pegmatites are important economically, and all are related to that one tectonic event, they have been recognized as belonging to a geological province in their own right.

Various portions of the EBPP have been referred to as gemological districts, and Itabira is in the Gemological District of Santa Maria de Itabira. In this area, beryllium-rich pegmatites emplaced during the Brasiliano Orogeny were leached by hot aqueous solutions, carrying Be3+ into the surrounding chromium-rich metasedimentary rocks (schists). Beryl colored green by a few tenths of a percent of Cr3+ formed the beryl variety emerald that crystallized in those rocks as temperatures declined (Gemma et al., 1996). That is considered to be a metamorphic rather than igneous process. Nevertheless, emeralds would not be present near Itabira if beryllium-rich pegmatites had not been intruded previously. Thus, this area is considered to be an outlier of the EBPP, superimposed over the larger Iron Quadrangle region. Because most pegmatites are rather small and localized, they have not fostered development of world-class open-pit and underground mines, as the iron and gold deposits have.

NK, May 2018

Alternative Label Names

This is a list of additional names that have been recorded for mineral labels associated with this locality in the minID database. This may include previous versions of the locality name hierarchy from mindat.org, data entry errors, and it may also include unconfirmed sublocality names or other names that can only be matched to this level.

Itabira, Iron Quadrangle, Minas Gerais, Brazil

Select Mineral List Type

Standard Detailed Strunz Dana Chemical Elements

Mineral List

Mineral list contains entries from the region specified including sub-localities

43 valid minerals. 5 (TL) - type locality of valid minerals.

Rock Types Recorded

Note: this is a very new system on mindat.org and data is currently VERY limited. Please bear with us while we work towards adding this information!

Rock list contains entries from the region specified including sub-localities

Select Rock List Type

Alphabetical List Tree Diagram

Detailed Mineral List:

Actinolite
Formula: ☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2
Reference: www.cprm.gov.br/ingles/bens/ifer0101.html.
Albite
Formula: Na(AlSi3O8)
'Albite-Anorthite Series'
Almandine
Formula: Fe2+3Al2(SiO4)3
Reference: Karel Bal Collection
'Amphibole Supergroup'
Formula: AX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
'Amphibolite'
Ankerite
Formula: Ca(Fe2+,Mg)(CO3)2
'Apatite'
Arsenopalladinite (TL)
Formula: Pd8(As,Sb)3
Reference: Canadian Mineralogist: 15: 70-73; Chem. Index of Minerals (1955) p. 23 and 339; Mineralogical Magazine(1974): 39, 528-543
Atheneite (TL)
Formula: Pd2As0.75Hg0.25
Reference: Mineralogical Magazine(1974) 39, 528-543
Baryte
Formula: BaSO4
Beryl
Formula: Be3Al2(Si6O18)
Beryl var: Aquamarine
Formula: Be3Al2Si6O18
Beryl var: Emerald
Formula: Be3Al2(Si6O18)
'Biotite'
Reference: www.cprm.gov.br/ingles/bens/ifer0101.html.
Calcite
Formula: CaCO3
'Chlorite Group'
Reference: www.cprm.gov.br/ingles/bens/ifer0101.html.
Chromite
Formula: Fe2+Cr3+2O4
Chrysoberyl
Formula: BeAl2O4
Clinochlore
Formula: Mg5Al(AlSi3O10)(OH)8
Cordierite
Formula: (Mg,Fe)2Al3(AlSi5O18)
Reference: Karel Bal Collection
Cordierite var: Iolite
Formula: (Mg,Fe)2Al3(AlSi5O18)
Reference: Karel Bal Collection
Dolomite
Formula: CaMg(CO3)2
'Feldspar Group'
Fluorite
Formula: CaF2
Galena
Formula: PbS
'Garnet Group'
Formula: X3Z2(SiO4)3
Gold
Formula: Au
Reference: RWMW specimen
Gold var: Palladian Gold
Formula: (Au,Pd)
Gold var: Porpezite
Formula: (Au,Pd)
Reference: RWMW specimen
Hematite
Formula: Fe2O3
Reference: RWMW specimen
Hematite var: Martite
Formula: Fe2O3
Hematite var: Specularite
Formula: Fe2O3
Hongshiite
Formula: PtCu
Reference: Canadian Mineralogist: 40: 711-723.
'Hornblende'
Isomertieite (TL)
Formula: Pd11Sb2As2
Reference: Mineralogical Magazine(1974) 39, 528-543
'itabirite'
Reference: US Bureau of Mines Dictionary of Mining, Mineral, and Related Terms. Accessed 12 December 2010 Archived 3 December 2010 at the Wayback Machine. Carlos Alberto Rosière et al.: Itabira Peak, State of Minas Gerais. Geographic, historical and structural landmark of the Quadrilátero Ferrífero. In: Sítios Geológicos e Paleontológicos do Brasil (SIGEP) 042, 2005
Jacutingaite (TL)
Formula: Pt2HgSe3
Reference: A. R. Cabral, H. F. Galbiatti, R. Kwitko-Riberio, B. Lehmann (2008): Terra Nova, 20, 32-37.; Vymazalová, A., Laufek, F., Drábek, M., Cabral, A.R., Haloda, J., Sidorinová, T., Lehmann, B., Galbiatti, H.F. and Drahokoupil, J. (2011) Jacutingaite, IMA 2010-078. CNMNC Newsletter No. 8, April 2011, page 293; Mineralogical Magazine, 75, 289-294.
Kaolinite
Formula: Al2(Si2O5)(OH)4
'K Feldspar'
Kyanite
Formula: Al2(SiO4)O
'Limonite'
Formula: (Fe,O,OH,H2O)
Magnetite
Formula: Fe2+Fe3+2O4
Microcline
Formula: K(AlSi3O8)
Molybdenite
Formula: MoS2
Muscovite
Formula: KAl2(AlSi3O10)(OH)2
Palladinite
Formula: PdO
Palladium
Formula: (Pd,Pt)
Palladseite (TL)
Formula: Pd17Se15
Reference: Mineralogical Magazine(1977) 41, 123 and M10-13
Phlogopite
Formula: KMg3(AlSi3O10)(OH)2
Platinum
Formula: Pt
Pyrite
Formula: FeS2
Quartz
Formula: SiO2
Reference: www.cprm.gov.br/ingles/bens/ifer0101.html.
Rutile
Formula: TiO2
Sillimanite
Formula: Al2(SiO4)O
Sperrylite
Formula: PtAs2
Sphalerite
Formula: ZnS
Staurolite
Formula: Fe2+2Al9Si4O23(OH)
Sudovikovite
Formula: PtSe2
Talc
Formula: Mg3Si4O10(OH)2
Reference: www.cprm.gov.br/ingles/bens/ifer0101.html.
Talc var: Steatite
Formula: Mg3(Si4O10)(OH)2
Reference: www.cprm.gov.br/ingles/bens/ifer0101.html.
Tetra-auricupride
Formula: AuCu
Titanite
Formula: CaTi(SiO4)O
'Tourmaline'
Formula: A(D3)G6(T6O18)(BO3)3X3Z
'Wad'

List of minerals arranged by Strunz 10th Edition classification

Group 1 - Elements
Gold1.AA.05Au
var: Palladian Gold1.AA.05(Au,Pd)
var: Porpezite1.AA.05(Au,Pd)
Hongshiite1.AG.45PtCu
Palladium1.AF.10(Pd,Pt)
Platinum1.AF.10Pt
Tetra-auricupride1.AA.10bAuCu
Group 2 - Sulphides and Sulfosalts
Arsenopalladinite (TL)2.AC.10cPd8(As,Sb)3
Atheneite (TL)2.AC.05aPd2As0.75Hg0.25
Galena2.CD.10PbS
Isomertieite (TL)2.AC.15aPd11Sb2As2
Molybdenite2.EA.30MoS2
Palladseite (TL)2.BC.05Pd17Se15
Pyrite2.EB.05aFeS2
Sperrylite2.EB.05aPtAs2
Sphalerite2.CB.05aZnS
Sudovikovite2.EA.20PtSe2
Group 3 - Halides
Fluorite3.AB.25CaF2
Group 4 - Oxides and Hydroxides
Chromite4.BB.05Fe2+Cr3+2O4
Chrysoberyl4.BA.05BeAl2O4
Hematite4.CB.05Fe2O3
var: Martite4.CB.05Fe2O3
var: Specularite4.CB.05Fe2O3
Magnetite4.BB.05Fe2+Fe3+2O4
Palladinite4.AB.30PdO
Quartz4.DA.05SiO2
Rutile4.DB.05TiO2
Group 5 - Nitrates and Carbonates
'Ankerite'5.AB.10Ca(Fe2+,Mg)(CO3)2
Calcite5.AB.05CaCO3
Dolomite5.AB.10CaMg(CO3)2
Group 7 - Sulphates, Chromates, Molybdates and Tungstates
Baryte7.AD.35BaSO4
Group 9 - Silicates
'Actinolite'9.DE.10☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2
'Albite'9.FA.35Na(AlSi3O8)
'Almandine'9.AD.25Fe2+3Al2(SiO4)3
Beryl9.CJ.05Be3Al2(Si6O18)
var: Aquamarine9.CJ.05Be3Al2Si6O18
var: Emerald9.CJ.05Be3Al2(Si6O18)
Clinochlore9.EC.55Mg5Al(AlSi3O10)(OH)8
Cordierite9.CJ.10(Mg,Fe)2Al3(AlSi5O18)
var: Iolite9.CJ.10(Mg,Fe)2Al3(AlSi5O18)
Kaolinite9.ED.05Al2(Si2O5)(OH)4
Kyanite9.AF.15Al2(SiO4)O
Microcline9.FA.30K(AlSi3O8)
Muscovite9.EC.15KAl2(AlSi3O10)(OH)2
Phlogopite9.EC.20KMg3(AlSi3O10)(OH)2
Sillimanite9.AF.05Al2(SiO4)O
Staurolite9.AF.30Fe2+2Al9Si4O23(OH)
Talc9.EC.05Mg3Si4O10(OH)2
var: Steatite9.EC.05Mg3(Si4O10)(OH)2
Titanite9.AG.15CaTi(SiO4)O
Unclassified Minerals, Rocks, etc.
'Albite-Anorthite Series'-
'Amphibole Supergroup'-AX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
'Amphibolite'-
'Apatite'-
Biotite-
Chlorite Group-
Feldspar Group-
Garnet Group-X3Z2(SiO4)3
Hornblende-
Jacutingaite (TL)-Pt2HgSe3
K Feldspar-
Limonite-(Fe,O,OH,H2O)
Tourmaline-A(D3)G6(T6O18)(BO3)3X3Z
Wad-
itabirite-

List of minerals arranged by Dana 8th Edition classification

Group 1 - NATIVE ELEMENTS AND ALLOYS
Metals, other than the Platinum Group
Gold1.1.1.1Au
Tetra-auricupride1.1.2.2AuCu
Platinum Group Metals and Alloys
Hongshiite1.2.3.1PtCu
Palladium1.2.1.4(Pd,Pt)
Platinum1.2.1.1Pt
Group 2 - SULFIDES
AmBnXp, with (m+n):p = 3:1
Atheneite (TL)2.2.4.1Pd2As0.75Hg0.25
AmXp, with m:p = 1:1
Galena2.8.1.1PbS
Sphalerite2.8.2.1ZnS
AmBnXp, with (m+n):p = 1:2
Molybdenite2.12.10.1MoS2
Pyrite2.12.1.1FeS2
Sperrylite2.12.1.13PtAs2
Miscellaneous
Arsenopalladinite (TL)2.16.5.1Pd8(As,Sb)3
Isomertieite (TL)2.16.2.1Pd11Sb2As2
Palladseite (TL)2.16.19.1Pd17Se15
Group 4 - SIMPLE OXIDES
A2X3
Hematite4.3.1.2Fe2O3
AX2
Rutile4.4.1.1TiO2
Group 7 - MULTIPLE OXIDES
AB2X4
Chromite7.2.3.3Fe2+Cr3+2O4
Chrysoberyl7.2.9.1BeAl2O4
Magnetite7.2.2.3Fe2+Fe3+2O4
Group 9 - NORMAL HALIDES
AX2
Fluorite9.2.1.1CaF2
Group 14 - ANHYDROUS NORMAL CARBONATES
A(XO3)
Calcite14.1.1.1CaCO3
AB(XO3)2
Ankerite14.2.1.2Ca(Fe2+,Mg)(CO3)2
Dolomite14.2.1.1CaMg(CO3)2
Group 28 - ANHYDROUS ACID AND NORMAL SULFATES
AXO4
Baryte28.3.1.1BaSO4
Group 51 - NESOSILICATES Insular SiO4 Groups Only
Insular SiO4 Groups Only with cations in [6] and >[6] coordination
Almandine51.4.3a.2Fe2+3Al2(SiO4)3
Group 52 - NESOSILICATES Insular SiO4 Groups and O,OH,F,H2O
Insular SiO4 Groups and O, OH, F, and H2O with cations in [4] and >[4] coordination
Kyanite52.2.2c.1Al2(SiO4)O
Sillimanite52.2.2a.1Al2(SiO4)O
Staurolite52.2.3.1Fe2+2Al9Si4O23(OH)
Insular SiO4 Groups and O, OH, F, and H2O with cations in [6] and/or >[6] coordination
Titanite52.4.3.1CaTi(SiO4)O
Group 61 - CYCLOSILICATES Six-Membered Rings
Six-Membered Rings with [Si6O18] rings; possible (OH) and Al substitution
Beryl61.1.1.1Be3Al2(Si6O18)
Six-Membered Rings with Al substituted rings
Cordierite61.2.1.1(Mg,Fe)2Al3(AlSi5O18)
Group 71 - PHYLLOSILICATES Sheets of Six-Membered Rings
Sheets of 6-membered rings with 2:1 layers
Muscovite71.2.2a.1KAl2(AlSi3O10)(OH)2
Phlogopite71.2.2b.1KMg3(AlSi3O10)(OH)2
Talc71.2.1.3Mg3Si4O10(OH)2
Sheets of 6-membered rings interlayered 1:1, 2:1, and octahedra
Clinochlore71.4.1.4Mg5Al(AlSi3O10)(OH)8
Group 75 - TECTOSILICATES Si Tetrahedral Frameworks
Si Tetrahedral Frameworks - SiO2 with [4] coordinated Si
Quartz75.1.3.1SiO2
Group 76 - TECTOSILICATES Al-Si Framework
Al-Si Framework with Al-Si frameworks
Albite76.1.3.1Na(AlSi3O8)
Microcline76.1.1.5K(AlSi3O8)
Unclassified Minerals, Rocks, etc.
Actinolite-☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2
'Albite-Anorthite Series'-
'Amphibole Supergroup'-AX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
'Amphibolite'-
'Apatite'-
Beryl
var: Aquamarine
-Be3Al2Si6O18
var: Emerald-Be3Al2(Si6O18)
'Biotite'-
'Chlorite Group'-
Cordierite
var: Iolite
-(Mg,Fe)2Al3(AlSi5O18)
'Feldspar Group'-
'Garnet Group'-X3Z2(SiO4)3
Gold
var: Palladian Gold
-(Au,Pd)
var: Porpezite-(Au,Pd)
Hematite
var: Martite
-Fe2O3
var: Specularite-Fe2O3
'Hornblende'-
Jacutingaite (TL)-Pt2HgSe3
'K Feldspar'-
Kaolinite-Al2(Si2O5)(OH)4
'Limonite'-(Fe,O,OH,H2O)
Palladinite-PdO
Sudovikovite-PtSe2
Talc
var: Steatite
-Mg3(Si4O10)(OH)2
'Tourmaline'-A(D3)G6(T6O18)(BO3)3X3Z
'Wad'-
'itabirite'-

List of minerals for each chemical element

HHydrogen
H Actinolite☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2
H Amphibole SupergroupAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
H ClinochloreMg5Al(AlSi3O10)(OH)8
H KaoliniteAl2(Si2O5)(OH)4
H Limonite(Fe,O,OH,H2O)
H MuscoviteKAl2(AlSi3O10)(OH)2
H PhlogopiteKMg3(AlSi3O10)(OH)2
H StauroliteFe22+Al9Si4O23(OH)
H Talc (var: Steatite)Mg3(Si4O10)(OH)2
H TalcMg3Si4O10(OH)2
BeBeryllium
Be Beryl (var: Aquamarine)Be3Al2Si6O18
Be BerylBe3Al2(Si6O18)
Be ChrysoberylBeAl2O4
Be Beryl (var: Emerald)Be3Al2(Si6O18)
BBoron
B TourmalineA(D3)G6(T6O18)(BO3)3X3Z
CCarbon
C AnkeriteCa(Fe2+,Mg)(CO3)2
C CalciteCaCO3
C DolomiteCaMg(CO3)2
OOxygen
O Actinolite☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2
O AlbiteNa(AlSi3O8)
O AlmandineFe32+Al2(SiO4)3
O Amphibole SupergroupAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
O AnkeriteCa(Fe2+,Mg)(CO3)2
O Beryl (var: Aquamarine)Be3Al2Si6O18
O BaryteBaSO4
O BerylBe3Al2(Si6O18)
O CalciteCaCO3
O ChromiteFe2+Cr23+O4
O ChrysoberylBeAl2O4
O ClinochloreMg5Al(AlSi3O10)(OH)8
O Cordierite(Mg,Fe)2Al3(AlSi5O18)
O DolomiteCaMg(CO3)2
O Beryl (var: Emerald)Be3Al2(Si6O18)
O Garnet GroupX3Z2(SiO4)3
O HematiteFe2O3
O Cordierite (var: Iolite)(Mg,Fe)2Al3(AlSi5O18)
O KaoliniteAl2(Si2O5)(OH)4
O KyaniteAl2(SiO4)O
O Limonite(Fe,O,OH,H2O)
O MagnetiteFe2+Fe23+O4
O Hematite (var: Martite)Fe2O3
O MicroclineK(AlSi3O8)
O MuscoviteKAl2(AlSi3O10)(OH)2
O PalladinitePdO
O PhlogopiteKMg3(AlSi3O10)(OH)2
O QuartzSiO2
O RutileTiO2
O SillimaniteAl2(SiO4)O
O Hematite (var: Specularite)Fe2O3
O StauroliteFe22+Al9Si4O23(OH)
O Talc (var: Steatite)Mg3(Si4O10)(OH)2
O TalcMg3Si4O10(OH)2
O TitaniteCaTi(SiO4)O
O TourmalineA(D3)G6(T6O18)(BO3)3X3Z
FFluorine
F Amphibole SupergroupAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
F FluoriteCaF2
NaSodium
Na AlbiteNa(AlSi3O8)
MgMagnesium
Mg Actinolite☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2
Mg AnkeriteCa(Fe2+,Mg)(CO3)2
Mg ClinochloreMg5Al(AlSi3O10)(OH)8
Mg Cordierite(Mg,Fe)2Al3(AlSi5O18)
Mg DolomiteCaMg(CO3)2
Mg Cordierite (var: Iolite)(Mg,Fe)2Al3(AlSi5O18)
Mg PhlogopiteKMg3(AlSi3O10)(OH)2
Mg Talc (var: Steatite)Mg3(Si4O10)(OH)2
Mg TalcMg3Si4O10(OH)2
AlAluminium
Al AlbiteNa(AlSi3O8)
Al AlmandineFe32+Al2(SiO4)3
Al Amphibole SupergroupAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Al Beryl (var: Aquamarine)Be3Al2Si6O18
Al BerylBe3Al2(Si6O18)
Al ChrysoberylBeAl2O4
Al ClinochloreMg5Al(AlSi3O10)(OH)8
Al Cordierite(Mg,Fe)2Al3(AlSi5O18)
Al Beryl (var: Emerald)Be3Al2(Si6O18)
Al Cordierite (var: Iolite)(Mg,Fe)2Al3(AlSi5O18)
Al KaoliniteAl2(Si2O5)(OH)4
Al KyaniteAl2(SiO4)O
Al MicroclineK(AlSi3O8)
Al MuscoviteKAl2(AlSi3O10)(OH)2
Al PhlogopiteKMg3(AlSi3O10)(OH)2
Al SillimaniteAl2(SiO4)O
Al StauroliteFe22+Al9Si4O23(OH)
SiSilicon
Si Actinolite☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2
Si AlbiteNa(AlSi3O8)
Si AlmandineFe32+Al2(SiO4)3
Si Amphibole SupergroupAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Si Beryl (var: Aquamarine)Be3Al2Si6O18
Si BerylBe3Al2(Si6O18)
Si ClinochloreMg5Al(AlSi3O10)(OH)8
Si Cordierite(Mg,Fe)2Al3(AlSi5O18)
Si Beryl (var: Emerald)Be3Al2(Si6O18)
Si Garnet GroupX3Z2(SiO4)3
Si Cordierite (var: Iolite)(Mg,Fe)2Al3(AlSi5O18)
Si KaoliniteAl2(Si2O5)(OH)4
Si KyaniteAl2(SiO4)O
Si MicroclineK(AlSi3O8)
Si MuscoviteKAl2(AlSi3O10)(OH)2
Si PhlogopiteKMg3(AlSi3O10)(OH)2
Si QuartzSiO2
Si SillimaniteAl2(SiO4)O
Si StauroliteFe22+Al9Si4O23(OH)
Si Talc (var: Steatite)Mg3(Si4O10)(OH)2
Si TalcMg3Si4O10(OH)2
Si TitaniteCaTi(SiO4)O
SSulfur
S BaryteBaSO4
S GalenaPbS
S MolybdeniteMoS2
S PyriteFeS2
S SphaleriteZnS
ClChlorine
Cl Amphibole SupergroupAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
KPotassium
K MicroclineK(AlSi3O8)
K MuscoviteKAl2(AlSi3O10)(OH)2
K PhlogopiteKMg3(AlSi3O10)(OH)2
CaCalcium
Ca Actinolite☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2
Ca AnkeriteCa(Fe2+,Mg)(CO3)2
Ca CalciteCaCO3
Ca DolomiteCaMg(CO3)2
Ca FluoriteCaF2
Ca TitaniteCaTi(SiO4)O
TiTitanium
Ti Amphibole SupergroupAX2Z5((Si,Al,Ti)8O22)(OH,F,Cl,O)2
Ti RutileTiO2
Ti TitaniteCaTi(SiO4)O
CrChromium
Cr ChromiteFe2+Cr23+O4
FeIron
Fe Actinolite☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2
Fe AlmandineFe32+Al2(SiO4)3
Fe AnkeriteCa(Fe2+,Mg)(CO3)2
Fe ChromiteFe2+Cr23+O4
Fe Cordierite(Mg,Fe)2Al3(AlSi5O18)
Fe HematiteFe2O3
Fe Cordierite (var: Iolite)(Mg,Fe)2Al3(AlSi5O18)
Fe Limonite(Fe,O,OH,H2O)
Fe MagnetiteFe2+Fe23+O4
Fe Hematite (var: Martite)Fe2O3
Fe PyriteFeS2
Fe Hematite (var: Specularite)Fe2O3
Fe StauroliteFe22+Al9Si4O23(OH)
CuCopper
Cu HongshiitePtCu
Cu PalladinitePdO
Cu Tetra-auricuprideAuCu
ZnZinc
Zn SphaleriteZnS
AsArsenic
As ArsenopalladinitePd8(As,Sb)3
As AtheneitePd2As0.75Hg0.25
As IsomertieitePd11Sb2As2
As SperrylitePtAs2
SeSelenium
Se JacutingaitePt2HgSe3
Se PalladseitePd17Se15
Se SudovikovitePtSe2
MoMolybdenum
Mo MolybdeniteMoS2
PdPalladium
Pd ArsenopalladinitePd8(As,Sb)3
Pd AtheneitePd2As0.75Hg0.25
Pd IsomertieitePd11Sb2As2
Pd Gold (var: Palladian Gold)(Au,Pd)
Pd PalladinitePdO
Pd Palladium(Pd,Pt)
Pd PalladseitePd17Se15
Pd Gold (var: Porpezite)(Au,Pd)
SbAntimony
Sb IsomertieitePd11Sb2As2
BaBarium
Ba BaryteBaSO4
PtPlatinum
Pt HongshiitePtCu
Pt JacutingaitePt2HgSe3
Pt PlatinumPt
Pt SperrylitePtAs2
Pt SudovikovitePtSe2
AuGold
Au GoldAu
Au Gold (var: Palladian Gold)(Au,Pd)
Au Gold (var: Porpezite)(Au,Pd)
Au Tetra-auricuprideAuCu
HgMercury
Hg AtheneitePd2As0.75Hg0.25
Hg JacutingaitePt2HgSe3
PbLead
Pb GalenaPbS

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
Cabri, L. J., Clark, A. M., and Chen, T. T. (1977) Arsenopalladinite from Itabira, Brazil, and from the Stillwater Complex, Montana. Canadian Mineralogist: 15, 70-73.
Gemma, R. O., and Gammons, C. H. (1996). Thermodynamic and textural evidence for at least two stages of Au-Pd mineralization at the Cauê Hon Mine, Itabira District, Brazil.
The Canadian Mineralogist: 34, 547-557.
Kwitko, R., Cabral, A. R., Lehmann, B., Laflamme, J. H. G., Cabri, L. J., Criddle, A. J., and Galbiatti, H. F. (2002) Hongshiite, PtCu, from itabirite-hosted Au-Pd-Pt mineralization (jacutinga), Itabira district, Minas Gerais, Brazil. Canadian Mineralogist: 40, 711-723.
Brito Neves, B. B. de, Fuck, R. A., and Pimental, M. M. (2014). The Brasiliano collage in South America: a review. Brazilian Journal of Geology: 44(3), 493-518.

Localities in this Region
Show map

Some regions, for example mining districts and mountain ranges, cut across political boundaries and do fit neatly into the standard locality hierarchy. This list includes regions that overlap this region in part if not fully.

Iron Quadrangle, Minas Gerais, Brazil

Quadrangle - 176 mineral species & varietal names listed

The following list is the regular hierarchical locality list for this region.


This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2018, except where stated. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: November 16, 2018 13:47:52
View slideshow - Go to top of page