SUPPORT US. Covid-19 has significantly affected our fundraising. Please help!
Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsBooks & Magazines
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryMineral Photography

Parys Mountain Mines (Paris Mine; Parys Mine; Mona Mine; Morfa Du Mine), Amlwch, Isle of Anglesey, Wales, UKi
Regional Level Types
Parys Mountain Mines (Paris Mine; Parys Mine; Mona Mine; Morfa Du Mine)Group of Mines
AmlwchCommunity
Isle of AngleseyCounty
WalesCountry
UKCountry

This page is currently not sponsored. Contact us for sponsorship opportunities.
Key
Latitude & Longitude (WGS84):
53° 23' 12'' North , 4° 20' 39'' West
Latitude & Longitude (decimal):
UK National Grid Reference:
SH441904
Locality type:
Group of Mines
Köppen climate type:
Nearest Settlements:
PlacePopulationDistance
Penysarn595 (2017)1.8km
Amlwch3,211 (2017)2.6km
Llanerchymedd1,133 (2017)6.6km
Llanfechell589 (2017)7.4km
Cemaes Bay1,187 (2017)7.7km
Owned/operated by:
Other/historical names associated with this locality:
Gwynedd;


The type locality for anglesite, specimens were found ca. 1790-1800 when the mine worked the gossan. Specimens are generally rare and examples can now most commonly be seen in old museum collections. Large crystals of barite have also been recorded during this period, but do not appear to have been saved. Many of the other specimens listed are generally microscopic in nature, unprepossessing, or are disseminated within the ore.

Whilst there is some evidence that parts of Parys mountain had been subjected to Bronze age fire setting techniques and that the Romans had mined areas here for lead and copper, the mines were first recorded worked in Elizabethan times (ca. 1580). A map in the Public records office (PRO SP45/36 MPF11) shows the havens of Amlwch and Dulas and gives distances to the copper works locating them on the eastern side of Parys mountain.

The main phase of working began in 1761, with Parys Mountain rapidly becoming Europe's premier copper mine. The Great Lode, which contained an average of 3.5% copper, was discovered in 1768. Together with underground workings and its newly-started opencast, Mona mine also utilised the precipitation process. In 1772/3, large amounts of scrap iron were being transported from London to be used in Mona Mine's precipitation pits.

By 1770 the vein had been extended onto Parys farm land causing increasing bitter boundary disputes. As a consequence, the deposit was then worked jointly by two mines, Mona Mine in the east and Parys Mine in the west. However, arguments over boundaries continued for many years and in 1835 a court ruling gave 2000 square yards of Mona mine's land to Parys mine.

Whilst masses of copper to 30lbs were noted by Lentin in 1800, the subsequent exhaustion of easily won supplies led to a dramatic drop in production in both mines in the first decade of the 19th century. Although there was a resurgence in the 1820s when new lodes were discovered, by around 1830, many of the Mona mine's precipitation pits were abandoned.

In 1832/4 the Parys mine's North Discovery lode was found, which lasted until around 1840, after which most mining had finished, with many mine workers moving to the Drws y Coed mine in Snowdonia.

There was a further resurgence of mining ca. 1860, the Parys Mines Company making an estimated £400,000 profit between 1858-70, after which mining continued in decline until ca. 1890 when most mining had ceased.

In 1877 part of the lease at the western end of the deposit was sold to the Morfu Du mining company, who then worked the Morfa Du Mine (small, shallow, ill-defined workings - SH 432900) from 1881-1904 and raised 5783 tons of ore.

In 1899 the Mona and Parys mines were merged to form Mona and Parys mines Ltd. Activity was concentrated at the precipitation and ochre works.

It is estimated that between 1768-1904, a total of 3.5 million tons of ore were raised, producing 130,000 tons of copper and around 20km of underground workings were driven. Although large opencasts remain on the hill, there is remarkably little to be seen in the way of minerals.

Modern exploration commenced in 1955, initially by Anglesey Mining Exploration Ltd and then by the Anglesey Copper Mines (UK) Ltd, who, until 1962, drilled 11 boreholes. From 1966-70 the Canadian Industrial Gas and Oil Company Ltd ( CIGOL) drilled a further 52 bore holes without finding promising reserves.

In 1973, a high-grade polymetallic ore deposit was discovered by Cominco Ltd. Estimated reserves were 4.8 million tonnes of ore containing 1.5% copper, 3% lead, 6% Zinc, and small amounts of gold and silver.

In 1988, a new shaft (Morris shaft) was sunk by The Anglesey Mining Company. Reserves are now stated to be 7.8 million tonnes. In 2008, AMC began negotiations with Western Metals of Australia to purchase and develop the site, but the subsequent fall in world metal prices has left the future of mining here unresolved.

Of historical interest, Parys Mountain provided the copper sheathing for the hulls of warships of the British Navy, its fleet being completely coppered between 1778-82. The technique, developed in Britain, improved performance (and protected the hull from the ravages of the Teredo worm) and gave the British Navy important advantages over the French and Spanish fleets during the wars of the time.

The site has also featured as a location for a number of films including the cult UK Sci-Fi series, "Dr. Who".

NB: contemporaneous mining tokens (pictures shown within site photos) name the mining company as the Paris Mine.

Select Mineral List Type

Standard Detailed Gallery Strunz Dana Chemical Elements

Commodity List

This is a list of exploitable or exploited mineral commodities recorded at this locality.


Mineral List


50 valid minerals. 1 (TL) - type locality of valid minerals.

Rock Types Recorded

Note: data is currently VERY limited. Please bear with us while we work towards adding this information!

Select Rock List Type

Alphabetical List Tree Diagram

Detailed Mineral List:

Anatase
Formula: TiO2
Reference: No reference listed
Anglesite (TL)
Formula: PbSO4
Type Locality:
Reference: Rocks & Min.: 18:71; Lapis 7 (1991), 8.
Anhydrite
Formula: CaSO4
Reference: No reference listed
Ankerite
Formula: Ca(Fe2+,Mg)(CO3)2
Reference: Cotterell, T.F. and Jenkins, D.A. (2008) Ranciéite from Mynydd Parys, Amlwch, Anglesey, Wales. Journal of the Russell Society, vol. 11, 59-63.
Baryte
Formula: BaSO4
Reference: Bullock, L., Parnell, J., Perez, M., Feldmann, J., & Armstrong, J. (2017). Selenium and other trace element mobility in waste products and weathered sediments at Parys Mountain Copper Mine, Anglesey, UK. Minerals, 7(11), 229.
Bismuth
Formula: Bi
Reference: No reference listed
Bismuthinite
Formula: Bi2S3
Reference: No reference listed
Bornite
Formula: Cu5FeS4
Reference: No reference listed
Bournonite
Formula: PbCuSbS3
Reference: No reference listed
Calcite
Formula: CaCO3
Reference: Cotterell, T.F. and Jenkins, D.A. (2008) Ranciéite from Mynydd Parys, Amlwch, Anglesey, Wales. Journal of the Russell Society, vol. 11, 59-63.
Chalcanthite
Formula: CuSO4 · 5H2O
Reference: No reference listed
Chalcocite
Formula: Cu2S
Reference: Henwood, W.J. (1843): Transactions of the Royal Geological Society of Cornwall 5, 1-386 (footnote on p. 238)
Chalcopyrite
Formula: CuFeS2
Reference: Henwood, W.J. (1843): Transactions of the Royal Geological Society of Cornwall 5, 1-386 (footnote on p. 238); Smyth, W.M., Reeks, T., and Rudler, F.W. (1864): A Catalogue of the Mineral Collections in the Museum of Practical Geology. HMSO Publications (London), 190 pp.
'Chlorite Group'
Reference: Bullock, L., Parnell, J., Perez, M., Feldmann, J., & Armstrong, J. (2017). Selenium and other trace element mobility in waste products and weathered sediments at Parys Mountain Copper Mine, Anglesey, UK. Minerals, 7(11), 229.
Copiapite
Formula: Fe2+Fe3+4(SO4)6(OH)2 · 20H2O
Reference: No reference listed
Copper
Formula: Cu
Reference: No reference listed
Covellite
Formula: CuS
Reference: No reference listed
Cuprite
Formula: Cu2O
Reference: No reference listed
Dolomite
Formula: CaMg(CO3)2
Reference: Cotterell, T.F. and Jenkins, D.A. (2008) Ranciéite from Mynydd Parys, Amlwch, Anglesey, Wales. Journal of the Russell Society, vol. 11, 59-63.
Dolomite var. Iron-bearing Dolomite
Formula: Ca(Mg,Fe)(CO3)2
Reference: Cotterell, T.F. and Jenkins, D.A. (2008) Ranciéite from Mynydd Parys, Amlwch, Anglesey, Wales. Journal of the Russell Society, vol. 11, 59-63.
Felsőbányaite
Formula: Al4(SO4)(OH)10 · 4H2O
Description: basaluminite [felsöbányaite], from this locality, was listed without description by Jenkins et al. (2000).
Reference: Jenkins, D. A., Johnson, D. B. & Freeman, C., 2000. Mynydd Parys Cu-Pb-Zn mines: mineralogy, microbiology and acid mine drainage. pp. 161-179. In: Environmental Mineralogy: Microbial Interactions, Anthropogenic Influences, Contaminated Land and Waste Management (Cotter-Howells, J. D., Campbell, L. S., Valasami-Jones, E. & Batchelder, M., eds.). The Mineralogical Society of Great Britain & Ireland, London.
Galena
Formula: PbS
Reference: Bullock, L., Parnell, J., Perez, M., Feldmann, J., & Armstrong, J. (2017). Selenium and other trace element mobility in waste products and weathered sediments at Parys Mountain Copper Mine, Anglesey, UK. Minerals, 7(11), 229.
Galenobismutite
Formula: PbBi2S4
Reference: No reference listed
'Glockerite'
Formula: Fe3+4(SO4)(OH)10 · 1-3H2O ?
Reference: Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 588.
Goethite
Formula: α-Fe3+O(OH)
Reference: Bullock, L., Parnell, J., Perez, M., Feldmann, J., & Armstrong, J. (2017). Selenium and other trace element mobility in waste products and weathered sediments at Parys Mountain Copper Mine, Anglesey, UK. Minerals, 7(11), 229.
Gold
Formula: Au
Reference: No reference listed
Gypsum
Formula: CaSO4 · 2H2O
Reference: Bullock, L., Parnell, J., Perez, M., Feldmann, J., & Armstrong, J. (2017). Selenium and other trace element mobility in waste products and weathered sediments at Parys Mountain Copper Mine, Anglesey, UK. Minerals, 7(11), 229.
Halotrichite
Formula: FeAl2(SO4)4 · 22H2O
Reference: No reference listed
Hematite
Formula: Fe2O3
Reference: Bullock, L., Parnell, J., Perez, M., Feldmann, J., & Armstrong, J. (2017). Selenium and other trace element mobility in waste products and weathered sediments at Parys Mountain Copper Mine, Anglesey, UK. Minerals, 7(11), 229.
Ilmenite
Formula: Fe2+TiO3
Reference: No reference listed
Jarosite
Formula: KFe3+ 3(SO4)2(OH)6
Reference: Bullock, L., Parnell, J., Perez, M., Feldmann, J., & Armstrong, J. (2017). Selenium and other trace element mobility in waste products and weathered sediments at Parys Mountain Copper Mine, Anglesey, UK. Minerals, 7(11), 229.
Jordanite
Formula: Pb14(As,Sb)6S23
Reference: No reference listed
Kobellite
Formula: Pb22Cu4(Bi,Sb)30S69
Reference: No reference listed
'Limonite'
Formula: (Fe,O,OH,H2O)
Reference: Bullock, L., Parnell, J., Perez, M., Feldmann, J., & Armstrong, J. (2017). Selenium and other trace element mobility in waste products and weathered sediments at Parys Mountain Copper Mine, Anglesey, UK. Minerals, 7(11), 229.
Magnetite
Formula: Fe2+Fe3+2O4
Reference: No reference listed
Malachite
Formula: Cu2(CO3)(OH)2
Reference: No reference listed
Marcasite
Formula: FeS2
Reference: No reference listed
Melanterite
Formula: Fe2+(H2O)6SO4 · H2O
Reference: No reference listed
Minium
Formula: Pb3O4
Reference: No reference listed
'Monazite'
Reference: Bullock, L., Parnell, J., Perez, M., Feldmann, J., & Armstrong, J. (2017). Selenium and other trace element mobility in waste products and weathered sediments at Parys Mountain Copper Mine, Anglesey, UK. Minerals, 7(11), 229.
Muscovite
Formula: KAl2(AlSi3O10)(OH)2
Reference: Bullock, L., Parnell, J., Perez, M., Feldmann, J., & Armstrong, J. (2017). Selenium and other trace element mobility in waste products and weathered sediments at Parys Mountain Copper Mine, Anglesey, UK. Minerals, 7(11), 229.
Muscovite var. Sericite
Formula: KAl2(AlSi3O10)(OH)2
Reference: Bullock, L., Parnell, J., Perez, M., Feldmann, J., & Armstrong, J. (2017). Selenium and other trace element mobility in waste products and weathered sediments at Parys Mountain Copper Mine, Anglesey, UK. Minerals, 7(11), 229.
Pickeringite
Formula: MgAl2(SO4)4 · 22H2O
Reference: No reference listed
Pyrite
Formula: FeS2
Reference: Cotterell, T.F. and Jenkins, D.A. (2008) Ranciéite from Mynydd Parys, Amlwch, Anglesey, Wales. Journal of the Russell Society, vol. 11, 59-63.; Bullock, L., Parnell, J., Perez, M., Feldmann, J., & Armstrong, J. (2017). Selenium and other trace element mobility in waste products and weathered sediments at Parys Mountain Copper Mine, Anglesey, UK. Minerals, 7(11), 229.
Pyromorphite
Formula: Pb5(PO4)3Cl
Reference: No reference listed
Pyrrhotite
Formula: Fe1-xS
Reference: No reference listed
Quartz
Formula: SiO2
Reference: Bullock, L., Parnell, J., Perez, M., Feldmann, J., & Armstrong, J. (2017). Selenium and other trace element mobility in waste products and weathered sediments at Parys Mountain Copper Mine, Anglesey, UK. Minerals, 7(11), 229.
Ranciéite
Formula: (Ca,Mn2+)0.2(Mn4+,Mn3+)O2 · 0.6H2O
Habit: soft, porous stalactitic aggregates several centimetres across.
Colour: dark brown to black
Description: precipitating on the roof of the Joint (45 fathom-) level
Reference: Cotterell, T.F. and Jenkins, D.A. (2008) Ranciéite from Mynydd Parys, Amlwch, Anglesey, Wales. Journal of the Russell Society, vol. 11, 59-63.; Tindle, A.G. (2008) Minerals of Britain and Ireland. Terra Publishing. 616 pp.
Rozenite
Formula: FeSO4 · 4H2O
Reference: National Museum of Wales database
Rutile
Formula: TiO2
Reference: No reference listed
Siderite
Formula: FeCO3
Reference: Cotterell, T.F. and Jenkins, D.A. (2008) Ranciéite from Mynydd Parys, Amlwch, Anglesey, Wales. Journal of the Russell Society, vol. 11, 59-63.
Silver
Formula: Ag
Reference: No reference listed
'Snottite'
Description: (post-mining in drained workings)
Reference: www.reference.com/browse/snottite?s=t
Sphalerite
Formula: ZnS
Reference: Bullock, L., Parnell, J., Perez, M., Feldmann, J., & Armstrong, J. (2017). Selenium and other trace element mobility in waste products and weathered sediments at Parys Mountain Copper Mine, Anglesey, UK. Minerals, 7(11), 229.
Spionkopite
Formula: Cu39S28
Reference: No reference listed
Sulphur
Formula: S8
Reference: No reference listed
'Tennantite Subgroup'
Formula: Cu6(Cu4C2+2)As4S12S
Reference: No reference listed
Tenorite
Formula: CuO
Reference: No reference listed
'Tetrahedrite Subgroup'
Formula: Cu6(Cu4C2+2)Sb4S12S
Reference: No reference listed

List of minerals arranged by Strunz 10th Edition classification

Group 1 - Elements
Bismuth1.CA.05Bi
Copper1.AA.05Cu
Gold1.AA.05Au
Silver1.AA.05Ag
Sulphur1.CC.05S8
Group 2 - Sulphides and Sulfosalts
Bismuthinite2.DB.05Bi2S3
Bornite2.BA.15Cu5FeS4
Bournonite2.GA.50PbCuSbS3
Chalcocite2.BA.05Cu2S
Chalcopyrite2.CB.10aCuFeS2
Covellite2.CA.05aCuS
Galena2.CD.10PbS
Galenobismutite2.JC.25ePbBi2S4
Jordanite2.JB.30aPb14(As,Sb)6S23
Kobellite2.HB.10aPb22Cu4(Bi,Sb)30S69
Marcasite2.EB.10aFeS2
Pyrite2.EB.05aFeS2
Pyrrhotite2.CC.10Fe1-xS
Sphalerite2.CB.05aZnS
Spionkopite2.CA.05cCu39S28
'Tennantite Subgroup'2.GB.05Cu6(Cu4C2+2)As4S12S
'Tetrahedrite Subgroup'2.GB.05Cu6(Cu4C2+2)Sb4S12S
Group 4 - Oxides and Hydroxides
Anatase4.DD.05TiO2
Cuprite4.AA.10Cu2O
Goethite4.00.α-Fe3+O(OH)
Hematite4.CB.05Fe2O3
Ilmenite4.CB.05Fe2+TiO3
Magnetite4.BB.05Fe2+Fe3+2O4
Minium4.BD.05Pb3O4
Quartz4.DA.05SiO2
Ranciéite4.FL.40(Ca,Mn2+)0.2(Mn4+,Mn3+)O2 · 0.6H2O
Rutile4.DB.05TiO2
Tenorite4.AB.10CuO
Group 5 - Nitrates and Carbonates
Ankerite5.AB.10Ca(Fe2+,Mg)(CO3)2
Calcite5.AB.05CaCO3
Dolomite5.AB.10CaMg(CO3)2
var. Iron-bearing Dolomite5.AB.10Ca(Mg,Fe)(CO3)2
Malachite5.BA.10Cu2(CO3)(OH)2
Siderite5.AB.05FeCO3
Group 7 - Sulphates, Chromates, Molybdates and Tungstates
Anglesite (TL)7.AD.35PbSO4
Anhydrite7.AD.30CaSO4
Baryte7.AD.35BaSO4
Chalcanthite7.CB.20CuSO4 · 5H2O
Copiapite7.DB.35Fe2+Fe3+4(SO4)6(OH)2 · 20H2O
Felsőbányaite7.DD.05Al4(SO4)(OH)10 · 4H2O
Gypsum7.CD.40CaSO4 · 2H2O
Halotrichite7.CB.85FeAl2(SO4)4 · 22H2O
Jarosite7.BC.10KFe3+3(SO4)2(OH)6
Melanterite7.CB.35Fe2+(H2O)6SO4 · H2O
Pickeringite7.CB.85MgAl2(SO4)4 · 22H2O
Rozenite7.CB.15FeSO4 · 4H2O
Group 8 - Phosphates, Arsenates and Vanadates
Pyromorphite8.BN.05Pb5(PO4)3Cl
Group 9 - Silicates
Muscovite9.EC.15KAl2(AlSi3O10)(OH)2
var. Sericite9.EC.15KAl2(AlSi3O10)(OH)2
Unclassified Minerals, Rocks, etc.
'Chlorite Group'-
'Glockerite'-Fe3+4(SO4)(OH)10 · 1-3H2O ?
'Limonite'-(Fe,O,OH,H2O)
'Monazite'-
'Snottite'-

List of minerals arranged by Dana 8th Edition classification

Group 1 - NATIVE ELEMENTS AND ALLOYS
Metals, other than the Platinum Group
Copper1.1.1.3Cu
Gold1.1.1.1Au
Silver1.1.1.2Ag
Semi-metals and non-metals
Bismuth1.3.1.4Bi
Sulphur1.3.5.1S8
Group 2 - SULFIDES
AmBnXp, with (m+n):p = 2:1
Chalcocite2.4.7.1Cu2S
Spionkopite2.4.7.7Cu39S28
AmBnXp, with (m+n):p = 3:2
Bornite2.5.2.1Cu5FeS4
AmXp, with m:p = 1:1
Covellite2.8.12.1CuS
Galena2.8.1.1PbS
Pyrrhotite2.8.10.1Fe1-xS
Sphalerite2.8.2.1ZnS
AmBnXp, with (m+n):p = 1:1
Chalcopyrite2.9.1.1CuFeS2
AmBnXp, with (m+n):p = 2:3
Bismuthinite2.11.2.3Bi2S3
AmBnXp, with (m+n):p = 1:2
Marcasite2.12.2.1FeS2
Pyrite2.12.1.1FeS2
Group 3 - SULFOSALTS
3 <ø < 4
Jordanite3.3.1.1Pb14(As,Sb)6S23
'Tennantite Subgroup'3.3.6.2Cu6(Cu4C2+2)As4S12S
'Tetrahedrite Subgroup'3.3.6.1Cu6(Cu4C2+2)Sb4S12S
ø = 3
Bournonite3.4.3.2PbCuSbS3
2 < ø < 2.49
Kobellite3.6.19.1Pb22Cu4(Bi,Sb)30S69
ø = 2
Galenobismutite3.7.9.1PbBi2S4
Group 4 - SIMPLE OXIDES
A2X
Cuprite4.1.1.1Cu2O
AX
Tenorite4.2.3.1CuO
A2X3
Hematite4.3.1.2Fe2O3
Ilmenite4.3.5.1Fe2+TiO3
AX2
Anatase4.4.4.1TiO2
Rutile4.4.1.1TiO2
Group 6 - HYDROXIDES AND OXIDES CONTAINING HYDROXYL
XO(OH)
Goethite6.1.1.2α-Fe3+O(OH)
Group 7 - MULTIPLE OXIDES
AB2X4
Magnetite7.2.2.3Fe2+Fe3+2O4
Minium7.2.8.1Pb3O4
AB4X9
Ranciéite7.10.1.1(Ca,Mn2+)0.2(Mn4+,Mn3+)O2 · 0.6H2O
Group 14 - ANHYDROUS NORMAL CARBONATES
A(XO3)
Calcite14.1.1.1CaCO3
Siderite14.1.1.3FeCO3
AB(XO3)2
Ankerite14.2.1.2Ca(Fe2+,Mg)(CO3)2
Dolomite14.2.1.1CaMg(CO3)2
Group 16a - ANHYDROUS CARBONATES CONTAINING HYDROXYL OR HALOGEN
Malachite16a.3.1.1Cu2(CO3)(OH)2
Group 28 - ANHYDROUS ACID AND NORMAL SULFATES
AXO4
Anglesite (TL)28.3.1.3PbSO4
Anhydrite28.3.2.1CaSO4
Baryte28.3.1.1BaSO4
Group 29 - HYDRATED ACID AND NORMAL SULFATES
AXO4·xH2O
Chalcanthite29.6.7.1CuSO4 · 5H2O
Gypsum29.6.3.1CaSO4 · 2H2O
Melanterite29.6.10.1Fe2+(H2O)6SO4 · H2O
Rozenite29.6.6.1FeSO4 · 4H2O
AB2(XO4)4·H2O
Halotrichite29.7.3.2FeAl2(SO4)4 · 22H2O
Pickeringite29.7.3.1MgAl2(SO4)4 · 22H2O
Group 30 - ANHYDROUS SULFATES CONTAINING HYDROXYL OR HALOGEN
(AB)2(XO4)Zq
Jarosite30.2.5.1KFe3+ 3(SO4)2(OH)6
Group 31 - HYDRATED SULFATES CONTAINING HYDROXYL OR HALOGEN
(AB)4(XO4)Zq·xH2O
Felsőbányaite31.4.4.1Al4(SO4)(OH)10 · 4H2O
Miscellaneous
Copiapite31.10.5.1Fe2+Fe3+4(SO4)6(OH)2 · 20H2O
Group 41 - ANHYDROUS PHOSPHATES, ETC.CONTAINING HYDROXYL OR HALOGEN
A5(XO4)3Zq
Pyromorphite41.8.4.1Pb5(PO4)3Cl
Group 71 - PHYLLOSILICATES Sheets of Six-Membered Rings
Sheets of 6-membered rings with 2:1 layers
Muscovite71.2.2a.1KAl2(AlSi3O10)(OH)2
Group 75 - TECTOSILICATES Si Tetrahedral Frameworks
Si Tetrahedral Frameworks - SiO2 with [4] coordinated Si
Quartz75.1.3.1SiO2
Unclassified Minerals, Mixtures, etc.
'Chlorite Group'-
Dolomite
var. Iron-bearing Dolomite
-Ca(Mg,Fe)(CO3)2
'Glockerite'-Fe3+4(SO4)(OH)10 · 1-3H2O ?
'Limonite'-(Fe,O,OH,H2O)
'Monazite'-
Muscovite
var. Sericite
-KAl2(AlSi3O10)(OH)2
'Snottite'-

List of minerals for each chemical element

HHydrogen
H ChalcanthiteCuSO4 · 5H2O
H CopiapiteFe2+Fe43+(SO4)6(OH)2 · 20H2O
H Goethiteα-Fe3+O(OH)
H GypsumCaSO4 · 2H2O
H HalotrichiteFeAl2(SO4)4 · 22H2O
H JarositeKFe3+ 3(SO4)2(OH)6
H Limonite(Fe,O,OH,H2O)
H MalachiteCu2(CO3)(OH)2
H MelanteriteFe2+(H2O)6SO4 · H2O
H PickeringiteMgAl2(SO4)4 · 22H2O
H RozeniteFeSO4 · 4H2O
H GlockeriteFe43+(SO4)(OH)10 · 1-3H2O ?
H FelsőbányaiteAl4(SO4)(OH)10 · 4H2O
H Ranciéite(Ca,Mn2+)0.2(Mn4+,Mn3+)O2 · 0.6H2O
H Muscovite var. SericiteKAl2(AlSi3O10)(OH)2
H MuscoviteKAl2(AlSi3O10)(OH)2
CCarbon
C AnkeriteCa(Fe2+,Mg)(CO3)2
C DolomiteCaMg(CO3)2
C MalachiteCu2(CO3)(OH)2
C SideriteFeCO3
C CalciteCaCO3
C Dolomite var. Iron-bearing DolomiteCa(Mg,Fe)(CO3)2
OOxygen
O AnglesitePbSO4
O AnataseTiO2
O AnhydriteCaSO4
O AnkeriteCa(Fe2+,Mg)(CO3)2
O BaryteBaSO4
O ChalcanthiteCuSO4 · 5H2O
O CopiapiteFe2+Fe43+(SO4)6(OH)2 · 20H2O
O CupriteCu2O
O DolomiteCaMg(CO3)2
O Goethiteα-Fe3+O(OH)
O GypsumCaSO4 · 2H2O
O HalotrichiteFeAl2(SO4)4 · 22H2O
O HematiteFe2O3
O IlmeniteFe2+TiO3
O JarositeKFe3+ 3(SO4)2(OH)6
O Limonite(Fe,O,OH,H2O)
O MagnetiteFe2+Fe23+O4
O MalachiteCu2(CO3)(OH)2
O MelanteriteFe2+(H2O)6SO4 · H2O
O MiniumPb3O4
O PickeringiteMgAl2(SO4)4 · 22H2O
O PyromorphitePb5(PO4)3Cl
O QuartzSiO2
O RutileTiO2
O SideriteFeCO3
O TenoriteCuO
O RozeniteFeSO4 · 4H2O
O GlockeriteFe43+(SO4)(OH)10 · 1-3H2O ?
O FelsőbányaiteAl4(SO4)(OH)10 · 4H2O
O Ranciéite(Ca,Mn2+)0.2(Mn4+,Mn3+)O2 · 0.6H2O
O CalciteCaCO3
O Dolomite var. Iron-bearing DolomiteCa(Mg,Fe)(CO3)2
O Muscovite var. SericiteKAl2(AlSi3O10)(OH)2
O MuscoviteKAl2(AlSi3O10)(OH)2
MgMagnesium
Mg AnkeriteCa(Fe2+,Mg)(CO3)2
Mg DolomiteCaMg(CO3)2
Mg PickeringiteMgAl2(SO4)4 · 22H2O
Mg Dolomite var. Iron-bearing DolomiteCa(Mg,Fe)(CO3)2
AlAluminium
Al HalotrichiteFeAl2(SO4)4 · 22H2O
Al PickeringiteMgAl2(SO4)4 · 22H2O
Al FelsőbányaiteAl4(SO4)(OH)10 · 4H2O
Al Muscovite var. SericiteKAl2(AlSi3O10)(OH)2
Al MuscoviteKAl2(AlSi3O10)(OH)2
SiSilicon
Si QuartzSiO2
Si Muscovite var. SericiteKAl2(AlSi3O10)(OH)2
Si MuscoviteKAl2(AlSi3O10)(OH)2
PPhosphorus
P PyromorphitePb5(PO4)3Cl
SSulfur
S AnglesitePbSO4
S AnhydriteCaSO4
S BaryteBaSO4
S BismuthiniteBi2S3
S BorniteCu5FeS4
S BournonitePbCuSbS3
S ChalcopyriteCuFeS2
S ChalcanthiteCuSO4 · 5H2O
S ChalcociteCu2S
S CopiapiteFe2+Fe43+(SO4)6(OH)2 · 20H2O
S CovelliteCuS
S GalenaPbS
S GalenobismutitePbBi2S4
S GypsumCaSO4 · 2H2O
S HalotrichiteFeAl2(SO4)4 · 22H2O
S JarositeKFe3+ 3(SO4)2(OH)6
S JordanitePb14(As,Sb)6S23
S KobellitePb22Cu4(Bi,Sb)30S69
S MarcasiteFeS2
S MelanteriteFe2+(H2O)6SO4 · H2O
S PickeringiteMgAl2(SO4)4 · 22H2O
S PyriteFeS2
S PyrrhotiteFe1-xS
S SphaleriteZnS
S SpionkopiteCu39S28
S SulphurS8
S Tennantite SubgroupCu6(Cu4C22+)As4S12S
S Tetrahedrite SubgroupCu6(Cu4C22+)Sb4S12S
S RozeniteFeSO4 · 4H2O
S GlockeriteFe43+(SO4)(OH)10 · 1-3H2O ?
S FelsőbányaiteAl4(SO4)(OH)10 · 4H2O
ClChlorine
Cl PyromorphitePb5(PO4)3Cl
KPotassium
K JarositeKFe3+ 3(SO4)2(OH)6
K Muscovite var. SericiteKAl2(AlSi3O10)(OH)2
K MuscoviteKAl2(AlSi3O10)(OH)2
CaCalcium
Ca AnhydriteCaSO4
Ca AnkeriteCa(Fe2+,Mg)(CO3)2
Ca DolomiteCaMg(CO3)2
Ca GypsumCaSO4 · 2H2O
Ca Ranciéite(Ca,Mn2+)0.2(Mn4+,Mn3+)O2 · 0.6H2O
Ca CalciteCaCO3
Ca Dolomite var. Iron-bearing DolomiteCa(Mg,Fe)(CO3)2
TiTitanium
Ti AnataseTiO2
Ti IlmeniteFe2+TiO3
Ti RutileTiO2
MnManganese
Mn Ranciéite(Ca,Mn2+)0.2(Mn4+,Mn3+)O2 · 0.6H2O
FeIron
Fe AnkeriteCa(Fe2+,Mg)(CO3)2
Fe BorniteCu5FeS4
Fe ChalcopyriteCuFeS2
Fe CopiapiteFe2+Fe43+(SO4)6(OH)2 · 20H2O
Fe Goethiteα-Fe3+O(OH)
Fe HalotrichiteFeAl2(SO4)4 · 22H2O
Fe HematiteFe2O3
Fe IlmeniteFe2+TiO3
Fe JarositeKFe3+ 3(SO4)2(OH)6
Fe KobellitePb22Cu4(Bi,Sb)30S69
Fe Limonite(Fe,O,OH,H2O)
Fe MagnetiteFe2+Fe23+O4
Fe MarcasiteFeS2
Fe MelanteriteFe2+(H2O)6SO4 · H2O
Fe PyriteFeS2
Fe PyrrhotiteFe1-xS
Fe SideriteFeCO3
Fe RozeniteFeSO4 · 4H2O
Fe GlockeriteFe43+(SO4)(OH)10 · 1-3H2O ?
Fe Dolomite var. Iron-bearing DolomiteCa(Mg,Fe)(CO3)2
CuCopper
Cu BorniteCu5FeS4
Cu BournonitePbCuSbS3
Cu ChalcopyriteCuFeS2
Cu ChalcanthiteCuSO4 · 5H2O
Cu ChalcociteCu2S
Cu CovelliteCuS
Cu CupriteCu2O
Cu CopperCu
Cu KobellitePb22Cu4(Bi,Sb)30S69
Cu MalachiteCu2(CO3)(OH)2
Cu SpionkopiteCu39S28
Cu Tennantite SubgroupCu6(Cu4C22+)As4S12S
Cu TenoriteCuO
Cu Tetrahedrite SubgroupCu6(Cu4C22+)Sb4S12S
ZnZinc
Zn SphaleriteZnS
AsArsenic
As JordanitePb14(As,Sb)6S23
As Tennantite SubgroupCu6(Cu4C22+)As4S12S
AgSilver
Ag SilverAg
SbAntimony
Sb BournonitePbCuSbS3
Sb JordanitePb14(As,Sb)6S23
Sb KobellitePb22Cu4(Bi,Sb)30S69
Sb Tetrahedrite SubgroupCu6(Cu4C22+)Sb4S12S
BaBarium
Ba BaryteBaSO4
AuGold
Au GoldAu
PbLead
Pb AnglesitePbSO4
Pb BournonitePbCuSbS3
Pb GalenaPbS
Pb GalenobismutitePbBi2S4
Pb JordanitePb14(As,Sb)6S23
Pb KobellitePb22Cu4(Bi,Sb)30S69
Pb MiniumPb3O4
Pb PyromorphitePb5(PO4)3Cl
BiBismuth
Bi BismuthBi
Bi BismuthiniteBi2S3
Bi GalenobismutitePbBi2S4
Bi KobellitePb22Cu4(Bi,Sb)30S69

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
Klaproth, M.H. (1802) Untersuchung der schwefelsauren Bleierze von Anglesea. Beiträge zur chemischen Kenntniss der Mineralkörper, Dritter Band, Rottmann Berlin, 162-164.
Russell, A. (1927) Notice of an occurrence of niccolite and ullmannite at the Settlingstones mine, Fourstones, Northumberland; and of serpierite at Ross Island mine, Killarney, Co. Kerry, Ireland. Mineralogical Magazine, vol. 21, n° 119, 383-387 (referring to "blue stone" - a mixture of sphalerite, galena, pyrite, and chalcopyrite - "from the Parys and Mona mines.").
Pointon, C.R. (1979) Palaeozoic volcanogenic mineral deposits at Parys Mountain, Avoca and S.E. Canada - a comparative study. Ph.D. thesis, University of Aston, Birmingham, 265 pp.
Ixer, R.A. and Pointon, C.R. (1980) Volcanogenic sulphide mineralisation at Parys Mountain, Anglesey, U.K., p. 279-285 in Janković, S. and Sillitoe, R. H. (Eds.) (1980) European copper deposits. Society for Geology Applied to Mineral Deposits (SGA) - Special publication no. 1, Department of Economic Geology, Faculty of Mining and Geology, Belgrade, 303 pp.
Pointon, C.R. and Ixer, R.A. (1980) Parys Mountain mineral deposit, Anglesey, Wales. Transactions of the Institute of Mining and Metallurgy, B89, 143-155.
UK Journal of Mines & Minerals (1995) n° 15, 11-17.
Butler, S. (2000) Acid mine drainage in the Afon Goch (South), Anglesey. Unpublished MSc. thesis, University of Wales, Bangor.
Jenkins, D.A., Johnson, D.B., and Freeman, C. (2000) Mynydd Parys Cu-Pb-Zn Mines: mineralogy, microbiology and acid mine drainage. In: Cotter-Howells, J.D., Campbell, L.S., Valsami-Jones, E., and Batchelder, M. (eds), Environmental Mineralogy: Microbial Interactions, Anthropogenic Influences, Contaminated Land and Waste Management. Pp. 161- 179. The Mineralogical Society Series, 9.
Thomas, R. (2000) The implications of dewatering Parys Mountain: a study in trace metal pollution. MSc. thesis, University of Wales, Bangor.
Cotterell, T.F. and Jenkins, D.A. (2008) Ranciéite from Mynydd Parys, Amlwch, Anglesey, Wales. Journal of the Russell Society, vol. 11, 59-63.
Tindle, A.G. (2008) Minerals of Britain and Ireland. Terra Publishing. 616 pp.
Bullock, L., Parnell, J., Perez, M., Feldmann, J., & Armstrong, J. (2017). Selenium and other trace element mobility in waste products and weathered sediments at Parys Mountain Copper Mine, Anglesey, UK. Minerals, 7(11), 229.
Rocks & Minerals: 18: 71.

External Links


Other Regions, Features and Areas containing this locality

British IslesGroup of Islands
Eurasian PlateTectonic Plate

This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
 
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization. Public Relations by Blytheweigh.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2020, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: September 24, 2020 12:24:57 Page generated: September 24, 2020 09:05:59
Go to top of page