Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat Articles
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsThe ElementsUsersBooks & MagazinesMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery

Morenci Mine (Morenci pit; Phelps Dodge Morenci Mine; Morenci-Metcalf), Morenci, Copper Mountain District (Clifton-Morenci District), Shannon Mts, Greenlee Co., Arizona, USAi
Regional Level Types
Morenci Mine (Morenci pit; Phelps Dodge Morenci Mine; Morenci-Metcalf)Mine (Active)
Morenci- not defined -
Copper Mountain District (Clifton-Morenci District)Mining District
Shannon MtsMountain Range
Greenlee Co.County
ArizonaState
USACountry

This page is currently not sponsored. Click here to sponsor this page.
Key
Lock Map
Latitude & Longitude (WGS84): 33° 5' 26'' North , 109° 21' 57'' West
Latitude & Longitude (decimal): 33.09056,-109.36611
GeoHash:G#: 9tfhprfn2
USGS MRDS Record:10027138
Locality type:Mine (Active) - last checked 2018
Köppen climate type:Csb : Warm-summer Mediterranean climate
Nearest Settlements:
PlacePopulationDistance
Morenci1,489 (2011)1.3km
Clifton3,685 (2017)7.9km
York557 (2011)26.7km
San Jose506 (2011)36.7km
Solomon426 (2011)39.7km


An open pit and underground Cu-Mo-Au-Ag-Pb-Zn-U-Re-REE-Gemstone-Gypsum-Talc/soapstone-garnet mine located in secs. 8, 9, 15, 17 and in the N½ sec. 16, T4S, R29E (Clifton 15 minute topo map), at Morenci, 4.5 miles NW of Clifton. First produced 1942.

Mineralization is an elliptically shaped ore body in a porphyry copper-molybdenum deposit. The ore zone is 1341.12 meters long, 853.44 meters wide with a depth to top of 76.2 meters and a depth to bottom of 701.04 meters, and a thickness of 259.08 meters, and plunges E. Ore control was NE-trending fisures, veining, and crackling. Ore concentration was complex as progressively more silicic intrusions carried sulfide phases into fractures created by older pulses. Alteration was hydrothermal with kaolinization, sericitization, calc-silicate or pelitic hornfels and skarn.

The district is zoned with a chalcopyrite-rich core surrounded by a pyrite envelope which is surrounded by protore. Ag and Au are more abundant in less altered areas. The greatest Mo concentrations are in granite porphyry, less in Precambrian Granite.

The enrichment blanket ranges from 50 to 1000 feet thick and thickens from W to E. Turquoise found in the oxidized part of the deposit. Massive andradite is found in a skarn deposit at the southwest corner of the large open pit.

Area structures include the NW-trending Copper Mountain Fault, which dsplaces enrichment blanket 200 feet. Also NE-trending fissures may have localized porphyry emplacement.

The workings are 2133.6 meters long and 1219.2 meters wide. The open pit work started in 1937. Molybdenite runs 400 to 2000 ppm of Re.

Regions containing this locality

North America PlateTectonic Plate
Sonoran Desert, North AmericaDesert

Select Mineral List Type

Standard Detailed Strunz Dana Chemical Elements

Commodity List

This is a list of exploitable or exploited mineral commodities recorded from this region.


Mineral List

Mineral list contains entries from the region specified including sub-localities

76 valid minerals.

Detailed Mineral List:

Acanthite
Formula: Ag2S
Reference: MRDS database Dep. ID #10027138, MRDS ID #M002216.
Actinolite
Formula: ☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2
Reference: Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
Akaganeite
Formula: (Fe3+,Ni2+)8(OH,O)16Cl1.25 · nH2O
Reference: Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
Allophane
Formula: (Al2O3)(SiO2)1.3-2 · 2.5-3H2O
Reference: MRDS database Dep. ID #10027138, MRDS ID #M002216.
Alunite
Formula: KAl3(SO4)2(OH)6
Reference: MRDS database Dep. ID #10027138, MRDS ID #M002216.; Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
Andradite
Formula: Ca3Fe3+2(SiO4)3
Reference: MRDS database Dep. ID #10027138, MRDS ID #M002216.; Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
Anilite
Formula: Cu7S4
Description: Occurs in the supergene alteration zone.
Reference: Grant, Raymond W., Richard A. Bideaux & Sidney A. Williams (2006), Minerals Added to the Arizona List 1995 to 2005: 1.
Antlerite
Formula: Cu3(SO4)(OH)4
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 115.
'Apatite'
Reference: Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
Aurorite
Formula: (Mn2+,Ag,Ca)Mn4+3O7 · 3H2O
Habit: Small
Colour: Black
Description: Occurs as crystals on goethite in the oxidized zone.
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 124.
Azurite
Formula: Cu3(CO3)2(OH)2
Description: Occurs as stalactites to 15 cm long.
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 125.; Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
'Biotite'
Reference: Singer, D.A., Berger, V.I., and Moring, B.C. (2005): USGS Open-File Report 05-1060; Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
Bornite
Formula: Cu5FeS4
Reference: Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
Brochantite
Formula: Cu4(SO4)(OH)6
Reference: MRDS database Dep. ID #10282444, MAS ID #0040110018.; Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
Calcite
Formula: CaCO3
Reference: Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
Chalcanthite
Formula: CuSO4 · 5H2O
Reference: MRDS database Dep. ID #10282444, MAS ID #0040110018.; Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
Chalcocite
Formula: Cu2S
Description: Occurs as a thick blanket. Principal ore mineral of disseminated & vein deposits. Solid veins 2 to 3 feet (0.6 to 1.0 meters) thick in places.
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 163; Moolick, R.T. & J.J. Durek (1966), The Morenci district, in S.R. Titley and C.L. Hicks (editors), Geology of the porphyry copper deposits, southwestern North America, Univ. AZ Press, Tucson: 221-231; Lindgren, W. (1903), The copper deposits of Clifton, AZ, Engr. Mining Jour.: 75: 705; Lindgren, W. (1905), The copper deposits of the Clifton-Morenci district, AZ, USGS PP 43; Lindgren, W. (1904), The genesis of copper deposits, Engr. Mining Jour.: 78: 987; Guild, F.N. (1910), The Mineralogy of Arizona, The Chemical Publishing Co., Easton, PA.; Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
Chalcophanite
Formula: (Zn,Fe,Mn)Mn3O7 · 3H2O
Description: There were 4 characteristics used in making the Chalcophanite identification. First is the tetragonal crystal habit, second is the elongated, columnar habit when you view any of the broken crystalized areas from the side, color is another, when seen as individual tiny, free standing crystals they are jet black and the last is the hardness, they are about 2.5 on the mohs scale. The other is that Mr Luetcke has collected a lot of Chalcophanite from Bisbee and has a number in his collection to compare. Concur in identification: Chet Lemanski.
Reference: Rolf Luetcke
Chalcopyrite
Formula: CuFeS2
Description: Occurs as disseminations and in small veinlets.
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 166; Moolick, R.T. & J.J. Durek (1966), The Morenci district, in S.R. Titley and C.L. Hicks (editors), Geology of the porphyry copper deposits, southwestern North America, Univ. AZ Press, Tucson: 221-231.; Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
'Chlorite Group'
Reference: Singer, D.A., Berger, V.I., and Moring, B.C. (2005): USGS Open-File Report 05-1060; Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
Chrysocolla
Formula: Cu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Reference: [www.johnbetts-fineminerals.com]; Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
'Chrysocolla Chalcedony'
Reference: Brian Cowger
Copper
Formula: Cu
Reference: MRDS database Dep. ID #10282444, MAS ID #0040110018.; Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
Coronadite
Formula: Pb(Mn4+6Mn3+2)O16
Reference: Van King
Covellite
Formula: CuS
Reference: MRDS database Dep. ID #10282444, MAS ID #0040110018.; Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
Cryptomelane
Formula: K(Mn4+7Mn3+)O16
Reference: Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
Cuprite
Formula: Cu2O
Reference: MRDS database Dep. ID #10282444, MAS ID #0040110018.; Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
Cyanotrichite
Formula: Cu4Al2(SO4)(OH)12 · 2H2O
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 198.
Diadochite
Formula: Fe3+2(PO4)(SO4)(OH) · 5H2O
Reference: Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
Digenite
Formula: Cu9S5
Reference: Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
Diopside
Formula: CaMgSi2O6
Reference: Singer, D.A., Berger, V.I., and Moring, B.C. (2005): USGS Open-File Report 05-1060; Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
Dioptase
Formula: CuSiO3 · H2O
Reference: Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
Djurleite
Formula: Cu31S16
Reference: Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
Epidote
Formula: {Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Reference: Singer, D.A., Berger, V.I., and Moring, B.C. (2005): USGS Open-File Report 05-1060; Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
Fluorite
Formula: CaF2
Reference: Rolf Luetcke
Galena
Formula: PbS
Reference: Singer, D.A., Berger, V.I., and Moring, B.C. (2005): USGS Open-File Report 05-1060
'Gem Silica'
Reference: Brian Cowger
Gibbsite
Formula: Al(OH)3
Reference: Rolf Luetcke
Goethite
Formula: α-Fe3+O(OH)
Description: Most abundant oxidation product.
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 124, 233; Moolick, R.T. & J.J. Durek (1966), The Morenci district, in S.R. Titley and C.L. Hicks (editors), Geology of the porphyry copper deposits, southwestern North America, Univ. AZ Press, Tucson: 221-231.; Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
Gold
Formula: Au
Reference: MRDS database Dep. ID #10282444, MAS ID #0040110018.
Gypsum
Formula: CaSO4 · 2H2O
Reference: MRDS database Dep. ID #10027138, MRDS ID #M002216.
Hausmannite
Formula: Mn2+Mn3+2O4
Reference: Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
Hematite
Formula: Fe2O3
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 233; Moolick, R.T. & J.J. Durek (1966), The Morenci district, in S.R. Titley and C.L. Hicks (editors), Geology of the porphyry copper deposits, southwestern North America, Univ. AZ Press, Tucson: 221-231.; Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
Hollandite
Formula: Ba(Mn4+6Mn3+2)O16
Reference: Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
Idaite
Formula: Cu5FeS6
Reference: Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
Jarosite
Formula: KFe3+ 3(SO4)2(OH)6
Description: Widespread - most dramatic as an oxidation product of pyrite veinlets in areas of weak copper mineraklization.
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 261; Moolick, R.T. & J.J. Durek (1966), The Morenci district, in S.R. Titley and C.L. Hicks (editors), Geology of the porphyry copper deposits, southwestern North America, Univ. AZ Press, Tucson: 221-231.; Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
Kaolinite
Formula: Al2(Si2O5)(OH)4
Reference: Singer, D.A., Berger, V.I., and Moring, B.C. (2005): USGS Open-File Report 05-1060; Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
Libethenite
Formula: Cu2(PO4)(OH)
Reference: Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
'Limonite'
Formula: (Fe,O,OH,H2O)
Reference: Singer, D.A., Berger, V.I., and Moring, B.C. (2005): USGS Open-File Report 05-1060
Magnetite
Formula: Fe2+Fe3+2O4
Reference: MRDS database Dep. ID #10027138, MRDS ID #M002216.; Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
Malachite
Formula: Cu2(CO3)(OH)2
Reference: [www.johnbetts-fineminerals.com]; Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
Melanterite
Formula: Fe2+(H2O)6SO4 · H2O
Description: Formed by oxidation of sulfide minerals.
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 292; Moolick, R.T. & J.J. Durek (1966), The Morenci district, in S.R. Titley and C.L. Hicks (editors), Geology of the porphyry copper deposits, southwestern North America, Univ. AZ Press, Tucson: 221-231.
Metatorbernite
Formula: Cu(UO2)2(PO4)2 · 8H2O
Reference: Rolf Luetcke
Mimetite
Formula: Pb5(AsO4)3Cl
Reference: Collection Daniel Lunau
Molybdenite
Formula: MoS2
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 166; Moolick, R.T. & J.J. Durek (1966), The Morenci district, in S.R. Titley and C.L. Hicks (editors), Geology of the porphyry copper deposits, southwestern North America, Univ. AZ Press, Tucson: 221-231.; Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
Montmorillonite
Formula: (Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Reference: Singer, D.A., Berger, V.I., and Moring, B.C. (2005): USGS Open-File Report 05-1060
Muscovite
Formula: KAl2(AlSi3O10)(OH)2
Reference: Singer, D.A., Berger, V.I., and Moring, B.C. (2005): USGS Open-File Report 05-1060; Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
Muscovite var: Sericite
Formula: KAl2(AlSi3O10)(OH)2
Reference: Singer, D.A., Berger, V.I., and Moring, B.C. (2005): USGS Open-File Report 05-1060; Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
Neotocite
Formula: (Mn,Fe,Mg)SiO3 · H2O
Reference: Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
Nontronite
Formula: Na0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Description: Occurs on the periphery of the orebody.
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 314; Moolick, R.T. & J.J. Durek (1966), The Morenci district, in S.R. Titley and C.L. Hicks (editors), Geology of the porphyry copper deposits, southwestern North America, Univ. AZ Press, Tucson: 221-231.
Olivenite
Formula: Cu2(AsO4)(OH)
Reference: Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
Opal
Formula: SiO2 · nH2O
Description: Occurs on the periphery of the orebody.
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 193; Moolick, R.T. & J.J. Durek (1966), The Morenci district, in S.R. Titley and C.L. Hicks (editors), Geology of the porphyry copper deposits, southwestern North America, Univ. AZ Press, Tucson: 221-231.
Orthoclase
Formula: K(AlSi3O8)
Reference: Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
Plattnerite
Formula: PbO2
Reference: Rolf Luetcke
Pyrite
Formula: FeS2
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 166; Moolick, R.T. & J.J. Durek (1966), The Morenci district, in S.R. Titley and C.L. Hicks (editors), Geology of the porphyry copper deposits, southwestern North America, Univ. AZ Press, Tucson: 221-231; Univ. AZ Bull. 41 (1916-17), Mineralogy of Useful Minerals in AZ: 50.; Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
Pyrrhotite
Formula: Fe7S8
Description: Occurs in an extensive contact metamorphic assemblage.
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 345; Moolick, R.T. & J.J. Durek (1966), The Morenci district, in S.R. Titley and C.L. Hicks (editors), Geology of the porphyry copper deposits, southwestern North America, Univ. AZ Press, Tucson: 221-231.; Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
Quartz
Formula: SiO2
Reference: Van King; Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
Rosasite
Formula: (Cu,Zn)2(CO3)(OH)2
Reference: Rolf Luetcke; Rolf Luetcke field-collected specimens
Rutile
Formula: TiO2
Reference: Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
'Serpentine Subgroup'
Formula: D3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
Description: Locally formed with other calc-silicate minerals in an extensive contact metamorphic assemblage.
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 368; Moolick, R.T. & J.J. Durek (1966), The Morenci district, in S.R. Titley and C.L. Hicks (editors), Geology of the porphyry copper deposits, southwestern North America, Univ. AZ Press, Tucson: 221-231.
Siderite
Formula: FeCO3
Reference: Singer, D.A., Berger, V.I., and Moring, B.C. (2005): USGS Open-File Report 05-1060
Sphalerite
Formula: ZnS
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 166; Moolick, R.T. & J.J. Durek (1966), The Morenci district, in S.R. Titley and C.L. Hicks (editors), Geology of the porphyry copper deposits, southwestern North America, Univ. AZ Press, Tucson: 221-231.; Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
Stibnite
Formula: Sb2S3
Reference: Singer, D.A., Berger, V.I., and Moring, B.C. (2005): USGS Open-File Report 05-1060
Stromeyerite
Formula: AgCuS
Reference: MRDS database Dep. ID #10027138, MRDS ID #M002216.
Talc
Formula: Mg3Si4O10(OH)2
Description: Occurs in the northern part of the pit. Locally formed with other calc-silicates in an extensive contact metamorphic assemblage.
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 388; Moolick, R.T. & J.J. Durek (1966), The Morenci district, in S.R. Titley and C.L. Hicks (editors), Geology of the porphyry copper deposits, southwestern North America, Univ. AZ Press, Tucson: 221-231.
Tenorite
Formula: CuO
Reference: MRDS database Dep. ID #10282444, MAS ID #0040110018.; Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
Titanite
Formula: CaTi(SiO4)O
Reference: Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
Todorokite
Formula: (Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
Reference: Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
Torbernite
Formula: Cu(UO2)2(PO4)2 · 12H2O
Reference: Singer, D.A., Berger, V.I., and Moring, B.C. (2005): USGS Open-File Report 05-1060
Tremolite
Formula: ☐{Ca2}{Mg5}(Si8O22)(OH)2
Reference: MRDS database Dep. ID #10027138, MRDS ID #M002216.; Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
Tsumebite
Formula: Pb2Cu(PO4)(SO4)(OH)
Description: In the oxidized portion of the orebody.
Reference: Palache, C., Berman, H., & Frondel, C. (1951), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837-1892, Volume II: 919; Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 403; Bideaux, R.A., et al (1960), Some new occurrences of minerals of AZ, AZ Geol. Soc. Digest: 3: 53-56.
Turquoise
Formula: Cu(Al,Fe3+)6(PO4)4(OH)8 · 4H2O
Description: The turquoise varies considerably in hardness and colour. The best is hard and a flawless blue or with spider webbing.
Reference: MRDS database Dep. ID #10027138, MRDS ID #M002216.
Wollastonite
Formula: CaSiO3
Reference: Singer, D.A., Berger, V.I., and Moring, B.C. (2005): USGS Open-File Report 05-1060
Wulfenite
Formula: Pb(MoO4)
Reference: Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.: 403; Bideaux, R.A., et al (1960), Some new occurrences of minerals of AZ, AZ Geol. Soc. Digest: 3: 53-56.

List of minerals arranged by Strunz 10th Edition classification

Group 1 - Elements
Copper1.AA.05Cu
Gold1.AA.05Au
Group 2 - Sulphides and Sulfosalts
Acanthite2.BA.35Ag2S
Anilite2.BA.10Cu7S4
Bornite2.BA.15Cu5FeS4
Chalcocite2.BA.05Cu2S
Chalcopyrite2.CB.10aCuFeS2
Covellite2.CA.05aCuS
Digenite2.BA.10Cu9S5
Djurleite2.BA.05Cu31S16
Galena2.CD.10PbS
Idaite2.CB.15aCu5FeS6
Molybdenite2.EA.30MoS2
Pyrite2.EB.05aFeS2
Pyrrhotite2.CC.10Fe7S8
Sphalerite2.CB.05aZnS
Stibnite2.DB.05Sb2S3
Stromeyerite2.BA.40AgCuS
Group 3 - Halides
Fluorite3.AB.25CaF2
Group 4 - Oxides and Hydroxides
Akaganeite4.DK.05(Fe3+,Ni2+)8(OH,O)16Cl1.25 · nH2O
Aurorite4.FL.20(Mn2+,Ag,Ca)Mn4+3O7 · 3H2O
Chalcophanite4.FL.20(Zn,Fe,Mn)Mn3O7 · 3H2O
Coronadite4.DK.05aPb(Mn4+6Mn3+2)O16
Cryptomelane4.DK.05aK(Mn4+7Mn3+)O16
Cuprite4.AA.10Cu2O
Gibbsite4.FE.10Al(OH)3
Goethite4.00.α-Fe3+O(OH)
Hausmannite4.BB.10Mn2+Mn3+2O4
Hematite4.CB.05Fe2O3
Hollandite4.DK.05aBa(Mn4+6Mn3+2)O16
Magnetite4.BB.05Fe2+Fe3+2O4
Opal4.DA.10SiO2 · nH2O
Plattnerite4.DB.05PbO2
Quartz4.DA.05SiO2
Rutile4.DB.05TiO2
Tenorite4.AB.10CuO
Todorokite4.DK.10(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
Group 5 - Nitrates and Carbonates
Azurite5.BA.05Cu3(CO3)2(OH)2
Calcite5.AB.05CaCO3
Malachite5.BA.10Cu2(CO3)(OH)2
Rosasite5.BA.10(Cu,Zn)2(CO3)(OH)2
Siderite5.AB.05FeCO3
Group 7 - Sulphates, Chromates, Molybdates and Tungstates
Alunite7.BC.10KAl3(SO4)2(OH)6
Antlerite7.BB.15Cu3(SO4)(OH)4
Brochantite7.BB.25Cu4(SO4)(OH)6
Chalcanthite7.CB.20CuSO4 · 5H2O
Cyanotrichite7.DE.10Cu4Al2(SO4)(OH)12 · 2H2O
Gypsum7.CD.40CaSO4 · 2H2O
Jarosite7.BC.10KFe3+ 3(SO4)2(OH)6
Melanterite7.CB.35Fe2+(H2O)6SO4 · H2O
Wulfenite7.GA.05Pb(MoO4)
Group 8 - Phosphates, Arsenates and Vanadates
Diadochite8.DB.05Fe3+2(PO4)(SO4)(OH) · 5H2O
Libethenite8.BB.30Cu2(PO4)(OH)
Metatorbernite8.EB.10Cu(UO2)2(PO4)2 · 8H2O
Mimetite8.BN.05Pb5(AsO4)3Cl
Olivenite8.BB.30Cu2(AsO4)(OH)
Torbernite8.EB.05Cu(UO2)2(PO4)2 · 12H2O
Tsumebite8.BG.05Pb2Cu(PO4)(SO4)(OH)
Turquoise8.DD.15Cu(Al,Fe3+)6(PO4)4(OH)8 · 4H2O
Group 9 - Silicates
Actinolite9.DE.10☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2
Allophane9.ED.20(Al2O3)(SiO2)1.3-2 · 2.5-3H2O
Andradite9.AD.25Ca3Fe3+2(SiO4)3
Chrysocolla9.ED.20Cu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Diopside9.DA.15CaMgSi2O6
Dioptase9.CJ.30CuSiO3 · H2O
Epidote9.BG.05a{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Kaolinite9.ED.05Al2(Si2O5)(OH)4
Montmorillonite9.EC.40(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Muscovite9.EC.15KAl2(AlSi3O10)(OH)2
var: Sericite9.EC.15KAl2(AlSi3O10)(OH)2
Neotocite9.ED.20(Mn,Fe,Mg)SiO3 · H2O
Nontronite9.EC.40Na0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Orthoclase9.FA.30K(AlSi3O8)
Talc9.EC.05Mg3Si4O10(OH)2
Titanite9.AG.15CaTi(SiO4)O
Tremolite9.DE.10☐{Ca2}{Mg5}(Si8O22)(OH)2
Wollastonite9.DG.05CaSiO3
Unclassified Minerals, Rocks, etc.
'Apatite'-
'Biotite'-
'Chlorite Group'-
'Chrysocolla Chalcedony'-
'Gem Silica'-
'Limonite'-(Fe,O,OH,H2O)
'Serpentine Subgroup'-D3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn

List of minerals arranged by Dana 8th Edition classification

Group 1 - NATIVE ELEMENTS AND ALLOYS
Metals, other than the Platinum Group
Copper1.1.1.3Cu
Gold1.1.1.1Au
Group 2 - SULFIDES
AmBnXp, with (m+n):p = 2:1
Acanthite2.4.1.1Ag2S
Anilite2.4.7.5Cu7S4
Chalcocite2.4.7.1Cu2S
Digenite2.4.7.3Cu9S5
Djurleite2.4.7.2Cu31S16
Stromeyerite2.4.6.1AgCuS
AmBnXp, with (m+n):p = 3:2
Bornite2.5.2.1Cu5FeS4
AmXp, with m:p = 1:1
Covellite2.8.12.1CuS
Galena2.8.1.1PbS
Pyrrhotite2.8.10.1Fe7S8
Sphalerite2.8.2.1ZnS
AmBnXp, with (m+n):p = 1:1
Chalcopyrite2.9.1.1CuFeS2
Idaite2.9.14.1Cu5FeS6
AmBnXp, with (m+n):p = 2:3
Stibnite2.11.2.1Sb2S3
AmBnXp, with (m+n):p = 1:2
Molybdenite2.12.10.1MoS2
Pyrite2.12.1.1FeS2
Group 4 - SIMPLE OXIDES
A2X
Cuprite4.1.1.1Cu2O
AX
Tenorite4.2.3.1CuO
A2X3
Hematite4.3.1.2Fe2O3
AX2
Plattnerite4.4.1.6PbO2
Rutile4.4.1.1TiO2
Group 6 - HYDROXIDES AND OXIDES CONTAINING HYDROXYL
XO(OH)
Akaganeite6.1.6.1(Fe3+,Ni2+)8(OH,O)16Cl1.25 · nH2O
Goethite6.1.1.2α-Fe3+O(OH)
X(OH)3
Gibbsite6.3.1.1Al(OH)3
Group 7 - MULTIPLE OXIDES
AB2X4
Hausmannite7.2.7.1Mn2+Mn3+2O4
Magnetite7.2.2.3Fe2+Fe3+2O4
AB3X7
Aurorite7.8.2.2(Mn2+,Ag,Ca)Mn4+3O7 · 3H2O
Chalcophanite7.8.2.1(Zn,Fe,Mn)Mn3O7 · 3H2O
Todorokite7.8.1.1(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
AB8X16
Coronadite7.9.1.4Pb(Mn4+6Mn3+2)O16
Cryptomelane7.9.1.2K(Mn4+7Mn3+)O16
Hollandite7.9.1.1Ba(Mn4+6Mn3+2)O16
Group 9 - NORMAL HALIDES
AX2
Fluorite9.2.1.1CaF2
Group 14 - ANHYDROUS NORMAL CARBONATES
A(XO3)
Calcite14.1.1.1CaCO3
Siderite14.1.1.3FeCO3
Group 16a - ANHYDROUS CARBONATES CONTAINING HYDROXYL OR HALOGEN
Azurite16a.2.1.1Cu3(CO3)2(OH)2
Malachite16a.3.1.1Cu2(CO3)(OH)2
Rosasite16a.3.1.2(Cu,Zn)2(CO3)(OH)2
Group 29 - HYDRATED ACID AND NORMAL SULFATES
AXO4·xH2O
Chalcanthite29.6.7.1CuSO4 · 5H2O
Gypsum29.6.3.1CaSO4 · 2H2O
Melanterite29.6.10.1Fe2+(H2O)6SO4 · H2O
Group 30 - ANHYDROUS SULFATES CONTAINING HYDROXYL OR HALOGEN
(AB)m(XO4)pZq, where m:p>2:1
Antlerite30.1.12.1Cu3(SO4)(OH)4
Brochantite30.1.3.1Cu4(SO4)(OH)6
(AB)2(XO4)Zq
Alunite30.2.4.1KAl3(SO4)2(OH)6
Jarosite30.2.5.1KFe3+ 3(SO4)2(OH)6
Group 31 - HYDRATED SULFATES CONTAINING HYDROXYL OR HALOGEN
(AB)6(XO4)Zq·xH2O
Cyanotrichite31.2.1.1Cu4Al2(SO4)(OH)12 · 2H2O
Group 40 - HYDRATED NORMAL PHOSPHATES,ARSENATES AND VANADATES
AB2(XO4)2·xH2O, containing (UO2)2+
Metatorbernite40.2a.13.2Cu(UO2)2(PO4)2 · 8H2O
Torbernite40.2a.13.1Cu(UO2)2(PO4)2 · 12H2O
Group 41 - ANHYDROUS PHOSPHATES, ETC.CONTAINING HYDROXYL OR HALOGEN
A2(XO4)Zq
Libethenite41.6.6.2Cu2(PO4)(OH)
Olivenite41.6.6.1Cu2(AsO4)(OH)
A5(XO4)3Zq
Mimetite41.8.4.2Pb5(AsO4)3Cl
Group 42 - HYDRATED PHOSPHATES, ETC.CONTAINING HYDROXYL OR HALOGEN
(AB)7(XO4)4Zq·xH2O
Turquoise42.9.3.1Cu(Al,Fe3+)6(PO4)4(OH)8 · 4H2O
Group 43 - COMPOUND PHOSPHATES, ETC.
Anhydrous Compound Phosphates, etc·, Containing Hydroxyl or Halogen
Tsumebite43.4.2.1Pb2Cu(PO4)(SO4)(OH)
Hydrated Compound Phosphates, etc·, Containing Hydroxyl or Halogen
Diadochite43.5.2.1Fe3+2(PO4)(SO4)(OH) · 5H2O
Group 48 - ANHYDROUS MOLYBDATES AND TUNGSTATES
AXO4
Wulfenite48.1.3.1Pb(MoO4)
Group 51 - NESOSILICATES Insular SiO4 Groups Only
Insular SiO4 Groups Only with cations in [6] and >[6] coordination
Andradite51.4.3b.1Ca3Fe3+2(SiO4)3
Group 52 - NESOSILICATES Insular SiO4 Groups and O,OH,F,H2O
Insular SiO4 Groups and O, OH, F, and H2O with cations in [6] and/or >[6] coordination
Titanite52.4.3.1CaTi(SiO4)O
Group 58 - SOROSILICATES Insular, Mixed, Single, and Larger Tetrahedral Groups
Insular, Mixed, Single, and Larger Tetrahedral Groups with cations in [6] and higher coordination; single and double groups (n = 1, 2)
Epidote58.2.1a.7{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Group 61 - CYCLOSILICATES Six-Membered Rings
Six-Membered Rings with [Si6O18] rings; possible (OH) and Al substitution
Dioptase61.1.3.1CuSiO3 · H2O
Group 65 - INOSILICATES Single-Width,Unbranched Chains,(W=1)
Single-Width Unbranched Chains, W=1 with chains P=2
Diopside65.1.3a.1CaMgSi2O6
Single-Width Unbranched Chains, W=1 with chains P=3
Wollastonite65.2.1.1cCaSiO3
Group 66 - INOSILICATES Double-Width,Unbranched Chains,(W=2)
Amphiboles - Mg-Fe-Mn-Li subgroup
Tremolite66.1.3a.1☐{Ca2}{Mg5}(Si8O22)(OH)2
Group 71 - PHYLLOSILICATES Sheets of Six-Membered Rings
Sheets of 6-membered rings with 1:1 layers
Allophane71.1.5.1(Al2O3)(SiO2)1.3-2 · 2.5-3H2O
Neotocite71.1.5.4(Mn,Fe,Mg)SiO3 · H2O
Sheets of 6-membered rings with 2:1 layers
Muscovite71.2.2a.1KAl2(AlSi3O10)(OH)2
Talc71.2.1.3Mg3Si4O10(OH)2
Sheets of 6-membered rings with 2:1 clays
Montmorillonite71.3.1a.2(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Nontronite71.3.1a.3Na0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Group 74 - PHYLLOSILICATES Modulated Layers
Modulated Layers with joined strips
Chrysocolla74.3.2.1Cu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Group 75 - TECTOSILICATES Si Tetrahedral Frameworks
Si Tetrahedral Frameworks - SiO2 with [4] coordinated Si
Quartz75.1.3.1SiO2
Si Tetrahedral Frameworks - SiO2 with H2O and organics
Opal75.2.1.1SiO2 · nH2O
Group 76 - TECTOSILICATES Al-Si Framework
Al-Si Framework with Al-Si frameworks
Orthoclase76.1.1.1K(AlSi3O8)
Unclassified Minerals, Mixtures, etc.
Actinolite-☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2
'Apatite'-
'Biotite'-
'Chlorite Group'-
'Chrysocolla Chalcedony'-
'Gem Silica'-
Kaolinite-Al2(Si2O5)(OH)4
'Limonite'-(Fe,O,OH,H2O)
Muscovite
var: Sericite
-KAl2(AlSi3O10)(OH)2
'Serpentine Subgroup'-D3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn

List of minerals for each chemical element

HHydrogen
H MalachiteCu2(CO3)(OH)2
H AzuriteCu3(CO3)2(OH)2
H ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
H GibbsiteAl(OH)3
H DioptaseCuSiO3 · H2O
H AntleriteCu3(SO4)(OH)4
H TsumebitePb2Cu(PO4)(SO4)(OH)
H Aurorite(Mn2+,Ag,Ca)Mn34+O7 · 3H2O
H Goethiteα-Fe3+O(OH)
H JarositeKFe3+ 3(SO4)2(OH)6
H MelanteriteFe2+(H2O)6SO4 · H2O
H NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
H Serpentine SubgroupD3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
H TalcMg3Si4O10(OH)2
H CyanotrichiteCu4Al2(SO4)(OH)12 · 2H2O
H OpalSiO2 · nH2O
H TurquoiseCu(Al,Fe3+)6(PO4)4(OH)8 · 4H2O
H Allophane(Al2O3)(SiO2)1.3-2 · 2.5-3H2O
H AluniteKAl3(SO4)2(OH)6
H GypsumCaSO4 · 2H2O
H Tremolite☐{Ca2}{Mg5}(Si8O22)(OH)2
H BrochantiteCu4(SO4)(OH)6
H ChalcanthiteCuSO4 · 5H2O
H Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
H Limonite(Fe,O,OH,H2O)
H KaoliniteAl2(Si2O5)(OH)4
H Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
H Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
H TorberniteCu(UO2)2(PO4)2 · 12H2O
H Actinolite☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2
H Neotocite(Mn,Fe,Mg)SiO3 · H2O
H Akaganeite(Fe3+,Ni2+)8(OH,O)16Cl1.25 · nH2O
H LibetheniteCu2(PO4)(OH)
H OliveniteCu2(AsO4)(OH)
H DiadochiteFe23+(PO4)(SO4)(OH) · 5H2O
H Todorokite(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
H Chalcophanite(Zn,Fe,Mn)Mn3O7 · 3H2O
H Rosasite(Cu,Zn)2(CO3)(OH)2
H MuscoviteKAl2(AlSi3O10)(OH)2
H MetatorberniteCu(UO2)2(PO4)2 · 8H2O
CCarbon
C MalachiteCu2(CO3)(OH)2
C AzuriteCu3(CO3)2(OH)2
C SideriteFeCO3
C CalciteCaCO3
C Rosasite(Cu,Zn)2(CO3)(OH)2
OOxygen
O MalachiteCu2(CO3)(OH)2
O AzuriteCu3(CO3)2(OH)2
O ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
O GibbsiteAl(OH)3
O AndraditeCa3Fe23+(SiO4)3
O DioptaseCuSiO3 · H2O
O AntleriteCu3(SO4)(OH)4
O TsumebitePb2Cu(PO4)(SO4)(OH)
O WulfenitePb(MoO4)
O Aurorite(Mn2+,Ag,Ca)Mn34+O7 · 3H2O
O Goethiteα-Fe3+O(OH)
O HematiteFe2O3
O JarositeKFe3+ 3(SO4)2(OH)6
O MelanteriteFe2+(H2O)6SO4 · H2O
O NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
O Serpentine SubgroupD3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
O TalcMg3Si4O10(OH)2
O CyanotrichiteCu4Al2(SO4)(OH)12 · 2H2O
O OpalSiO2 · nH2O
O TurquoiseCu(Al,Fe3+)6(PO4)4(OH)8 · 4H2O
O Allophane(Al2O3)(SiO2)1.3-2 · 2.5-3H2O
O AluniteKAl3(SO4)2(OH)6
O GypsumCaSO4 · 2H2O
O MagnetiteFe2+Fe23+O4
O Tremolite☐{Ca2}{Mg5}(Si8O22)(OH)2
O BrochantiteCu4(SO4)(OH)6
O ChalcanthiteCuSO4 · 5H2O
O CupriteCu2O
O TenoriteCuO
O CoronaditePb(Mn64+Mn23+)O16
O QuartzSiO2
O DiopsideCaMgSi2O6
O Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
O Limonite(Fe,O,OH,H2O)
O KaoliniteAl2(Si2O5)(OH)4
O Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
O Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
O SideriteFeCO3
O TorberniteCu(UO2)2(PO4)2 · 12H2O
O WollastoniteCaSiO3
O MimetitePb5(AsO4)3Cl
O OrthoclaseK(AlSi3O8)
O TitaniteCaTi(SiO4)O
O RutileTiO2
O Actinolite☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2
O CalciteCaCO3
O Neotocite(Mn,Fe,Mg)SiO3 · H2O
O Akaganeite(Fe3+,Ni2+)8(OH,O)16Cl1.25 · nH2O
O LibetheniteCu2(PO4)(OH)
O OliveniteCu2(AsO4)(OH)
O DiadochiteFe23+(PO4)(SO4)(OH) · 5H2O
O CryptomelaneK(Mn74+Mn3+)O16
O HollanditeBa(Mn64+Mn23+)O16
O HausmanniteMn2+Mn23+O4
O Todorokite(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
O Chalcophanite(Zn,Fe,Mn)Mn3O7 · 3H2O
O Rosasite(Cu,Zn)2(CO3)(OH)2
O PlattneritePbO2
O MuscoviteKAl2(AlSi3O10)(OH)2
O MetatorberniteCu(UO2)2(PO4)2 · 8H2O
FFluorine
F FluoriteCaF2
NaSodium
Na NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Na Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Na Todorokite(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
MgMagnesium
Mg Serpentine SubgroupD3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
Mg TalcMg3Si4O10(OH)2
Mg Tremolite☐{Ca2}{Mg5}(Si8O22)(OH)2
Mg DiopsideCaMgSi2O6
Mg Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Mg Actinolite☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2
Mg Neotocite(Mn,Fe,Mg)SiO3 · H2O
Mg Todorokite(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
AlAluminium
Al ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Al GibbsiteAl(OH)3
Al NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Al Serpentine SubgroupD3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
Al CyanotrichiteCu4Al2(SO4)(OH)12 · 2H2O
Al TurquoiseCu(Al,Fe3+)6(PO4)4(OH)8 · 4H2O
Al Allophane(Al2O3)(SiO2)1.3-2 · 2.5-3H2O
Al AluniteKAl3(SO4)2(OH)6
Al Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Al KaoliniteAl2(Si2O5)(OH)4
Al Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Al Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
Al OrthoclaseK(AlSi3O8)
Al Todorokite(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
Al MuscoviteKAl2(AlSi3O10)(OH)2
SiSilicon
Si ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Si AndraditeCa3Fe23+(SiO4)3
Si DioptaseCuSiO3 · H2O
Si NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Si Serpentine SubgroupD3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
Si TalcMg3Si4O10(OH)2
Si OpalSiO2 · nH2O
Si Allophane(Al2O3)(SiO2)1.3-2 · 2.5-3H2O
Si Tremolite☐{Ca2}{Mg5}(Si8O22)(OH)2
Si QuartzSiO2
Si DiopsideCaMgSi2O6
Si Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Si KaoliniteAl2(Si2O5)(OH)4
Si Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Si Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
Si WollastoniteCaSiO3
Si OrthoclaseK(AlSi3O8)
Si TitaniteCaTi(SiO4)O
Si Actinolite☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2
Si Neotocite(Mn,Fe,Mg)SiO3 · H2O
Si MuscoviteKAl2(AlSi3O10)(OH)2
PPhosphorus
P TsumebitePb2Cu(PO4)(SO4)(OH)
P TurquoiseCu(Al,Fe3+)6(PO4)4(OH)8 · 4H2O
P TorberniteCu(UO2)2(PO4)2 · 12H2O
P LibetheniteCu2(PO4)(OH)
P DiadochiteFe23+(PO4)(SO4)(OH) · 5H2O
P MetatorberniteCu(UO2)2(PO4)2 · 8H2O
SSulfur
S AntleriteCu3(SO4)(OH)4
S TsumebitePb2Cu(PO4)(SO4)(OH)
S JarositeKFe3+ 3(SO4)2(OH)6
S MelanteriteFe2+(H2O)6SO4 · H2O
S PyrrhotiteFe7S8
S CyanotrichiteCu4Al2(SO4)(OH)12 · 2H2O
S ChalcociteCu2S
S ChalcopyriteCuFeS2
S PyriteFeS2
S MolybdeniteMoS2
S SphaleriteZnS
S AniliteCu7S4
S AcanthiteAg2S
S StromeyeriteAgCuS
S AluniteKAl3(SO4)2(OH)6
S GypsumCaSO4 · 2H2O
S BrochantiteCu4(SO4)(OH)6
S ChalcanthiteCuSO4 · 5H2O
S CovelliteCuS
S GalenaPbS
S StibniteSb2S3
S DjurleiteCu31S16
S DigeniteCu9S5
S BorniteCu5FeS4
S IdaiteCu5FeS6
S DiadochiteFe23+(PO4)(SO4)(OH) · 5H2O
ClChlorine
Cl MimetitePb5(AsO4)3Cl
Cl Akaganeite(Fe3+,Ni2+)8(OH,O)16Cl1.25 · nH2O
KPotassium
K JarositeKFe3+ 3(SO4)2(OH)6
K AluniteKAl3(SO4)2(OH)6
K Muscovite (var: Sericite)KAl2(AlSi3O10)(OH)2
K OrthoclaseK(AlSi3O8)
K CryptomelaneK(Mn74+Mn3+)O16
K Todorokite(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
K MuscoviteKAl2(AlSi3O10)(OH)2
CaCalcium
Ca AndraditeCa3Fe23+(SiO4)3
Ca Aurorite(Mn2+,Ag,Ca)Mn34+O7 · 3H2O
Ca GypsumCaSO4 · 2H2O
Ca Tremolite☐{Ca2}{Mg5}(Si8O22)(OH)2
Ca DiopsideCaMgSi2O6
Ca Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Ca Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Ca WollastoniteCaSiO3
Ca TitaniteCaTi(SiO4)O
Ca Actinolite☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2
Ca CalciteCaCO3
Ca Todorokite(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
Ca FluoriteCaF2
TiTitanium
Ti TitaniteCaTi(SiO4)O
Ti RutileTiO2
MnManganese
Mn Aurorite(Mn2+,Ag,Ca)Mn34+O7 · 3H2O
Mn Serpentine SubgroupD3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
Mn CoronaditePb(Mn64+Mn23+)O16
Mn Neotocite(Mn,Fe,Mg)SiO3 · H2O
Mn CryptomelaneK(Mn74+Mn3+)O16
Mn HollanditeBa(Mn64+Mn23+)O16
Mn HausmanniteMn2+Mn23+O4
Mn Todorokite(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
Mn Chalcophanite(Zn,Fe,Mn)Mn3O7 · 3H2O
FeIron
Fe AndraditeCa3Fe23+(SiO4)3
Fe Goethiteα-Fe3+O(OH)
Fe HematiteFe2O3
Fe JarositeKFe3+ 3(SO4)2(OH)6
Fe MelanteriteFe2+(H2O)6SO4 · H2O
Fe NontroniteNa0.3Fe2((Si,Al)4O10)(OH)2 · nH2O
Fe PyrrhotiteFe7S8
Fe Serpentine SubgroupD3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
Fe ChalcopyriteCuFeS2
Fe PyriteFeS2
Fe TurquoiseCu(Al,Fe3+)6(PO4)4(OH)8 · 4H2O
Fe MagnetiteFe2+Fe23+O4
Fe Epidote{Ca2}{Al2Fe3+}(Si2O7)(SiO4)O(OH)
Fe Limonite(Fe,O,OH,H2O)
Fe SideriteFeCO3
Fe Actinolite☐{Ca2}{Mg4.5-2.5Fe0.5-2.5}(Si8O22)(OH)2
Fe Neotocite(Mn,Fe,Mg)SiO3 · H2O
Fe BorniteCu5FeS4
Fe Akaganeite(Fe3+,Ni2+)8(OH,O)16Cl1.25 · nH2O
Fe IdaiteCu5FeS6
Fe DiadochiteFe23+(PO4)(SO4)(OH) · 5H2O
Fe Chalcophanite(Zn,Fe,Mn)Mn3O7 · 3H2O
NiNickel
Ni Serpentine SubgroupD3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
Ni Akaganeite(Fe3+,Ni2+)8(OH,O)16Cl1.25 · nH2O
CuCopper
Cu MalachiteCu2(CO3)(OH)2
Cu AzuriteCu3(CO3)2(OH)2
Cu ChrysocollaCu2-xAlx(H2-xSi2O5)(OH)4 · nH2O
Cu DioptaseCuSiO3 · H2O
Cu AntleriteCu3(SO4)(OH)4
Cu TsumebitePb2Cu(PO4)(SO4)(OH)
Cu CyanotrichiteCu4Al2(SO4)(OH)12 · 2H2O
Cu ChalcociteCu2S
Cu ChalcopyriteCuFeS2
Cu AniliteCu7S4
Cu StromeyeriteAgCuS
Cu TurquoiseCu(Al,Fe3+)6(PO4)4(OH)8 · 4H2O
Cu BrochantiteCu4(SO4)(OH)6
Cu ChalcanthiteCuSO4 · 5H2O
Cu CopperCu
Cu CovelliteCuS
Cu CupriteCu2O
Cu TenoriteCuO
Cu TorberniteCu(UO2)2(PO4)2 · 12H2O
Cu DjurleiteCu31S16
Cu DigeniteCu9S5
Cu BorniteCu5FeS4
Cu LibetheniteCu2(PO4)(OH)
Cu OliveniteCu2(AsO4)(OH)
Cu IdaiteCu5FeS6
Cu Rosasite(Cu,Zn)2(CO3)(OH)2
Cu MetatorberniteCu(UO2)2(PO4)2 · 8H2O
ZnZinc
Zn Serpentine SubgroupD3[Si2O5](OH)4 D= Mg, Fe, Ni, Mn, Al, Zn
Zn SphaleriteZnS
Zn Chalcophanite(Zn,Fe,Mn)Mn3O7 · 3H2O
Zn Rosasite(Cu,Zn)2(CO3)(OH)2
AsArsenic
As MimetitePb5(AsO4)3Cl
As OliveniteCu2(AsO4)(OH)
SrStrontium
Sr Todorokite(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
MoMolybdenum
Mo WulfenitePb(MoO4)
Mo MolybdeniteMoS2
AgSilver
Ag Aurorite(Mn2+,Ag,Ca)Mn34+O7 · 3H2O
Ag AcanthiteAg2S
Ag StromeyeriteAgCuS
SbAntimony
Sb StibniteSb2S3
BaBarium
Ba HollanditeBa(Mn64+Mn23+)O16
Ba Todorokite(Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O
AuGold
Au GoldAu
PbLead
Pb TsumebitePb2Cu(PO4)(SO4)(OH)
Pb WulfenitePb(MoO4)
Pb CoronaditePb(Mn64+Mn23+)O16
Pb GalenaPbS
Pb MimetitePb5(AsO4)3Cl
Pb PlattneritePbO2
UUranium
U TorberniteCu(UO2)2(PO4)2 · 12H2O
U MetatorberniteCu(UO2)2(PO4)2 · 8H2O

Regional Geology

This geological map and associated information on rock units at or nearby to the coordinates given for this locality is based on relatively small scale geological maps provided by various national Geological Surveys. This does not necessarily represent the complete geology at this locality but it gives a background for the region in which it is found.

Click on geological units on the map for more information. Click here to view full-screen map on Macrostrat.org

Pliocene
2.588 - 5.333 Ma



ID: 3192320
Cenozoic volcanic rocks

Age: Pliocene (2.588 - 5.333 Ma)

Lithology: Volcanic rocks

Reference: Chorlton, L.B. Generalized geology of the world: bedrock domains and major faults in GIS format: a small-scale world geology map with an extended geological attribute database. doi: 10.4095/223767. Geological Survey of Canada, Open File 5529. [154]

Ypresian - Campanian
47.8 - 83.6 Ma



ID: 2778472
Early Tertiary to Late Cretaceous granitic rocks

Age: Phanerozoic (47.8 - 83.6 Ma)

Description: Porphyritic to equigranular granite to diorite emplaced during the Laramide orogeny. Larger plutons are characteristically medium-grained, biotite +/- hornblende granodiorite to granite. Smaller, shallow-level intrusions are typically porphyritic. Most of the large copper deposits in Arizona are associated with porphyritic granitic rocks of this unit, and are thus named 'porphyry copper deposits'. (50-82 Ma)

Comments: Laramide metaluminous; associated with porphyry Cu deposits Original map source: Arizona Geological Survey, DI-8 Geologic Map of Arizona, Digital Spatial data for the Geologic Map of Arizona, v. 3.0, edited by S.M. Richard and S.M. Kneale, 2002, 10 p., 2 DOS HD disks. Arc/INFO export file (.e00) format, scale 1:1,000,000.

Lithology: Major:{granite,granodiorite,diorite}

Reference: Horton, J.D., C.A. San Juan, and D.B. Stoeser. The State Geologic Map Compilation (SGMC) geodatabase of the conterminous United States. doi: 10.3133/ds1052. U.S. Geological Survey Data Series 1052. [133]

Data and map coding provided by Macrostrat.org, used under Creative Commons Attribution 4.0 License

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
Lindgren, W. (1903), The copper deposits of Clifton, Arizona, Engineering and Mining Journal: 75: 705.
Lindgren, W. (1904), The genesis of copper deposits, Engineering and Mining Journal: 78: 987.
Lindgren, W. (1905), The copper deposits of the Clifton-Morenci district, Arizona, USGS PP 43;
Guild, F.N. (1910), The Mineralogy of Arizona, The Chemical Publishing Co., Easton, PA.
University of Arizona Bull. 41 (1916-17), Mineralogy of Useful Minerals in Arizona: 50.
Butler, B.S. & Wilson E.D. (1938), Arizona Bureau of Mines Bull. 145: 72-80.
Moolick, R.T. & J.J. Durek (1966), The Morenci district, in S.R. Titley and C.L. Hicks (editors), Geology of the porphyry copper deposits, southwestern North America, Universty of Arizona Press, Tucson: 221-231.
Langton, J.M. (1973), Ore Genesis in the Morenci-Metcalf District, A.I.M.E. Transactions: 254: 247-257.
Paydirt (1981) Phelps Dodge, A Copper Centennial, 1881-1981.
Engineering and Mining Journal (1987) Phelps Dodge Has Something to Smile About, August, 1987: 24-31.
Phillips, K.A. (1987), Arizona Industrial Minerals, 2nd. Edition, Arizona Department of Mines & Minerals Mineral Report 4, 185 pp.
Minerals Yearbook (1988) - Mining & Quarrying Trends: 31;
Peirce, H. Wesley (1990), Arizona Geological Survey Industrial Minerals card file.
Phillips, et al (1990).
Walenga, Karen (1990) SX-EW Production Doubled to 200 Million PPY, Southwestern Pay Dirt, 4/90: 4A-6A.
Dillard, Gary (1991) Four Major Orebodies will Shoulder the Load. Southwestern Pay Dirt, 11/91: 4A-14A.
Epler, Bill (1991) Phelps Dodge Finds 150 Million More Tons of Ore at Morenci. Southwestern Pay Dirt, 1/91: 3A.
Epler, Bill (1991) Phelps Dodge Relocates Highway at Morenci Mine. Southwestern Pay Dirt, 7/91: 4A-6A.
Blair, G. (1992), The Rockhound's Guide to Arizona: Helena, MT, Falcon Press.
Carter, Russell A. (1992) Expansion Almost Complete at Arizona’s Mission and Morenci Mines. Engineering and Mining Journal, 2/92: C14-C16.
Niemuth, N.J. & K.A. Phillips (1992), Copper Oxide Resources, Arizona Department of Mines & Mineral Resources Open File Report 92-10: 8 (Table 1).
Dillard, Gary (1994) Phelps Dodge is Contemplating SX-EW Expansion at Morenci. Southwestern Pay Dirt, 5/94: 3A, 8A.
Snider, T.R. (1994) Morenci Southside will Add 150 million pounds of Cathode. Southwestern Pay Dirt, 8/94: 3A.
Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd. ed.: 124, 125, 163, 166, 193, 198, 233, 261, 292, 314, 345, 368, 388.
Merritt Stephen Enders (2000) The Evolution of Supergene Enrichment in the Morenci Porphyry Copper Deposit, Greenlee County, Arizona. PhD Thesis, University of Arizona
Singer, D.A., Berger, V.I., and Moring, B.C. (2005): Porphyry Copper Deposits of the World: Database, Map, and Grade and Tonnage Models. USGS Open-File Report 05-1060.
Grant, Raymond W., Richard A. Bideaux & Sidney A. Williams (2006), Minerals Added to the Arizona List 1995 to 2005: 1.
USGS (2005), Mineral Resources Data System (MRDS): U.S. Geological Survey, Reston, Virginia, loc. file ID #10027138, MRDS ID #M002216; and file ID #10282444.
U.S. Bureau of Mines, Minerals Availability System (MAS) file ID #0040110018.

External Links


Localities in this Region
Show map

  • Arizona
    • Greenlee Co.
      • Shannon Mts
        • Copper Mountain District (Clifton-Morenci District)

This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization. Public Relations by Blytheweigh.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2019, except where stated. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: March 26, 2019 14:28:39 Page generated: March 26, 2019 00:57:57
Go to top of page