Log InRegister
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat Articles
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsThe ElementsUsersBooks & MagazinesMineral MuseumsMineral Shows & EventsThe Mindat DirectoryDevice Settings
Photo SearchPhoto GalleriesNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day Gallery

Walden Gem Quarry, Portland, Middlesex Co., Connecticut, USAi
Regional Level Types
Walden Gem QuarryQuarry (Inactive)
Portland- not defined -
Middlesex Co.County
ConnecticutState
USACountry

This page is currently not sponsored. Click here to sponsor this page.
Key
Latitude & Longitude (WGS84):
41° 37' 8'' North , 72° 35' 45'' West
Latitude & Longitude (decimal):
Locality type:
Quarry (Inactive) - last checked 2019
Nearest Settlements:
PlacePopulationDistance
Cromwell13,750 (2017)4.9km
Portland5,862 (2017)6.3km
Lake Pocotopaug3,436 (2017)7.5km
Middletown46,756 (2017)7.8km
East Hampton2,691 (2017)9.1km


A lithium rich granite pegmatite opened for specimen and gem mining in 1962. It is not the same locality as the nearby Gotta-Walden prospect, which is a mica, feldspar, beryl prospect operated before and during the early 1940s. The quarry was opened up early in 1962 by two young miners who leased the property from Mr. Walden. The ledge had never been previously blasted but outcropped prominently on top of the hill.

Into the early 1990s it was a popular fee collection site, with Ed Walden also selling specimens from a shack near the front of the property. It closed after his passing. The locality is famous for large masses of gemmy pollucite (many gemstones have been cut from this material), conical purple lepidolite crystals in blue cleavelandite, and excellent rubellite crystals. Montebrasite and spodumene, some of it cuttable variety kunzite, and reddish wodginite and/or tantalite-(Mn) also occur.

Seaman (1963) describes the pegmatite as follows, with comments in [ ]:

The Walden quarry is located in a lenticular body of pegmatite. It is a zoned pegmatite and the contact with the schist is sharp; the other contact at the time of the writer’s visit being hidden. The border zone is only a few inches thick and consists chiefly of granular albite, muscovite, and quartz. The wall zone consists of intergrown albite of the variety cleavelandite, quartz, muscovite, biotite [annite], black tourmaline, a few small black columbite crystals, pale yellow to light green and colorless beryl crystals, and frequently large crystals of almandite-spessartite garnet. It grades into a rich lithium mineral zone in the core of the pegmatite. The minerals of the core zone are highly colored lithium tourmalines with the pink or rubellite being the most prevalent color, also light green, dark blue, and a small amount of pale watermelon colored tourmaline; massive and fine grained purple lepidolite; some wedge shaped, hemispherical grown, purple lepidolite; white, gray, and pale blue albite of the variety cleavelandite; spodumene; pollucite; caesium beryl, both morganite and goshenite; montebrasite; mangantantalite [some are likely to be wodginite]; yellow microlite and dark brown pyrochlore; rare, dark blue manganapatite; and granular to massive clear, and smoky quartz. Parts of the spodumene contain clear, purple areas of gem kunzite from which small stones could be cut. Some of the caesium beryl contains transparent areas of both morganite (pink) and goshenite (colorless) material suitable for fashioning into gem stones. A few of the pink tourmalines also possess small, clear, gem areas.


Barton and Goldsmith (1968) give this description, with comments in [ ]:

At the surface the western pegmatite has a maximum thickness of 10 feet, the eastern one, 20 feet. Both pegmatites thin rapidly in both directions along strike, the upper (western one) splitting into three branches before it pinches out to the south. The eastern and larger pegmatite consists mostly of [microcline] perthite crystals up to 1 foot in diameter separated by veinlets and pods of smoky and lesser amounts of milky quartz, usually with less than 6 inches between the feldspar crystals. Scattered books of muscovite average 1 inch across by 1/2 inch thick. Light green to yellow beryl crystals up to 1 foot long by 6 inches thick comprise 0.1 percent of the rock. There is very sparse accessory garnet and biotite [annite]. A 6-inch-thick wall zone along the exposed hanging wall consists of a finer grained mixture of feldspar and quartz with small green, beryl crystals com¬posing 1.0 percent of its constituents. The very fine grained border zone is less than 1 inch thick and consists of biotite [annite] and smoky to citrine quartz. The smaller, western pegmatite is rich in alkalis and is the one from which the gem stones are recovered. It is similar mineralogically to the Dunton pegmatite at Newry Hill, Maine. The exposed pegmatite is principally cleavelandite. The outermost 3 to 5 feet is enriched in almandite garnet and black tourmaline and cleavelandite is white rather than gray to blueish-green, but this color change may be a result of near surface leaching. Gray quartz and a small amount of perthite are associated with the cleavelandite in this zone. Muscovite is sparse and in small books only. The inner zone of colored cleavelandite actually is more a series of replacement pods rather than a true zone. Both downdip and along strike it grades into perthite-bearing pegmatite similar to the eastern pegmatite outcrop. The cleavelandite pods in places contained large masses of deep purple lepidolite forming 10 percent of the rock over areas of several cubic feet. Green, white, and pink beryl up to 1 foot by 6 inches formed about 0.5 percent of these areas. Spodumene including gem kunzite and hiddenite was present in logs up to 1 foot by 4 inches comprising about 1.0 percent of the lepidolite enriched areas. Pollucite in masses up to 1 foot across was seen, in similar concentration. Rubellite up to 6 inches long was also closely associated with the lepidolite. Small (1/8-inch) dark red manganotantalite [some are likely wodginite] was an abundant accessory in restricted sections a few inches across. Manganoapatite was fairly common and rare minerals present included autunite, columbite, pyrochlore [microlite], amblygonite [montebrasite], and uraninite.

Regions containing this locality

North America PlateTectonic Plate

Select Mineral List Type

Standard Detailed Strunz Dana Chemical Elements

Mineral List


28 valid minerals. 2 erroneous literature entries.

Detailed Mineral List:

Albite
Formula: Na(AlSi3O8)
Colour: white
Reference: Rocks & Minerals (1970) 45:443-449; Rocks & Minerals (1970) 45:595-600
Albite var: Cleavelandite
Formula: Na(AlSi3O8)
Habit: tabular
Colour: white to pale blue
Description: Pale blue color where associated with the lithium minerals in the core zone.
Reference: Rocks & Minerals (1970) 45:443-449; Rocks & Minerals (1970) 45:595-600
'Allanite Group'
Formula: {A12+REE3+}{M3+2M32+}(Si2O7)(SiO4)O(OH)
Habit: subhedral tabular
Colour: black
Description: Aggregates of subhedral crystals to 1.5 cm.
Reference: Rocks & Minerals (1995) 70:402.
Almandine
Formula: Fe2+3Al2(SiO4)3
Habit: dodecahedral
Colour: maroon to red
Description: commonly massive and with fluorapatite, in the outer 3 to 5 feet of the western pegmatite, XRF testing of one garnet revealed 63% Fe, 37% Mn.
Reference: Rocks & Minerals (1970) 45:443-449; Barton and Goldsmith (1968); Harold Moritz collection
Annite
Formula: KFe2+3(AlSi3O10)(OH)2
Habit: anhedral
Colour: black
Description: fka biotite. Prevalent in the wall zone.
Reference: Rocks & Minerals (1970) 45:443-449
Autunite
Formula: Ca(UO2)2(PO4)2 · 11H2O
Reference: Rocks & Minerals (1970) 45:595-600
Beryl
Formula: Be3Al2(Si6O18)
Habit: Habits include the 18-sided prism form comprised of the primary, secondary and tertiary prisms (large pale aquamarine, opaque crystal purchased directly from Mr. Walden in the mid-1980's by C. Lemanski, Jr.)
Colour: pale green to yellow.
Description: Common green beryl mostly in the wall zone. crystals up to 1 foot long by 6 inches thick in the eastern pegmatite.
Reference: Rocks & Minerals (1995) 70:396-409; Rocks & Minerals (1970) 45:443-449; Rocks & Minerals (1970) 45:595-600; Barton and Goldsmith (1968). Lemanski, Jr., Chester S. (2016), personal communication to Mindat.org.
Beryl var: Aquamarine
Formula: Be3Al2Si6O18
Beryl var: Goshenite
Formula: Be3Al2(Si6O18)
Colour: white
Description: In the mineralized core zone.
Reference: Rocks & Minerals (1970) 45:595-600
Beryl var: Heliodor
Formula: Be3Al2(Si6O18)
Habit: elongated hexagonal prisms
Colour: yellow
Description: In the wall zone where found with biotite.
Reference: Seaman (1963) in Rocks and Minerals, Vol. 38, Nos. 7-8, Whole No. 295
Beryl var: Morganite
Formula: Be3Al2(Si6O18)
Description: up to 1 foot by 6 inches
Reference: Rocks & Minerals (1970) 45:595-600; Barton and Goldsmith (1968)
Cassiterite
Formula: SnO2
Reference: Rocks & Minerals (1970) 45:595-600
Columbite-(Fe)
Formula: Fe2+Nb2O6
Colour: black with iridescence
Description: It occurs chiefly as black, metallic crystals of small size from a half inch to an inch in length. Associated with fluorapatite.
Reference: - Seaman, David. (1963): The Walden Gem Mine. Rocks and Minerals, Vol. 38, Nos. 7-8, Whole No. 295, p. 355-62.
'Columbite-(Fe)-Columbite-(Mn) Series'
Reference: Rocks & Minerals (1970) 45:443-449; Rocks & Minerals (1970) 45:595-600
Elbaite
Formula: Na(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
Habit: unterminated, elongated prisms
Colour: pink; rarely green, blue or watermelon
Reference: Rocks & Minerals (1970) 45:443-449; Rocks & Minerals (1970) 45:595-600
Fluorapatite
Formula: Ca5(PO4)3F
Colour: pale green to green-gray, yellow-green , dark blue
Fluorescence: yellow
Description: Mostly massive and associated with almandine.
Reference: Rocks & Minerals (1970) 45:443-449; Barton and Goldsmith (1968); Harold Moritz collection
Fluorapatite var: Mn-bearing Fluorapatite
Formula: (Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
Reference: Michael W. Kieron collection; Rocks & Minerals (1970) 45:443-449; Rocks & Minerals (1970) 45:595-600
Gypsum
Formula: CaSO4 · 2H2O
Reference: Rocks & Minerals (1995) 70:396-409
'Halloysite'
Formula: Al2(Si2O5)(OH)4
Habit: earthy to waxy masses
Colour: tan
Description: Alteration of pollucite, so occurs as thin crusts and veins with elbaite, pollucite, cleavelandite.
Reference: Wesleyan University collection; Schooner, Richard. (circa 1980s), Untitled manuscript on central Connecticut mineralogy.
'Hornblende'
Reference: USGS Prof Paper 255
'Indicolite'
Formula: A(D3)G6(T6O18)(BO3)3X3Z
Reference: Rocks & Minerals (1970) 45:443-449
'Lepidolite'
Habit: tapered columnar and granular
Colour: purple
Description: fine crystals tapering from a point at one end to a larger, curved, somewhat hemispherical crystallization at the other end of the crystal. It appears to have grown in wedge shaped areas between interlocking crystal plates of cleavelandite. Some of the hemispherical terminations may be as much as two or three inches across at the large end. They are noted in cross section to be made up of many curved crystalline plates of lepidolite all curved over each other, so that in pealing off layers of this mica, they would all appear with hemispherically curved surfaces.
Reference: Rocks & Minerals (1995) 70:396-409; Rocks & Minerals (1970) 45:443-449; Rocks & Minerals (1970) 45:595-600; Barton and Goldsmith (1968)
Manganite
Formula: Mn3+O(OH)
Description: No data.
Reference: Seaman, 1976. Pegmatite Minerals of the World; Rocks & Minerals (1970) 45:595-600
Meta-autunite
Formula: Ca(UO2)2(PO4)2 · 6-8H2O
Colour: pale yellow
Fluorescence: green
Description: Thin coatings with bright fluorescence in both long and short wave UV.
Reference: Harold Moritz collection
Microcline
Formula: K(AlSi3O8)
Description: perthite crystals up to 1 foot in diameter
Reference: Seaman (1963); Barton, William R. and Carl E. Goldsmith. (1968) NEW ENGLAND BERYLLIUM INVESTIGATIONS. U. S. Bureau of Mines, Report of Investigations 7070.
'Microlite Group'
Formula: A2-mTa2X6-wZ-n
Habit: octahedral
Colour: yellow to dark green to black
Description: In the mineralized core zone, up to 0.5 inch.
Reference: Rocks & Min.: 70:403; Rocks & Minerals (1970) 45:443-449; Rocks & Minerals (1970) 45:595-600
Montebrasite
Formula: LiAl(PO4)(OH)
Colour: white
Description: locally in the core zone in crystals which commonly show a good but rough crystal form. Some of its crystals reach three or four inches in length. The outer crystal edges are usually altered on the surfaces to a tan colored alteration product.
Reference: Rocks & Min.: 70:403; Rocks & Minerals (1970) 45:443-449; Rocks & Minerals (1970) 45:595-600
Montmorillonite
Formula: (Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Reference: Rocks & Minerals (1970) 45:595-600
Muscovite
Formula: KAl2(AlSi3O10)(OH)2
Description: Scattered books of muscovite average 1 inch across by 1/2 inch thick.
Reference: USGS Prof Paper 255; Rocks & Minerals (1970) 45:443-449; Barton and Goldsmith (1968)
Opal
Formula: SiO2 · nH2O
Reference: Rocks & Minerals (1970) 45:595-600
Opal var: Opal-AN
Formula: SiO2 · nH2O
Colour: colorless
Fluorescence: green
Description: nearly invisible coatings that fluoresce bright green
Reference: Rocks & Minerals (1970) 45:595-600
Pollucite
Formula: (Cs,Na)2(Al2Si4O12) · 2H2O
Colour: colorless
Description: In the lithium mineral zone of the western pegmatite. Masses and cleavages to as much as a foot in length and six to eight inches in width have been recovered. It is closely associated with spodumene crystals, rubellite and other colored lithium tourmalines, caesium beryl, lepidolite, montebrasite, blue and white cleavelandite, and smoky quartz. It has a platy structure or it occurs as fractured masses, the fractures often being filled by dull white chalcedony.
Reference: Rocks & Min.: 70:382; Rocks & Minerals (1970) 45:443-449; Rocks & Minerals (1970) 45:595-600; Barton and Goldsmith (1968)
Pyrolusite
Formula: Mn4+O2
Description: No pyrolusite dendrite or staining in a granite pegmatite in the world has been verified as pyrolusite. The name was a mistake in the nineteenth century which has been widely publicized.
Reference: Seaman, 1976. Pegmatite Minerals of the World; Rocks & Minerals (1970) 45:595-600
Quartz
Formula: SiO2
Colour: colorless to smoky
Reference: Rocks & Minerals (1970) 45:443-449; Rocks & Minerals (1970) 45:595-600
Quartz var: Chalcedony
Formula: SiO2
Colour: white
Fluorescence: pale yellow-white
Description: filling fractures in pollucite masses. As "snowflake" inclusions in pollucite.
Reference: Seaman (1963) : THE WALDEN GEM MINE. Rocks and Minerals, Vol. 38, Nos. 7-8, Whole No. 295, July-August, p. 355-62.
Schorl
Formula: Na(Fe2+3)Al6(Si6O18)(BO3)3(OH)3(OH)
Habit: unterminated, elongated prisms
Colour: black
Description: common in the wall zone of the western pegmatite
Reference: Seaman (1963); Barton and Goldsmith (1968)
Spessartine
Formula: Mn2+3Al2(SiO4)3
Reference: Rocks & Minerals (1970) 45:443-449
Spodumene
Formula: LiAlSi2O6
Colour: tan to lavender
Fluorescence: pale orange-pink
Description: broad, lath-like crystals several inches wide and thick, and up to a foot and a half in length. Found in the core zone of the western pegmatite. "Spodumene including gem kunzite and hiddenite was present in logs up to 1 foot by 4 inches comprising about 1.0 percent of the lepidolite enriched areas." (Barton and Goldsmith 1968)
Reference: Rocks & Minerals (1995) 70:396-409; Rocks & Minerals (1970) 45:443-449; Rocks & Minerals (1970) 45:595-600; Barton and Goldsmith (1968)
Spodumene var: Kunzite
Formula: LiAlSi2O6
Habit: elongated prisms
Colour: lavender
Fluorescence: pale orange-pink
Description: Found in the cores of normal spodumene
Reference: Rocks & Min.: 70:382
Sulphur
Formula: S8
Reference: Rocks & Min.: 70:403
Tantalite-(Mn)
Formula: Mn2+Ta2O6
Habit: subhedral; highly modified, flattened, and distorted
Colour: red-brown, reddish orange
Description: occurs as small browish-red to reddish-orange, and orange-brown, highly modified, flattened, and distorted crystals to about two inches in length. They are often partially or completely embedded in spodumene cleavelandite, lepidolite, or quartz. A characteristic occurrence is as small crystals grown upon or near to the outer surfaces of spodumene crystals, or partially enclosed within them but projecting above the edges of the spodumene crystals. The flattened tantalite crystals look very much like flattened crystals of zircon but an x-ray powder photograph revealed that they are tantalite.
Reference: Self collected by Kevin Czaja; Rocks & Minerals (1970) 45:595-600; Barton and Goldsmith (1968)
Topaz
Formula: Al2(SiO4)(F,OH)2
Colour: blue
Description: Practically nonexistent. Only two, microscopic, blue etched crystals, barely visible to the naked eye were found in an extremely small vug in the cleavelandite of the lithium mineral zone.
Reference: Rocks & Minerals (1970) 45:595-600 Seaman, David. (1963): The Walden Gem Mine. Rocks and Minerals, Vol. 38, Nos. 7-8, Whole No. 295, p. 355-62.
'Tourmaline'
Formula: A(D3)G6(Si6O18)(BO3)3X3Z
Reference: Rocks & Minerals (1970) 45:443-449; Rocks & Minerals (1970) 45:595-600
'Tourmaline var: Rubellite'
Formula: A(D3)G6(T6O18)(BO3)3X3Z
Habit: unterminated, elongated prisms
Colour: pink
Description: Rubellite is the most prevalent colored tourmaline in the lithium mineral zone. The crystals are not terminated. They occur to three quarters of an inch in diameter and to six inches or so in length together with blue and white cleavelandite, yellow microlite, lepidolite, beryl, montebrasite, pollucite, spodumene, and quartz. They are often noted to be bent or twisted with small fractures healed by quartz or cleavelandite. Rubellite has often been noted in the interstitial areas between plates of cleavelandite and some of the broken sections are completely enclosed by cleavelandite, lepidolite, and other minerals in the core of the pegmatite.
Reference: Seaman, 1976. Pegmatite Minerals of the World; Rocks & Minerals (1970) 45:443-449; Rocks & Minerals (1970) 45:595-600
'Tourmaline var: Watermelon Tourmaline'
Formula: A(D3)G6(T6O18)(BO3)3X3Z
Habit: unterminated, elongated prisms
Colour: pink core, pale green rims
Description: In the mineralized core zone.
Reference: Rocks & Minerals (1970) 45:443-449
Uraninite
Formula: UO2
Reference: Rocks & Minerals (1970) 45:595-600
Uranophane
Formula: Ca(UO2)2(SiO3OH)2 · 5H2O
Reference: Rocks & Minerals (1970) 45:595-600
Wodginite
Formula: Mn2+Sn4+Ta2O8
Habit: granular to subhedral monoclinic
Colour: dark reddish-brown with iridescence
Description: Iridescent, translucent, dark brownish-red grains to subhedral crystals less than 1 cm in granular lepidolite/smoky quartz/cleavelandite matrix. A few grains have been positively identified and it is likely that many other "reddish" minerals purported to be tantalite or cassiterite are actually wodginite (as was the case at the similar and nearby Strickland Quarry for decades).
Reference: Harold Moritz collection
Zircon
Formula: Zr(SiO4)
Habit: elongated prisms
Colour: brown
Description: tiny crystals
Reference: Seaman, 1976. Pegmatite Minerals of the World; Rocks & Minerals (1970) 45:595-600
Zircon var: Cyrtolite
Formula: Zr[(SiO4),(OH)4]
Reference: Rocks & Minerals (1970) 45:595-600

List of minerals arranged by Strunz 10th Edition classification

Group 1 - Elements
Sulphur1.CC.05S8
Group 4 - Oxides and Hydroxides
Cassiterite4.DB.05SnO2
Columbite-(Fe)4.DB.35Fe2+Nb2O6
Manganite ?4.FD.15Mn3+O(OH)
'Microlite Group'4.00.A2-mTa2X6-wZ-n
Opal4.DA.10SiO2 · nH2O
var: Opal-AN4.DA.10SiO2 · nH2O
Pyrolusite ?4.DB.05Mn4+O2
Quartz4.DA.05SiO2
var: Chalcedony4.DA.05SiO2
Tantalite-(Mn)4.DB.35Mn2+Ta2O6
Uraninite4.DL.05UO2
Wodginite4.DB.40Mn2+Sn4+Ta2O8
Group 7 - Sulphates, Chromates, Molybdates and Tungstates
Gypsum7.CD.40CaSO4 · 2H2O
Group 8 - Phosphates, Arsenates and Vanadates
Autunite8.EB.05Ca(UO2)2(PO4)2 · 11H2O
Fluorapatite8.BN.05Ca5(PO4)3F
var: Mn-bearing Fluorapatite8.BN.05(Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
Meta-autunite8.EB.10Ca(UO2)2(PO4)2 · 6-8H2O
Montebrasite8.BB.05LiAl(PO4)(OH)
Group 9 - Silicates
Albite9.FA.35Na(AlSi3O8)
var: Cleavelandite9.FA.35Na(AlSi3O8)
Almandine9.AD.25Fe2+3Al2(SiO4)3
Annite9.EC.20KFe2+3(AlSi3O10)(OH)2
Beryl9.CJ.05Be3Al2(Si6O18)
var: Aquamarine9.CJ.05Be3Al2Si6O18
var: Goshenite9.CJ.05Be3Al2(Si6O18)
var: Heliodor9.CJ.05Be3Al2(Si6O18)
var: Morganite9.CJ.05Be3Al2(Si6O18)
Elbaite9.CK.05Na(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
'Halloysite'9.ED.10Al2(Si2O5)(OH)4
Microcline9.FA.30K(AlSi3O8)
Montmorillonite9.EC.40(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Muscovite9.EC.15KAl2(AlSi3O10)(OH)2
Pollucite9.GB.05(Cs,Na)2(Al2Si4O12) · 2H2O
Schorl9.CK.05Na(Fe2+3)Al6(Si6O18)(BO3)3(OH)3(OH)
Spessartine9.AD.25Mn2+3Al2(SiO4)3
Spodumene9.DA.30LiAlSi2O6
var: Kunzite9.DA.30LiAlSi2O6
Topaz9.AF.35Al2(SiO4)(F,OH)2
Uranophane9.AK.15Ca(UO2)2(SiO3OH)2 · 5H2O
Zircon9.AD.30Zr(SiO4)
var: Cyrtolite9.AD.30Zr[(SiO4),(OH)4]
Unclassified Minerals, Rocks, etc.
'Allanite Group'-{A12+REE3+}{M3+2M32+}(Si2O7)(SiO4)O(OH)
'Columbite-(Fe)-Columbite-(Mn) Series'-
'Hornblende'-
'Indicolite'-A(D3)G6(T6O18)(BO3)3X3Z
'Lepidolite'-
'Tourmaline'-A(D3)G6(Si6O18)(BO3)3X3Z
'var: Rubellite'-A(D3)G6(T6O18)(BO3)3X3Z
'var: Watermelon Tourmaline'-A(D3)G6(T6O18)(BO3)3X3Z

List of minerals arranged by Dana 8th Edition classification

Group 1 - NATIVE ELEMENTS AND ALLOYS
Semi-metals and non-metals
Sulphur1.3.5.1S8
Group 4 - SIMPLE OXIDES
AX2
Cassiterite4.4.1.5SnO2
Pyrolusite ?4.4.1.4Mn4+O2
Group 5 - OXIDES CONTAINING URANIUM OR THORIUM
AXO2·xH2O
Uraninite5.1.1.1UO2
Group 6 - HYDROXIDES AND OXIDES CONTAINING HYDROXYL
XO(OH)
Manganite ?6.1.3.1Mn3+O(OH)
Group 8 - MULTIPLE OXIDES CONTAINING NIOBIUM,TANTALUM OR TITANIUM
ABO4
Wodginite8.1.8.1Mn2+Sn4+Ta2O8
A2B2O6(O,OH,F)
'Microlite Group'8.2.2.1A2-mTa2X6-wZ-n
AB2O6
Columbite-(Fe)8.3.2.2Fe2+Nb2O6
Tantalite-(Mn)8.3.2.3Mn2+Ta2O6
Group 29 - HYDRATED ACID AND NORMAL SULFATES
AXO4·xH2O
Gypsum29.6.3.1CaSO4 · 2H2O
Group 40 - HYDRATED NORMAL PHOSPHATES,ARSENATES AND VANADATES
AB2(XO4)2·xH2O, containing (UO2)2+
Autunite40.2a.1.1Ca(UO2)2(PO4)2 · 11H2O
Meta-autunite40.2a.1.2Ca(UO2)2(PO4)2 · 6-8H2O
Group 41 - ANHYDROUS PHOSPHATES, ETC.CONTAINING HYDROXYL OR HALOGEN
(AB)2(XO4)Zq
Montebrasite41.5.8.2LiAl(PO4)(OH)
A5(XO4)3Zq
Fluorapatite41.8.1.1Ca5(PO4)3F
Group 51 - NESOSILICATES Insular SiO4 Groups Only
Insular SiO4 Groups Only with cations in [6] and >[6] coordination
Almandine51.4.3a.2Fe2+3Al2(SiO4)3
Spessartine51.4.3a.3Mn2+3Al2(SiO4)3
Insular SiO4 Groups Only with cations in >[6] coordination
Zircon51.5.2.1Zr(SiO4)
Group 52 - NESOSILICATES Insular SiO4 Groups and O,OH,F,H2O
Insular SiO4 Groups and O, OH, F, and H2O with cations in [6] coordination only
Topaz52.3.1.1Al2(SiO4)(F,OH)2
Group 53 - NESOSILICATES Insular SiO4 Groups and Other Anions or Complex Cations
Insular SiO4 Groups and Other Anions of Complex Cations with (UO2)
Uranophane53.3.1.2Ca(UO2)2(SiO3OH)2 · 5H2O
Group 61 - CYCLOSILICATES Six-Membered Rings
Six-Membered Rings with [Si6O18] rings; possible (OH) and Al substitution
Beryl61.1.1.1Be3Al2(Si6O18)
Six-Membered Rings with borate groups
Elbaite61.3.1.8Na(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
Schorl61.3.1.10Na(Fe2+3)Al6(Si6O18)(BO3)3(OH)3(OH)
Group 65 - INOSILICATES Single-Width,Unbranched Chains,(W=1)
Single-Width Unbranched Chains, W=1 with chains P=2
Spodumene65.1.4.1LiAlSi2O6
Group 71 - PHYLLOSILICATES Sheets of Six-Membered Rings
Sheets of 6-membered rings with 1:1 layers
'Halloysite'71.1.1.4Al2(Si2O5)(OH)4
Sheets of 6-membered rings with 2:1 layers
Annite71.2.2b.3KFe2+3(AlSi3O10)(OH)2
Muscovite71.2.2a.1KAl2(AlSi3O10)(OH)2
Sheets of 6-membered rings with 2:1 clays
Montmorillonite71.3.1a.2(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Group 75 - TECTOSILICATES Si Tetrahedral Frameworks
Si Tetrahedral Frameworks - SiO2 with [4] coordinated Si
Quartz75.1.3.1SiO2
Si Tetrahedral Frameworks - SiO2 with H2O and organics
Opal75.2.1.1SiO2 · nH2O
Group 76 - TECTOSILICATES Al-Si Framework
Al-Si Framework with Al-Si frameworks
Albite76.1.3.1Na(AlSi3O8)
Microcline76.1.1.5K(AlSi3O8)
Group 77 - TECTOSILICATES Zeolites
Zeolite group - True zeolites
Pollucite77.1.1.2(Cs,Na)2(Al2Si4O12) · 2H2O
Unclassified Minerals, Mixtures, etc.
Albite
var: Cleavelandite
-Na(AlSi3O8)
'Allanite Group'-{A12+REE3+}{M3+2M32+}(Si2O7)(SiO4)O(OH)
Beryl
var: Aquamarine
-Be3Al2Si6O18
var: Goshenite-Be3Al2(Si6O18)
var: Heliodor-Be3Al2(Si6O18)
var: Morganite-Be3Al2(Si6O18)
'Columbite-(Fe)-Columbite-(Mn) Series'-
Fluorapatite
var: Mn-bearing Fluorapatite
-(Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
'Hornblende'-
'Indicolite'-A(D3)G6(T6O18)(BO3)3X3Z
'Lepidolite'-
Opal
var: Opal-AN
-SiO2 · nH2O
Quartz
var: Chalcedony
-SiO2
Spodumene
var: Kunzite
-LiAlSi2O6
'Tourmaline'-A(D3)G6(Si6O18)(BO3)3X3Z
'var: Rubellite'-A(D3)G6(T6O18)(BO3)3X3Z
'var: Watermelon Tourmaline'-A(D3)G6(T6O18)(BO3)3X3Z
Zircon
var: Cyrtolite
-Zr[(SiO4),(OH)4]

List of minerals for each chemical element

HHydrogen
H Pollucite(Cs,Na)2(Al2Si4O12) · 2H2O
H ElbaiteNa(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
H SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
H MontebrasiteLiAl(PO4)(OH)
H AnniteKFe32+(AlSi3O10)(OH)2
H AutuniteCa(UO2)2(PO4)2 · 11H2O
H Fluorapatite (var: Mn-bearing Fluorapatite)(Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
H GypsumCaSO4 · 2H2O
H Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
H OpalSiO2 · nH2O
H UranophaneCa(UO2)2(SiO3OH)2 · 5H2O
H Opal (var: Opal-AN)SiO2 · nH2O
H Zircon (var: Cyrtolite)Zr[(SiO4),(OH)4]
H Meta-autuniteCa(UO2)2(PO4)2 · 6-8H2O
H HalloysiteAl2(Si2O5)(OH)4
H MuscoviteKAl2(AlSi3O10)(OH)2
H Allanite Group{A12+REE3+}{M23+M32+}(Si2O7)(SiO4)O(OH)
H TopazAl2(SiO4)(F,OH)2
H ManganiteMn3+O(OH)
LiLithium
Li ElbaiteNa(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
Li SpodumeneLiAlSi2O6
Li Spodumene (var: Kunzite)LiAlSi2O6
Li MontebrasiteLiAl(PO4)(OH)
BeBeryllium
Be BerylBe3Al2(Si6O18)
Be Beryl (var: Aquamarine)Be3Al2Si6O18
Be Beryl (var: Morganite)Be3Al2(Si6O18)
Be Beryl (var: Heliodor)Be3Al2(Si6O18)
Be Beryl (var: Goshenite)Be3Al2(Si6O18)
BBoron
B ElbaiteNa(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
B SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
B Tourmaline (var: Rubellite)A(D3)G6(T6O18)(BO3)3X3Z
B IndicoliteA(D3)G6(T6O18)(BO3)3X3Z
B Tourmaline (var: Watermelon Tourmaline)A(D3)G6(T6O18)(BO3)3X3Z
B TourmalineA(D3)G6(Si6O18)(BO3)3X3Z
OOxygen
O Pollucite(Cs,Na)2(Al2Si4O12) · 2H2O
O Tantalite-(Mn)Mn2+Ta2O6
O FluorapatiteCa5(PO4)3F
O Albite (var: Cleavelandite)Na(AlSi3O8)
O ElbaiteNa(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
O SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
O SpodumeneLiAlSi2O6
O BerylBe3Al2(Si6O18)
O Spodumene (var: Kunzite)LiAlSi2O6
O MontebrasiteLiAl(PO4)(OH)
O ZirconZr(SiO4)
O Tourmaline (var: Rubellite)A(D3)G6(T6O18)(BO3)3X3Z
O AnniteKFe32+(AlSi3O10)(OH)2
O AutuniteCa(UO2)2(PO4)2 · 11H2O
O Beryl (var: Aquamarine)Be3Al2Si6O18
O Fluorapatite (var: Mn-bearing Fluorapatite)(Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
O GypsumCaSO4 · 2H2O
O IndicoliteA(D3)G6(T6O18)(BO3)3X3Z
O Tourmaline (var: Watermelon Tourmaline)A(D3)G6(T6O18)(BO3)3X3Z
O SpessartineMn32+Al2(SiO4)3
O TourmalineA(D3)G6(Si6O18)(BO3)3X3Z
O CassiteriteSnO2
O Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
O OpalSiO2 · nH2O
O UraniniteUO2
O UranophaneCa(UO2)2(SiO3OH)2 · 5H2O
O Beryl (var: Morganite)Be3Al2(Si6O18)
O Opal (var: Opal-AN)SiO2 · nH2O
O Zircon (var: Cyrtolite)Zr[(SiO4),(OH)4]
O Meta-autuniteCa(UO2)2(PO4)2 · 6-8H2O
O Columbite-(Fe)Fe2+Nb2O6
O HalloysiteAl2(Si2O5)(OH)4
O MuscoviteKAl2(AlSi3O10)(OH)2
O AlmandineFe32+Al2(SiO4)3
O Allanite Group{A12+REE3+}{M23+M32+}(Si2O7)(SiO4)O(OH)
O Beryl (var: Heliodor)Be3Al2(Si6O18)
O TopazAl2(SiO4)(F,OH)2
O Beryl (var: Goshenite)Be3Al2(Si6O18)
O Quartz (var: Chalcedony)SiO2
O WodginiteMn2+Sn4+Ta2O8
O AlbiteNa(AlSi3O8)
O MicroclineK(AlSi3O8)
O QuartzSiO2
O ManganiteMn3+O(OH)
O PyrolusiteMn4+O2
FFluorine
F FluorapatiteCa5(PO4)3F
F Fluorapatite (var: Mn-bearing Fluorapatite)(Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
F TopazAl2(SiO4)(F,OH)2
NaSodium
Na Pollucite(Cs,Na)2(Al2Si4O12) · 2H2O
Na Albite (var: Cleavelandite)Na(AlSi3O8)
Na ElbaiteNa(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
Na SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
Na Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Na AlbiteNa(AlSi3O8)
MgMagnesium
Mg Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
AlAluminium
Al Pollucite(Cs,Na)2(Al2Si4O12) · 2H2O
Al Albite (var: Cleavelandite)Na(AlSi3O8)
Al ElbaiteNa(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
Al SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
Al SpodumeneLiAlSi2O6
Al BerylBe3Al2(Si6O18)
Al Spodumene (var: Kunzite)LiAlSi2O6
Al MontebrasiteLiAl(PO4)(OH)
Al AnniteKFe32+(AlSi3O10)(OH)2
Al Beryl (var: Aquamarine)Be3Al2Si6O18
Al SpessartineMn32+Al2(SiO4)3
Al Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Al Beryl (var: Morganite)Be3Al2(Si6O18)
Al HalloysiteAl2(Si2O5)(OH)4
Al MuscoviteKAl2(AlSi3O10)(OH)2
Al AlmandineFe32+Al2(SiO4)3
Al Beryl (var: Heliodor)Be3Al2(Si6O18)
Al TopazAl2(SiO4)(F,OH)2
Al Beryl (var: Goshenite)Be3Al2(Si6O18)
Al AlbiteNa(AlSi3O8)
Al MicroclineK(AlSi3O8)
SiSilicon
Si Pollucite(Cs,Na)2(Al2Si4O12) · 2H2O
Si Albite (var: Cleavelandite)Na(AlSi3O8)
Si ElbaiteNa(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3(OH)
Si SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
Si SpodumeneLiAlSi2O6
Si BerylBe3Al2(Si6O18)
Si Spodumene (var: Kunzite)LiAlSi2O6
Si ZirconZr(SiO4)
Si AnniteKFe32+(AlSi3O10)(OH)2
Si Beryl (var: Aquamarine)Be3Al2Si6O18
Si SpessartineMn32+Al2(SiO4)3
Si TourmalineA(D3)G6(Si6O18)(BO3)3X3Z
Si Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Si OpalSiO2 · nH2O
Si UranophaneCa(UO2)2(SiO3OH)2 · 5H2O
Si Beryl (var: Morganite)Be3Al2(Si6O18)
Si Opal (var: Opal-AN)SiO2 · nH2O
Si Zircon (var: Cyrtolite)Zr[(SiO4),(OH)4]
Si HalloysiteAl2(Si2O5)(OH)4
Si MuscoviteKAl2(AlSi3O10)(OH)2
Si AlmandineFe32+Al2(SiO4)3
Si Allanite Group{A12+REE3+}{M23+M32+}(Si2O7)(SiO4)O(OH)
Si Beryl (var: Heliodor)Be3Al2(Si6O18)
Si TopazAl2(SiO4)(F,OH)2
Si Beryl (var: Goshenite)Be3Al2(Si6O18)
Si Quartz (var: Chalcedony)SiO2
Si AlbiteNa(AlSi3O8)
Si MicroclineK(AlSi3O8)
Si QuartzSiO2
PPhosphorus
P FluorapatiteCa5(PO4)3F
P MontebrasiteLiAl(PO4)(OH)
P AutuniteCa(UO2)2(PO4)2 · 11H2O
P Fluorapatite (var: Mn-bearing Fluorapatite)(Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
P Meta-autuniteCa(UO2)2(PO4)2 · 6-8H2O
SSulfur
S SulphurS8
S GypsumCaSO4 · 2H2O
ClChlorine
Cl Fluorapatite (var: Mn-bearing Fluorapatite)(Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
KPotassium
K AnniteKFe32+(AlSi3O10)(OH)2
K MuscoviteKAl2(AlSi3O10)(OH)2
K MicroclineK(AlSi3O8)
CaCalcium
Ca FluorapatiteCa5(PO4)3F
Ca AutuniteCa(UO2)2(PO4)2 · 11H2O
Ca Fluorapatite (var: Mn-bearing Fluorapatite)(Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
Ca GypsumCaSO4 · 2H2O
Ca Montmorillonite(Na,Ca)0.33(Al,Mg)2(Si4O10)(OH)2 · nH2O
Ca UranophaneCa(UO2)2(SiO3OH)2 · 5H2O
Ca Meta-autuniteCa(UO2)2(PO4)2 · 6-8H2O
MnManganese
Mn Tantalite-(Mn)Mn2+Ta2O6
Mn Fluorapatite (var: Mn-bearing Fluorapatite)(Ca,Mn2+)5(PO4)3(F,Cl,OH) or Ca5([P,Mn5+]O4)3(F,Cl,OH)
Mn SpessartineMn32+Al2(SiO4)3
Mn WodginiteMn2+Sn4+Ta2O8
Mn ManganiteMn3+O(OH)
Mn PyrolusiteMn4+O2
FeIron
Fe SchorlNa(Fe32+)Al6(Si6O18)(BO3)3(OH)3(OH)
Fe AnniteKFe32+(AlSi3O10)(OH)2
Fe Columbite-(Fe)Fe2+Nb2O6
Fe AlmandineFe32+Al2(SiO4)3
ZrZirconium
Zr ZirconZr(SiO4)
Zr Zircon (var: Cyrtolite)Zr[(SiO4),(OH)4]
NbNiobium
Nb Columbite-(Fe)Fe2+Nb2O6
SnTin
Sn CassiteriteSnO2
Sn WodginiteMn2+Sn4+Ta2O8
CsCaesium
Cs Pollucite(Cs,Na)2(Al2Si4O12) · 2H2O
TaTantalum
Ta Tantalite-(Mn)Mn2+Ta2O6
Ta Microlite GroupA2-mTa2X6-wZ-n
Ta WodginiteMn2+Sn4+Ta2O8
UUranium
U AutuniteCa(UO2)2(PO4)2 · 11H2O
U UraniniteUO2
U UranophaneCa(UO2)2(SiO3OH)2 · 5H2O
U Meta-autuniteCa(UO2)2(PO4)2 · 6-8H2O

References

Sort by

Year (asc) Year (desc) Author (A-Z) Author (Z-A)
Seaman, David. (1963), The Walden Gem Mine. Rocks and Minerals, 38(7-8): 355-62.
Barton, William R. and Carl E. Goldsmith (1968), New England Beryllium Investigations. U. S. Bureau of Mines, Report of Investigations ROI 7070.
Rocks & Minerals (1970): 45: 595-600.
Seaman, David. (1970), The Paragenesis of the Walden Pegmatite, Portland, Conn. Rocks & Minerals, 45: 443-449, 523-529.
Schooner, Richard. (circa 1990), Untitled manuscript on central Connecticut mineralogy.
Weber, Marcelle H. and Earle C. Sullivan. (1995), Connecticut Mineral Locality Index. Rocks & Minerals (Connecticut Issue), 70(6): 403.
Lemanski, Jr., Chester S. (2016), personal communication to Mindat.org (beryl).


This page contains all mineral locality references listed on mindat.org. This does not claim to be a complete list. If you know of more minerals from this site, please register so you can add to our database. This locality information is for reference purposes only. You should never attempt to visit any sites listed in mindat.org without first ensuring that you have the permission of the land and/or mineral rights holders for access and that you are aware of all safety precautions necessary.
 
Mineral and/or Locality  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization. Public Relations by Blytheweigh.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2019, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters.
Privacy Policy - Terms & Conditions - Contact Us Current server date and time: July 17, 2019 15:37:22 Page generated: July 16, 2019 08:33:01
Go to top of page